同角三角函数的8个公式大全
- 格式:docx
- 大小:14.73 KB
- 文档页数:1
同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z.公式二:sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α. 公式三:sin(-α)=-sin α,cos(-α)=cos α.公式四:sin(π-α)=sin α,cos(π-α)=-cos α.公式五:sin )(απ-2=cos α,cos )(απ-2=sin α. 公式六:sin )(απ+2cos α,cos )(απ+2=-sin α. 一个口诀:诱导公式的记忆口诀为:(απ±2k )奇变偶不变,符号看象限. 三种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….一、已知某角的一个三角函数值,求其它三角函数值 例1:① 已知sinA=23, A 为第二象限的角,求cosA ,tanA 的值;②已知cosA=23, A 为第四象限的角,求sinA ,tanA 的值;③已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________;二、由某角的正切值求该角关于正弦余弦的三角函数式的值例 2:已知tan α=2,求:(1)4sin 2cos 5sin 3cos αααα-+;(2)2222sin 2sin cos cos 4cos 3sin 1αααααα---+;(3)25sin 3sin cos 2ααα+-变式(1)已知tan α=13,求12sin αcos α+cos 2α的值;三、关于某角的正弦与余弦之和,正弦与余弦之差,正弦与余弦之积,知一求二例3: 已知-π2<x <0,sin x +cos x =15①求sinxcosx 的值, ②求sinx+cosx 的值③求sin 2x -cos 2x 的【试一试】 (1)若α为三角形的一个内角,且sin α+cos α=23,则这个三角形是( )A .正三角形B .直角三角形C .锐角三角形D .钝角三角形(2)已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.四、利用诱导公式求值,化简例4: 已知sin)(2πα+=-55,α∈(0,π). (1)求)3cos()sin()23cos()2sin(απαπαππα++-+--的值; (2)求cos )(απ-65的值.(2)已知sin α是方程5x 2-7x -6=0的根,α是第三象限角, 则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________.专项基础训练一、选择题1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32B.32C .-12 D.12 2. cos(-2 013π)的值为( ) A.12B .-1C .-32D .03.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f ⎝ ⎛⎭⎪⎫-25π3的值为( )A.12B .-12C.32 D .-324.当0<x <π4时,函数f (x )=cos 2xcos x sin x -sin 2x的最小值是( )A.14B.12 C .2 D .4 二、填空题5.如果sin α=15,且α为第二象限角,则sin ⎝ ⎛⎭⎪⎫3π2+α=________.6.已知sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12的值为________.7. sin ⎝ ⎛⎭⎪⎫α+3π2·tan (α+π)sin (π-α)=________.三、解答题(共22分)8. (10分)已知sin θ+cos θ=23(0<θ<π),求tan θ的值.9. (12分)已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ的值.。
三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦函数:r y=αsin 余弦函数:r x =αcos 正切函数:x y =αtan余切函数:y x =αcot 正割函数:xr=αsec余割函数:yr=αcsc二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。
商数关系:x x x cos sin tan =,xxx sin cos cot =。
平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。
积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosαtan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin(απ-2)=cosα cos(απ-2)=sinα tan(απ-2)=cotα cot(απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin(απ+2)=cosα cos(απ+2)=-sinαtan(απ+2)=-cotα cot(απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系:sin(απ-23)=-cosα cos(απ-23)=-sinαtan(απ-23)=cotα cot(απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin(απ+23)=-cosα cos(απ+23)=sinαtan(απ+23)=-cotα cot(απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβ2tan(α/2) sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————1+tan2(α/2)tanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2) tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin———·cos———2 2α+βα-βsinα-sinβ=2cos———·sin———2 2α+βα-βcosα+cosβ=2cos———·cos———2 2α+βα-βcosα-cosβ=-2sin———·sin———2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=—-[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)同角三角函数的基本关系式倒数关系商的关系平方关系1=•ααcot tan1=•ααcsc sin1=•ααsec cosαααααcsc sec tan cos sin == αααααsec csc cot sin cos == 122=+ααcos sin αα221sec tan =+αα221csc cot =+六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
同角三角函数万能置换公式是一种用来简化三角函数运算的方法,通过将不同的三角函数之间进行置换,可以简化复杂的三角函数表达式,并得出更简洁的结果。
这种方法可以在解决各种三角函数相关问题时极大地提高计算效率,减少出错几率,是学习和掌握三角函数知识的重要工具之一。
同角三角函数的万能置换公式包括正弦、余弦、正切、余切等函数之间的置换关系,通过这些关系可以将一个复杂的三角函数表达式转化为另一个更简单的形式,从而便于计算和分析。
以下是一些常用的同角三角函数万能置换公式:1. 正弦与余弦的置换:\sin(x) = \cos\left(\frac{\pi}{2}-x\right)\cos(x) = \sin\left(\frac{\pi}{2}-x\right)2. 正切与余切的置换:\tan(x) = \cot\left(\frac{\pi}{2}-x\right)\cot(x) = \tan\left(\frac{\pi}{2}-x\right)3. 正割与余割的置换:\sec(x) = \csc\left(\frac{\pi}{2}-x\right)\csc(x) = \sec\left(\frac{\pi}{2}-x\right)4. 余弦与正切的置换:\cos(x) = \tan\left(\frac{\pi}{2}-x\right)\tan(x) = \cot\left(\frac{\pi}{2}-x\right)5. 正弦与正割的置换:\sin(x) = \sec\left(\frac{\pi}{2}-x\right)\sec(x) = \csc\left(\frac{\pi}{2}-x\right)这些置换公式可以帮助我们简化复杂的三角函数表达式,将其转化为更容易计算和理解的形式。
在解决各种三角函数相关问题时,我们可以根据具体的情况选择合适的置换公式,进行替换和简化,从而得出准确的结果。
除了上述常用的置换公式外,还有一些其他的同角三角函数置换公式,如和差化积公式、倍角公式、半角公式等,这些公式在解决特定类型的问题时也非常有用。
高中三角函数公式大全一、 任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y =αsin 余弦:r x=αcos 正切:xy=αtan 余切:y x =αcot正割:xr=αsec 余割:y r =αcsc注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有.向.线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、 同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、 诱导公式——奇变偶不变,符号看象限 诱导公式口诀“奇变偶不变,符号看象限”意义: k ×π/2±a(k ∈z)的三角函数值.(1)当k 为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k 为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
四、 和角公式和差角公式----是后续推导倍角、和差化积等公式的基础βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=- βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-和差角公式的向量证明法:在平面直角坐标系中,以x 轴为始边,作角α,角β,分别记其终边单位向量为a, b , 则a =(cos α, sin α), b =(cos β, sin β) ∵a ·b =|a||b|cos<a,b>且a ·b =cos α·cos β+sin α·sin β 且|a|=|b|=1∴cos<a,b>=cos(α-β)=cos α·cos β+sin α·sin β用-β代替β,得cos(α+β)=cos α·cos β-sin α·sin β由诱导公式6,得sin(α-β)=-cos[(α-β)+π/2]=-cos[(α+π/2)-β] =-[cos(α+π/2)·cosβ+sin(α+π/2)·sinβ] =-[-sinα·cosβ+cosα·sinβ] =sinα·cosβ-cosα·sinβ同理得 sin(α+β)=sin α·cos β+cos α·sin β又tan(α-β) = sin(α-β)/cos(α-β) = (sin α·cos β-cos α·sin β)/(cos α·cos β+sin α·sin β) 同除cos α·cos β,得tan(α-β)=(tan α-tan β)/(1+tan α·tan β) 同理,tan(α+β)=(tan α+tan β)/(1-tan α·tan β)五、 二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+2)cos (sin 2sin 1ααα-=-六、 万能公式单角的三角函数都可以用半角的正切来表示ααα2tan 1tan 22sin +=, ααα22tan 1tan 12cos +-=, ααα2tan 1tan 22tan -=。
同角三角函数关系式·平方关系:三角函数sin^2α+cos^2α=1cos^2a=1-sin^2atan^2α+1=1/cos^2α2sin^2a=1-cos2acot^2α+1=1/sin^2a·积的关系:sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα·倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1·商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比正切等于对边比邻边,·对称性180度-α的终边和α的终边关于y轴;-α的终边和α的终边关于x;180度+α的终边和α的终边关于对称;180度-α的终边关于y=x对称;·诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:三角函数sin2kπ+α=sinαcos2kπ+α=cosαtan2kπ+α=tanαcot2kπ+α=cotα公式二:设α为任意角,π+α的与α的三角函数值之间的关系:sinπ+α=-sinαcosπ+α=-cosαtanπ+α=tanαcotπ+α=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin-α=-sinαcos-α=cosαtan-α=-tanαcot-α=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sinπ-α=sinαcosπ-α=-cosαtanπ-α=-tanαcotπ-α=-cotα公式五:cosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ·公式:sinα+sinβ=2sinα+β/2cosα-β/2sinα-sinβ=2cosα+β/2sinα-β/2c osα+cosβ=2cosα+β/2cosα-β/2cosα-cosβ=-2sinα+β/2sinα-β/2·公式:sinα·cosβ=1/2sinα+β+sinα-βcosα·sinβ=1/2sinα+β-sinα-βcosα·cosβ=1/2cosα+β+cosα-βsinα·sinβ=-1/2cosα+β-cosα-β·:sin2α=2sinα·cosα=2/tanα+cotαcos2α=cosα^2-sinα^2=2cosα^2-1=1-2sinα^2tan2α=2tanα/1-tan^2α·三倍角公式:sin3α = 3sinα-4sin^3α = 4sinα·sin60°+αsin60°-αcos3α = 4cos^3α-3cosα = 4cosα·cos60°+αcos60°-αtan3α = 3tanα-tan^3α/1-3tan^2α = tanαtanπ/3+αtanπ/3-α ·:sinα/2=±√1-cosα/2cosα/2=±√1+cosα/2tanα/2=±√1-cosα/1+cosα=sinα/1+cosα=1-cosα/sinα·辅助角公式:Asinα+Bcosα=√A^2+B^2sinα+φtanφ=B/AAsinα-Bcosα=√A^2+B^2cosα-φtanφ=-A/B·万能公式sina= 2tana/2/1+tan^2a/2cosa= 1-tan^2a/2/1+tan^2a/2tana= 2tana/2/1-tan^2a/2·降幂公式sin^2α=1-cos2α/2=versin2α/2cos^2α=1+cos2α/2=covers2α/2tan^2α=1-cos2α/1+cos2α·万能公式:sinα=2tanα/2/1+tan^2;α/2cosα=1-tan^2;α/2/1+tan^2;α/2tanα=2tanα/2/1-tan^2;α/2·三角和的三角函数:sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα·其它公式asina+bcosa=sqrta^2+b^2sina+c 其中,tanc=b/aasina-bcosa=sqrta^2+b^2cosa-c 其中,tanc=a/b1+sina=sina/2+cosa/2^2 1-sina=sina/2-cosa/2^2其他非重点三角函数csca=1/sina seca=1/cosacos30=sin60sin30=cos60·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=sinα/2+cosα/2^2·其他及证明:sinα+sinα+2π/n+sinα+2π2/n+sinα+2π3/n+……+sinα+2πn-1/n= 0cosα+cosα+2π/n+cosα+2π2/n+cosα+2π3/n+……+cosα+2πn-1/n= 0以及sin^2α+sin^2α-2π/3+sin^2α+2π/3=3/2tanAtanBtanA+B+tanA+tanB-tanA+B=0cosx+cos2x+...+cosnx= sinn+1x+sinnx-sinx/2sinx证明:左边=2sinxcosx+cos2x+...+cosnx/2sinx=sin2x-0+sin3x-sinx+sin4x-sin2x+...+sinnx-sinn-2x+sinn+1x-sinn-1x/2sinx 积化和差=sinn+1x+sinnx-sinx/2sinx=右边等式得证sinx+sin2x+...+sinnx= - cosn+1x+cosnx-cosx-1/2sinx证明:左边=-2sinxsinx+sin2x+...+sinnx/-2sinx=cos2x-cos0+cos3x-cosx+...+cosnx-cosn-2x+cosn+1x-cosn-1x/-2sinx =- cosn+1x+cosnx-cosx-1/2sinx=右边等式得证三倍角公式推导sin3a=sin2a+a=sin2acosa+cos2asina=2sina1-sin^2a+1-2sin^2asina=3sina-4sin^3acos3a=cos2a+a=cos2acosa-sin2asina=2cos^2a-1cosa-21-cos^2acosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina3/4-sin^2a=4sina√3/2^2-sin^2a=4sinasin^260°-sin^2a=4sinasin60°+sinasin60°-sina=4sina2sin60+a/2cos60°-a/22sin60°-a/2cos60°+a/2=4sinasin60°+asin60°-acos3a=4cos^3a-3cosa=4cosacos^2a-3/4=4cosacos^2a-√3/2^2=4cosacos^2a-cos^230°=4cosacosa+cos30°cosa-cos30°=4cosa2cosa+30°/2cosa-30°/2{-2sina+30°/2sina-30°/2}=-4cosasina+30°sina-30°=-4cosasin90°-60°-asin-90°+60°+a =-4cosacos60°-a-cos60°+a=4cosac os60°-acos60°+a上述两式相比可得tan3a=tanatan60°-atan60°+a。
高中数学-三角函数公式大全新课程高中数学三角公式汇总一、任意角的三角函数在角α的终边上任取一点P(x,y),记r=x²+y²。
正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数。
如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。
平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。
三、诱导公式⑴α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵π/3+α、-π/3+α、π-α、-π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(※)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(※)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/2tanα=sin2α/(1+cos2α)万能公式告诉我们,任何单角的三角函数都可以用半角的正切来表示。
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 余切:y x =αcot 正割:x r =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限) )(tan )2tan(cos )2cos(sin )2sin(.1Z k k k k ∈⎪⎩⎪⎨⎧=+=+=+ααπααπααπ sin()sin 2.cos()cos tan()tan αααααα-=-⎧⎪-=⎨⎪-=-⎩ sin()sin 3.cos()cos tan()tan πααπααπαα+=-⎧⎪+=-⎨⎪+=⎩⎪⎩⎪⎨⎧-=--=-=-ααπααπααπtan )tan(cos )cos(sin )sin(.4 sin(2)sin 5.cos(2)cos tan(2)tan πααπααπαα-=-⎧⎪-=⎨⎪-=-⎩ ⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看.成.锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)sin()cos 26.cos()sin 2tan()cot 2πααπααπαα⎧+=⎪⎪⎪+=-⎨⎪⎪+=-⎪⎩ sin()cos 27.cos()sin 2tan()cot 2πααπααπαα⎧-=⎪⎪⎪-=⎨⎪⎪-=⎪⎩ 3sin()cos 238.cos()sin 23tan()cot 2πααπααπαα⎧+=-⎪⎪⎪+=⎨⎪⎪+=-⎪⎩ 3sin()cos 239.cos()sin 23tan()cot 2πααπααπαα⎧-=-⎪⎪⎪-=-⎨⎪⎪-=⎪⎩ 四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαs i n c o s c o s s i n )s i n (⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαs i n s i n c o s c o s )c o s (⋅+⋅=- βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαt a n t a n 1t a n t a n )t a n (⋅+-=- 五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ ; αα2sin 22cos 1=-;2)cos (sin 2sin 1ααα+=+ ;2)cos (sin 2sin 1ααα-=-;六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=;ααα22tan 1tan 12cos +-=;ααα2tan 1tan 22tan -=。