2019-2020学年高一数学《122 同角三角函数的基本关系》学案.doc
- 格式:doc
- 大小:130.50 KB
- 文档页数:2
1.2.2同角三角函数的基本关系一、教学目标:1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影四、教学设想【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一下同一个角不同三角函数之间的关系吗? 如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=.这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.2. 例题讲评例6.已知3sin 5α=-,求cos ,tan αα的值. sin ,cos ,tan ααα三者知一求二,熟练掌握.3. 巩固练习23P 页第1,2,3题4.例题讲评例7.求证: cos 1sin 1sin cos x xxx +=-. 通过本例题,总结证明一个三角恒等式的方法步骤.5.巩固练习23P 页第4,5题6.学习小结 (1)同角三角函数的关系式的前提是“同角”,因此1cos sin 22≠+βα,γβαcos sin tan ≠. (2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.五、评价设计(1) 作业:习题1.2A 组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a xa xb x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.。
环节三 同角三角函数的基本关系【新知探究】1.发现规律问题 1 诱导公式一表明,终边相同的角的同一三角函数值相等.而三个三角函数值都是由角的终边与单位圆的交点坐标唯一确定的,所以它们之间一定有内在联系.那么,终边相同的角的三个三角函数之间有什么关系呢?答案:如图1,设P (x ,y )是角α的终边与单位圆的交点.过P 作x 轴的垂线,交x 轴于M ,则△OMP 是直角三角形,而且OP =1.由勾股定理OM ²+MP ²=1.因此x ²+y ²=1。
即同一个角的三个三角函数之间的关系:sin 2α+cos 2α=1 .并且当角α的终边与坐标轴重合时,该公式也成立. 根据三角函数的定义,有:sin tan cos ααα=,2ππ+≠k α,k ∈Z . 即同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.追问 从方程的角度观察同角三角函数关系,你能发现它有什么作用?答案:因为有两个方程,三个未知数sin α,cos α,tan α,所以已知其中一个可以求出另外两个,简称“知一求二”.2.应用规律例1已知sin α=-53,求cos α,tan α的值. 答案:因为sin α<0,sin α≠-1,所以α是第三或第四象限角.由sin 2α+cos 2α=1得cos 2α=1-sin 2α=1-2316()525-=; 如果α是第三象限角,那么cos α<0.于是cos α=164255-=-, 从而sin 353tan ()()cos 544ααα==-⨯-=; 如果α是第四象限角,那么cos α>0.于是cos α=164255=, 从而sin 353tan ()cos 544ααα==-⨯=-. 图1追问 你能对“例1”这种题型总结出它的解题步骤吗?答案:解题步骤如下:第一步,先根据条件判断角所在的象限;第二步,分类讨论确定其中一个三角函数值的符号;第三步,利用基本关系求出其他的三角函数值.例2求证:xx x x cos sin 1sin 1cos +=-. 答案:证法一:由cos x ≠0,知sin x ≠-1,所以1+sin x ≠0,于是左边=22cos (1sin )cos (1sin )cos (1sin )1sin (1sin )(1sin )1sin cos cos x x x x x x x x x x x x++++===-+-=右边. 所以,原式成立.证法二:因为(1-sin x )(1+sin x )=1-sin 2x =cos 2x =cos x cos x ,且1-sin x ≠0,cos x ≠0,所以cos 1sin 1sin cos x x x x +=-. 3.探究延伸问题 2 总结上述研究过程,你能说说我们是从哪些角度入手发现三角函数性质的?你认为还可以从哪些方面入手研究三角函数的性质?答案:借助单位圆,从三角函数的定义出发,我们从三角函数值的符号规律、三角函数的取值规律(相等)入手发现了诱导公式一和同角三角函数的基本关系.自然地,我们还可以进一步研究三角函数取值互为相反数等其他关系的规律.【归纳小结】问题3回顾本单元学习内容,并回答下面问题:(1)本单元知识发生发展过程的基本脉络是怎样的?在上一节的基础上进一步完善本单元的知识结构图?(2)我们是如何发现诱导公式一和同角三角函数的基本关系的?在发现这些性质的过程中,有哪些值得总结的思想方法或经验?答案:(1)基本脉络是:现实背景—获得研究对象—分析对应关系的本质—下定义—研究性质;本单元的知识结构图:(2)三角函数的定义是借助于单位圆来定义的,因此其性质必然与单位圆的几何性质有关,又因为三角函数是一个背景下同时得到三个概念,所以,它们之间一定有某种内在的联系,在此基础上,发现了诱导公式一和同角三角函数的基本关系.。
教学设计(一)自主学习推导公式1、证明公式:(同角三角函数基本关系)(1)平方关系:(2)商的关系:回忆:任意角三角函数的定义?学生回答:设α是一个任意角,它的终边与单位圆交于点P(x,y)则:sinα=y;cosα=x,引导学生注意:单位圆中所以,sin2α+cos2α=1;设计意图:引导学生运用已知知识解决未知知识,体会数学知识的形成过程。
2、辨析讨论—深化公式辨析1思考:上述两个公式成立有什么要求吗?设计意图:注意这些关系式都是对于使它们有意义的角而言的。
如(2)式中辨析2判断下列等式是否成立:设计意图:注意“同角”,至于角的形式无关重要,突破难点。
辨析3思考:你能将两个公式变形么?(师生活动:对于公式变式的认识,强调灵活运用公式的几大要点。
)设计意图:对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用)等(二)小组合作及时训练自然界的万物都有着千丝万缕的联系,大家只要养成善于观察的习惯,也许每天都会有新的发现。
刚才我们发现了同角三角函数的基本关系式,那么这些关系式能用于解决哪些问题呢?[例1] 已知sinα=0.8,且α是第二象限角,求cosα,tanα的值.思考1:条件“α是第二象限的角”有什么作用?思考2:如何建立cosα与sinα的联系?如何建立他们与tanα的联系?设计意图:借助学生对于刚学习的知识所拥有的探求心理,让他们学习使用两个公式来求三角函数值。
变式:α是第四象限角,tanα=-5/12,求sinα.思考:本题与例题一的主要区别在哪儿?如何解决这个问题?设计意图: 对比之前例题,强调他们之间的区别,并且说明解决问题的方法:针对α可能所处的象限分类讨论。
小结:(由学生自己总结,师生共同归纳得出)2.注意:若α所在象限未定,应讨论α所在象限。
设计意图:利用例题与变式,共同总结两类问题的解决方法,培养学生归纳分析能力。
[例2]本题已知正切的值欲求sin α,tan α的值.设计意图:利用商的关系的灵活使用,解法多样,通过对公式正向、逆向、变式使用加深对公式的理解与认识。
5.2.2同角三角函数的基本关系一、教材分析本小节内容选自《普通高中数学必修第一册》人教A版(2019)第五章《三角函数》的第二节《三角函数的概念》。
本节课是学生学习了任意角和弧度值,任意角的三角函数后,安排的一节继续深入学习的内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数的基础,在教材中起着承上启下的作用。
同时,它体现的数学思想与方法在整个高中数学学习中都有着重要的作用。
二、教学目标1.理解并掌握同角三角函数基本关系式及推导,发展数学抽象和逻辑推理的素养。
2.会利用同角三角函数的基本关系式进行简单的求值,化简等有关问题,发展数学运算素养。
三、教学重难点重点:同角三角函数基本关系式的推导及应用。
难点:同角三角函数基本关系的灵活应用。
四、教学过程(一)课程导入引导语:同学们,三角学源于天文学,在研究天文学问题的过程中它得到了发展,常见的三角函数有正弦函数、余弦函数、正切函数等,摸清楚这些三角函数之间的关系是三角学的基本问题之一。
问题1:因为sinα,cosα,tanα的值都是由α确定的,所以sinα,cosα,tanα之间是否存在某种关系呢?追问:回到定义中,我们是如何定义三角函数的?问题2:如何建立sin α,cos α,tanα之间的关系式呢?(二)问题探究过P 点作x 轴的垂线,交x 轴于M,则△OMP 是直角三角形,①对于平方关系,若角α是象限角,Rt△OMP 是一直存在,sin 2+cos 2=1是成立的.若角α是轴线角,不妨设α的终边与y 轴非负半轴重合,此时有P(0,1),sin 2+cos 2=1成立。
事实上,α的终边无论与哪条坐标轴重合,sin 2+cos 2=1都成立.综上:对于任意角α,平方关系sin 22②0,所以角α的终边不能落在y 立.cos (三)同角三角函数的基本关系式1、平方关系(1)公式:sin 2α+cos 2α=1,α∈R1.注意:sin 2α是sin 2的简写,读作“sin α的平方”,不能将sin 2α写成sin 2.前者是α的正弦的平方,后者是2的正弦.3、公式赏析①同角讨论:你是如何理解“同角”的?点拨:一是“相同角”,二是(在使函数有意义的前提下)“任意角,所以“同角”指的是“相同的任意角”.②基本讨论:为何将以上关系叫做“基本”关系?点拨:公式简洁、美观,适用范围广.③结构讨论:以上两个公式有何结构特征?点拨:平方关系中有平方+平方=1,左边有变量,右边是常数,动中有静,变化中有不变;商数关系中左边是切,右边是弦,左边是整式,右边是分式,而且是齐次分式。
4.2同角三角函数的基本关系式及诱导公式(学案)知识归纳1、 同角三角函数的基本关系式(1) 平方关系 (2) 商数关系 (3) 倒数关系)记忆口诀:奇变偶不变,符号看象限(其中的奇、偶是指 的奇数倍和偶数倍,变与不变是指 的变化(2)利用诱导公式把任意的三角函数转化为锐角三角函数的基本步骤是:任意角的三角函数→正角的三角函数→00360 的角的三角函数→锐角三角函数 3、平方关系 s is α商数关系 t a nαc o t α倒数关系 s e c α 4、sin cos ,sin cos ,sin cos αααααα+-三者之间的关系()2sin cos 12sin cos αααα+=+()2sin cos 12sin cos αααα-=- ()()22sin cos sin cos 2αααα++-=()()22sin cos sin cos 4sin cos αααααα+--=5、同角三角函数关系式和诱导公式的应用主要包括三类题型:求值、化简、证明典型例题例1、(1)已知()cot 2πα-=,求3sin 2πα⎛⎫+⎪⎝⎭的值 (2) 已知()cot 0m m α=≠,求cos α例2、已知tan 1tan 1αα=--,求下列各式的值:()4sin 2cos 15cos 3sin αααα-+ ()2s i n c o s αα ()()23sin cos αα+例3、已知()()()()()3sin cos 2tan 2cot sin f ππαπααααππα⎛⎫---+ ⎪⎝⎭=----(1) 化简()f α(2) 若α是第三象限角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值 (3) 若313πα=-,求()f α的值例4、(1)求证:tan sin tan sin tan sin tan sin αααααααα⋅+=-⋅(2)已知()()sin 2cos 2αππα-=- 求证:()()()()sin 5cos 233cos sin 5παπαπαα-+-=----例5、已知关于x的方程)2210x x m -+=的两根为sin θ和cos θ,()0,2θπ∈求(1)sin cos 1cot 1tan θθθθ+--的值(2)m 的值(3)方程的两根及此时θ的值堂清练习1、19sin 6π⎛⎫- ⎪⎝⎭的值等于( )A 、12B 、12- C2D、2-2、如果A 为锐角,()1sin 2A π+=-,那么()cos A π-=( )A 、12- B 、12C、2-D23、已知a =200sin ,则160tan 等于A、- B、C、a-D、a4cos sin 1+=-,则θ是( )A 、第一象限角B 、第二象限角C 、第三象限角D 、第四象限角5、若022x π≤≤cos 2x =成立的x 的取值范围是( )A 、0,4π⎛⎫⎪⎝⎭B 、3,4ππ⎛⎫⎪⎝⎭ C 、5,44ππ⎛⎫ ⎪⎝⎭ D 、30,,44πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦6、405cot 300tan +的值为____。
1.2.2 同角三角函数的基本关系【课标要求】1.理解同角三角函数的基本关系式.2.会运用平方关系和商的关系进行化简、求值和证明.【核心扫描】1.同角三角函数基本关系式.(重点)2.基本关系式的变形及其应用.(难点)新知导学同角三角函数的基本关系式温馨提示:同角的两层含义:一是“角相同”,如sin 2α+cos 2β=1就不一定成立;二是对任意一个角(在使得函数有意义的前提下)关系式都成立,即与角的表达式形式无关,如sin 215°+cos 215°=1,sin 2π19+cos 2π19=1等. 互动探究探究点1 同角三角函数的基本关系式对任意角α都成立吗?探究点2 在利用平方关系求sin α或cos α时,其正负号应怎样确定?题型探究类型一 利用同角基本关系式求值【例1】 已知cos α=-817,求sin α,tan α的值.[规律方法] 已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择,一般是先选用平方关系,再用商数关系.另外也要注意“1”的代换,如“1=sin 2α+cos 2α”.本题没有指出α是第几象限的角,则必须由cos α的值推断出α所在的象限,再分类求解.【活学活用1】 已知tan α=43,且α是第三象限角,求sin α,cos α的值.类型二 三角函数式的化简【例2】 化简下列各式: (1)1-sin 2400°;(2) 1-2sin10°cos10°sin10°-1-sin 210°; (3)1-sin α1+sin α+ 1+sin α1-sin α,其中sin α·tan α<0.[规律方法] 解答这类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系,化简过程中常用的方法有:(1)化切为弦,即把非正、余弦的函数都化为正、余弦函数.从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.【活学活用2】 化简:1-2sin α2cos α2+1+2sin α2cos α2⎝⎛⎭⎫0<α<π2.类型三 三角函数式的证明【例3】 求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.[规律方法] (1)证明三角恒等式的实质:清除等式两端的差异,有目的的化简.(2)证明三角恒等式的基本原则:由繁到简.(3)常用方法:从左向右证;从右向左证;左、右同时证.【活学活用3】 求证:sin α1-cos α=1+cos αsin α.易错辨析 忽略角的取值范围,造成增根或丢根【示例】 已知sin θ+cos θ=15,且0<θ<π,求sin θ-cos θ的值. [错解] ∵sin θ+cos θ=15,∴(sin θ+cos θ)2=125, 解得sin θcos θ=-1225. ∴(sin θ-cos θ)2=1-2sin θcos θ=4925, 故sin θ-cos θ=±75. [错因分析] 该解法忽略了角θ的取值范围.根据0<θ<π这一条件,可以确定sin θ-cos θ的符号.[正解] ∵sin θ+cos θ=15,∴(sin θ+cos θ)2=125,解得sin θcos θ=-1225.∴(sin θ-cos θ)2=1-2sin θcos θ=4925.∵0<θ<π,且sin θcos θ<0,∴sin θ>0,cos θ<0,∴sin θ-cos θ>0,∴sin θ-cos θ=75. [防范措施] 在已知sin θcos θ的值求sin θ+cos θ或sin θ-cos θ的值时需开方,因此要 根据角的范围确定正负号的选择.课堂达标1.化简 1-sin 2π5的结果是( ). A .sin π5B .-sin π5C .cos π5D .-cos π5 2.若sin α+cos α2sin α-cos α=2,则tan α的值为( ). A .1 B .-1 C.34 D .-433.已知0<x <π2,cos x =45,则tan x =________. 4.化简1-2sin 40°cos 40°=________.5.已知cos α=-35,求sin α及tan α的值.课堂小结1.同角三角函数的基本关系揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin 22α+cos 22α=1,sin 8αcos 8α=tan 8α等都成立,理由是式子中的角为“同角”. 2.已知角α的某一种三角函数值,求解α的其余三角函数值时,要注意公式的合理选择.一般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象乱写公式.3.在化简或恒等式证明时,注意方法的灵活运用,常用的技巧有:①“1”的代换;②减少角函数的个数(化切为弦、化弦为切等);③多项式运算技巧的应用(如因式分解、整体思想等);④对条件或结论的重新整理、变形、以便于应用同角三角函数关系来求解.参考答案互动探究探究点1 提示 同角三角函数的基本关系式成立的条件是使式子两边都有意义.所以sin 2α+cos 2α=1对于任意角α∈R 都成立,而sin αcos α=tan α并不是对任意角α∈R 都成立,这时α≠k π+π2,k ∈Z . 探究点2 提示 其正负号是由角α所在的象限决定.题型探究类型一 利用同角基本关系式求值【例1】【解】∵cos α=-817<0,∴α是第二或第三象限的角,如果α是第二象限角,那么 sin α=1-cos 2α= 1-⎝⎛⎭⎫-8172=1517, tan α=sin αcos α=1517-817=-158. 如果α是第三象限角,同理可得sin α=-1-cos 2α=-1517,tan α=158. 【活学活用1】【解】由tan α=sin αcos α=43,得sin α=43cos α① 又sin 2α+cos 2α=1②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,∴cos α=-35,sin α=43cos α=-45. 类型二 三角函数式的化简【例2】 【解】(1) 1-sin 2400°= cos 2400°=|cos 400°|=|cos(360°+40°)|=|cos 40°|=cos 40°. (2)1-2 sin 10°cos 10°sin 10°-1-sin 210°=(cos 10°-sin 10°)2sin 10°-cos 210° =|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1. (3)由于sin α·tan α<0,则sin α,tan α异号,∴α是第二、三象限角,∴cos α<0,∴ 1-sin α1+sin α+1+sin α1-sin α=(1-sin α)21-sin 2α+(1+sin α)21-sin 2α =|1-sin α||cos α|+|1+sin α||cos α|=1-sin α+1+sin α-cos α=-2cos α. 【活学活用2】【解】原式= ⎝⎛⎭⎫cos α2-sin α22+ ⎝⎛⎭⎫cos α2+sin α22 =⎪⎪⎪⎪cos α2-sin α2+⎪⎪⎪⎪cos α2+sin α2. ∵α∈⎝⎛⎭⎫0,π2,∴α2∈⎝⎛⎭⎫0,π4. ∴cos α2-sin α2>0,sin α2+cos α2>0, ∴原式=cos α2-sin α2+cos α2+sin α2=2cos α2. 类型三 三角函数式的证明【例3】【证明】∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α=tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边, ∴原等式成立.【活学活用3】【证明】法一 sin 2α+cos 2α=1⇒1-cos 2α=sin 2α⇒(1-cos α)(1+cos α)=sin α·sin α⇒sin α1-cos α=1+cos αsin α. 法二 sin α1-cos α-1+cos αsin α=sin 2α-(1+cos α)(1-cos α) (1-cos α)sin α=sin 2α-(1-cos 2α)(1-cos α)·sin α=sin 2α-sin 2α(1-cos α)·sin α=0, ∴sin α1-cos α=1+cos αsin α. 课堂达标1.C【解析】∵0<π5<π2,∴cos π5>0. ∴1-sin 2π5= cos 2π5=cos π5. 2.A【解析】由条件,得sin α=cos α,∴tan α=1.3.34【解析】本题是同角三角函数关系的运算问题,需先求出sin x ,再求tan x .sin x =1-cos 2x =35,tan x =sin x cos x =34. 4.cos 40°-sin 40°【解析】原式=sin 240°+cos 240°-2sin 40°cos 40°=(sin 40°-cos 40°)2=|cos 40°-sin 40°|=cos 40°-sin 40°.5.【解】∵cos α=-35<0,∴α是第二、三象限角.若α是第二象限角,则sin α>0,tan α<0,∴sin α=1-cos 2α= 1-⎝⎛⎭⎫-352=45,tan α=sin αcos α=-43;若α是第三象限角,则sin α<0,tan α>0,∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45,tan α=sin αcos α=43.。
《同角三角函数的基本关系》教案与导学案同角三角函数的基本关系是指在一个锐角三角形中,其三个内角的三角函数之间的关系。
教案教学目标:1.了解同角三角函数的概念和基本关系。
2.熟练运用同角三角函数的基本关系,解决相关问题。
教学重点:同角三角函数的基本关系。
教学难点:熟练运用同角三角函数的基本关系,解决相关问题。
教学方法:讲授、演示、练习。
教学过程:Step 1 引入新知引导学生回顾正弦定理、余弦定理的内容,由此引入同角三角函数的概念,解释同角三角函数的意义。
Step 2 基本关系的演示通过投影仪或黑板等教具,演示同角三角函数的基本关系。
1) 演示正弦定理的推导,得到sinA=opposite/hypotenuse。
2) 演示余弦定理的推导,得到cosA=adjacent/hypotenuse。
3) 演示正切比例的推导,得到tanA=opposite/adjacent。
Step 3 列示基本关系向学生展示同角三角函数的基本关系,并要求学生背诵这些关系。
Step 4 发现规律通过解决一些具体问题,引导学生发现同角三角函数之间的一些规律和特点。
Step 5 综合运用结合实际问题,进行综合运用,让学生熟练应用同角三角函数的基本关系解决相关问题。
Step 6 归纳总结复习同角三角函数的基本关系,并帮助学生归纳总结相关知识点。
Step 7 学以致用通过一些挑战性问题,提高学生运用同角三角函数的基本关系解决问题的能力。
导学案学习目标:1.了解同角三角函数的概念和基本关系。
2.熟练运用同角三角函数的基本关系,解决相关问题。
学习重点:同角三角函数的基本关系。
学习难点:熟练运用同角三角函数的基本关系,解决相关问题。
学习方法:自主学习、思维导图。
学习过程:Step 1 学习概念自主学习同角三角函数的概念,并在思维导图中整理相关知识点。
Step 2 学习基本关系自主学习同角三角函数的基本关系,并在思维导图中整理相关公式和关系。
《同角三角函数的基本关系》教学设计一、教学目标 1.知识与技能目标(1)能根据三角函数的几何、代数定义导出同角三角函数的基本关系式;(2)掌握同角三角函数的两个基本关系式,并能够根据一个角的三角函数值,求这个角的其他三角函数值.2.过程与方法目标(1)牢固掌握同角三角函数关系式,并能灵活解题,提高学生分析、解决三角函数的思维能力; (2)探究同角三角函数关系式时,体会数形结合的思想;已知一个角的三角函数值,求这个角的其他三角函数值时,进一步树立分类思想;解题时,注重化归的思想,将新题目化归到已经掌握的知识点上; (3)通过对知识的探究,掌握自主学习的方法,通过学习中的交流,形成合作学习的习惯. 3.情感、态度、价值观目标通过教学,使学生学习运用观察、类比、数形结合、联想、猜测、检验等合情推理方法,提高学生运算能力和逻辑推理能力.二、教学重点和难点教学重点:公式1cos sin 22=α+α和α=ααtan cos sin 的推导及其应用 教学难点:同角三角函数的基本关系式的变式应用三、教学流程 (一) 提问引入1、 提出问题:已知53sin -=α,求αcos 、αtan 的值. 2、 在解题过程中,让学生自己探索同角的三角函数关系.(二)探究新知1. 探究对同角三角函数基本关系(1) 根据学生探究出的结果,得出结论.引导学生注意“正弦的平方”的表示方法是“a 2sin ”,而不是:“2sin a ”,进而得到符号表达式:22sin cos 1αα+=;开方计算时,注意“分类”的思想在象限角正负号问题处理时的应用.(2) 探究正弦、余弦和正切函数三者的关系:αααtan cos sin =. 以上的探究由学生自由完成,可以从图形角度,也可以从定义角度加以探究,让学生体会图形语言与符号语言之间的转换关系,体会两种语言的区别于联系.为了让学生及时熟悉公式,同时为后续学生归纳“同角”作铺垫,要求学生完成以下的课堂练习: (1) =+30cos 30sin 22_______________; (2) =+++)4(cos )4(sin 22ππx x ________________;(3) ︒︒45cos 45sin =_______________(4) =+45cos 30sin 22.(3) 学生交流、讨论,最终在教师的引导下得到上述两个公式中应该注意的问题:①注意“同角”指相同的角,例如:145cos 30sin 22≠+ 、12cos 2sin 22=+αα、12cos 2sin22=+αα;②注意这些关系式都是对于使它们有意义的角而言的,如α=ααtan cos sin 中0cos ≠α,且αtan 需有意义等.(三)架构迁移(1)探究上述两个关系式的等价变形式教师点明:由等价变形式αα22cos 1sin -=已知余弦值可以求正弦值;由等价变形式αα22sin 1cos -=已知余弦值可以求正弦值,学生可能得到:αα2cos 1sin -±=的结论,此时,应该向学生说明:αcos 、αsin 的符号受所在象限的限制,不是无条件的,不同于“由12=x 可以推出1±=x ”这种情形,此情况类似于“⎪⎩⎪⎨⎧<-≥=)0()0(||a a a aa ”而不是“a a ±=||”.等价变形式αααcos tan sin =可以将分式可以化为整式例1 已知锐角α满足3tan =α,求(1)ααααcos 2sin 5cos 4sin +-;(2)αααcos sin 2sin 2+.让学生探究第一小题的解法,注意αsin 、αcos 、αtan 之间的关系的应用,学生的解题方法可能有很多种,注意每种解法后对数学思想方法的归纳.然后让学生尝试解决第二小题.第二小题较第一小题难度有所增加,可以让学生采取合作学习的办法,分小组讨论,探究其解题方法.再与第一小题比较,寻找其可借鉴之处.体会类比、化归思想,化未知为已知. 例2 化简αα22cos )tan 1(+.本例在时间允许的情况下进行,否则放到下节课解决. 若时间允许,则进行强化练习: 练习1:已知54cos -=α,且α为第三象限角,求αsin 、αtan 的值.该题与引例配套. 练习2:已知ααcos 5sin =,求ααααcos 2sin cos sin -+的值.该题与例2配套.(四)反思升华:由学生自己反思:“本节课你有些什么收获?”让学生自己总结本节课所学内容,教师从知识层面和思想方法层面帮助学生整理本节课的小节。
班级:__________姓名:__________设计人:__________日期:__________♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒温馨寄语在年轻人的颈项上,没有什么东西能比事业心这颗灿烂的宝珠更迷人的了。
——哈菲兹学习目标1.理解同角三角函数的基本关系.2.会利用同角三角函数的基本关系化简、求值、证明恒等式.学习重点同角三角函数的基本关系式的推导,会利用同角三角函数的基本关系式进行三角函数的化简与证明学习难点会用同角三角函数的基本关系式进行三角函数的化简与证明自主学习同角三角函数的基本关系平方关系: .商的关系:.tanα=预习评价1.已知θ是第一象限角且,则cosθ=.2.化简:= .3.已知3sinα+cosα=0,则t a n = .♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.同角三角函数基本关系设角是一个任意象限角,点P(x,y)为角α终边上任意一点,它与原点的距离为r(r= >0),那么:,请根据三角函数的定义思考下面问题:(1)从以上三角函数的定义,试计算sin2α+cos2α与的值,并根据你计算的结果,写出sin ,cos ,t a n 之间的关系式.(2)同角三角函数的两个基本关系成立的条件各是什么?2.利用同角三角函数关系可以解决哪些问题?教师点拨对同角三角函数基本关系的三点说明(1)关系式中的角一定是同角,否则公式可能不成立,如sin230°+cos260°≠1.(2)同角不要拘泥于形式,将换成或2α也成立,如.(3)商的关系中要注意公式中的隐含条件,cos ≠0,即交流展示——利用基本关系求值1.已知( )A. B. C. D.2.已知,则等于A. B. C. D.3.______.4.已知是第二象限角,,则变式训练1.(2011·山东省潍坊市月考)已知cos α-sin α=-,则sin αcos α的值为()A. B.± C. D.±2.已知tan α=-2,且<α<π,则cos α+sin α=.交流展示——三角函数式的化简5.若,则sinαcosα=A. B. C. D.6.当角α的终边在直线3x+4y=0上时,sin α+cos α=B. C. D.±7.(2012·聊城测试)已知tan α,是关于x的方程x2-kx+k2-3=0的两个实根,且3π<α<π,则cos α+sin α=.变式训练已知,求(1);(2)的值.交流展示——三角恒等式的证明8.求证:.9.证明:(1-tan4A)cos2A+tan2A=1.变式训练求证:学习小结1.三角函数求值的常用方法若已知tan =m,求其他三角函数值,其方法是解方程组求出sin a和cos a的值.若已知tan =m,求形如的值,其方法是将分子、分母同除以co s a(或cos2a)转化为tan 的代数式,再求值.形如a sin2 +bsin •cos +c•cos2 通常把分母看作1,然后用sin2 +cos2 代换,分子分母同除以cos2 再求解.提醒:在应用平方关系求sin 或cos 时,函数值的正、负是由角的终边所在的象限决定的,切不可不加分析,凭想象乱写结果.2.三角函数式化简的本质及关注点(1)本质:三角函数式化简的本质是一种不指定答案的恒等变形,体现了由繁到简的最基本的数学解题原则.(2)关注点:不仅要熟悉和灵活运用同角三角函数的基本关系式,还要熟悉并灵活应用这些公式的等价变形,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α,sinα=tanα•cosα,cosα= .3.对三角函数式化简的原则(1)使三角函数式的次数尽量低.(2)使式中的项数尽量少.(3)使三角函数的种类尽量少.(4)使式中的分母尽量不含有三角函数.(5)使式中尽量不含有根号和绝对值符号.(6)能求值的要求出具体的值,否则就用三角函数式来表示.4.证明三角恒等式的常用方法证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则.(2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.当堂检测1.已知A为三角形的一个内角,且,则cos A−sin A的值为A. B. C. D.2.化简(1+tan2α)·cos2α=__________.3.已知在△ABC中,.(1)求sin A·cos A的值.(2)判断△ABC是锐角三角形还是钝角三角形.(3)求tan A的值.知识拓展在中,,求的值.详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】(1)sin2α+cos2α=1(2)【预习评价】1.2.cos20°3.♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.(1)sin2α+co s2α= + = =1,由以上计算结果可得出以下结论;sin2α+cos2α=1及tanα= .(2)对于平方关系只需同角即可;对于商的关系第一保证是同角,第二保证α≠kπ+ (k∈Z).2.(1)求值:已知一个角的三角函数值,求这个角的其他三角函数的值;(2)化简三角函数式;(3)证明三角恒等式.【交流展示——利用基本关系求值】1.C.【备注】对于与之间的关系,通过平方可以表达出来.2.A,结合可得,所以3.1【解析】本题主要考查同角三角函数基本关系.原式.4.【解析】本题考查同角三角函数基本关系式的应用.利用同角三角函数基本关系式,已知一个角的一个三角函数值可求这个角的其它三角函数值.,又,∴【变式训练】1.A【解析】由已知得(cos α-sin α)2=sin2α+cos2α-2sin αcos α=1-2sin αcos α=,解得sin αcos α=,故选A.2.【解析】本题主要考查了三角函数的概念,意在考查考生对基本概念的理解和应用能力由tan α=-2,得=-2,又sin2α+cos2α=1,且<α<π,解得sin α=,cos α=-,则sin α+cos α==.【交流展示——三角函数式的化简】5.B【解析】由,得,即t a nα.故选B.6.D【解析】在角α的终边上取点P(4t,-3t)(t≠0),则|OP|=5|t|.根据任意角的三角函数的定义,当t>0时,sin α==-,cos α==,sin α+cos α=;当t<0时,sin α==,cos α==-,sin α+cos α=-. 7.-【解析】∵tan α·=k2-3=1,∴k=±2,而3π<α<π,则tan α+=k=2,得tan α=1,则sin α=cos α=-,∴cos α+sin α=-.【变式训练】(1);(2).的一次或二次齐次式,所以可将分子和分母同除以或,然后将代入求解即可.【备注】注意到的应用.【交流展示——三角恒等式的证明】8.证明: 因为1cos sin sin 1cos x x x x+--(1cos )(1cos )sin sin sin (1cos )x x x x x x +--=- 22221cos sin sin sin 0sin (1cos )sin (1cos )x x x xx x x x ---===--,所以1cos sin =sin 1cos x x x x+-. 9.∵左边=·cos 2A+=+=+==1=右边,∴原等式成立. 【变式训练】右边左边.【解析】通过“切割化弦”将右边分子、分母中的正切化为再进行通分求解.【备注】在三角恒等式的证明中化异为同是基本思想,“1”的代换要灵活运用. 【当堂检测】 1.D【解析】由A 为三角形的内角且,可知,,∴cosA −,.故选D. 2.13.(1)由1sin cos 5A A +=,两边平方,得112sin cos 25A A +⋅=,所以12sin cos 25A A ⋅=-. (2)由(1)得12sin cos 025A A ⋅=-<.又0A π<<,所以cos 0A <, 所以A 为钝角.所以ABC ∆是钝角三角形.(3)因为12sin cos 25A A ⋅=-, 所以22449(sin cos )12sin cos 12525A A A A -=-⋅=+=, 又sin 0,cos 0A A ><,所以sin cos 0A A ->,所以7sin cos 5A A -=. 又1sin cos 5A A +=,所以43sin ,cos 55A A ==-. 所以4sin 45tan 3cos 35A A A ===--. 【知识拓展】解:∵,①∴,即,∴.∵,∴,.∴.∵,∴.②①+②,得.①−②,得.∴.【解析】本题主要考查同角三角函数基本关系以及三角形中函数符号的判定。
学情分析方案《同角三角函数的基本关系》教案【教学时间】:1课时【学情分析】:学生已经在上一节学习了三角函数的定义、三角函数线等知识,本节以单位圆中的三角函数线作为基础,推导出同角三角函数的基本关系。
在教学过程中,要注意引导学生理解每个公式,懂得公式的来龙去脉,并能灵活运用的技能、技巧。
为了营造自主探究解决问题的环境,教师要给学生提供展示自己思路的平台,把鼓励带进课堂,把方法带进课堂,充分发挥学生的主体作用。
【教学目标】:(1)会以单位圆中的三角函数线作为基础,从三角函数线的几何关系推导出同角三角函数的基本关系,并体会其中蕴含的数形结合思想;(2)会利用同角三角函数的基本关系式sin2x+cos2x=1,xx cos sin =tanx 进行化简,求值和证明,并在此过程中培养逻辑推理能力、运算能力,渗透分类讨论思想;【教学重点】:同角三角函数的基本关系式的推导及应用。
【教学难点】:灵活利用同角三角函数的基本关系式进行恒等式变形。
【教学突破点】:除熟悉同角三角函数的基本关系式的基本形式之外,还应熟悉它们的一些等价变形形式,如:sin2x=1-cosx ,cos2x=1-sin2x ,sinx=cosx·tanx 等。
【教法、学法设计】:变式学习,小组合作学习【教学过程设计】:3.如下图,角α的正弦线是__________,余弦线是__________,正切线是__________。
4.求值:(1)22sin 30cos 30+=_______; (2)22sin 45cos 45+=_______; (3)22sin 60cos 60+=_______; (4)22sin 90cos 90+=_______。
参考答案:1.C ;2.B ;3.PM ,OM ,AT ;4.1,1,1,1。
教师提问:三角函数是以单位圆上的点的坐标来定义的,你能从圆的几何性质出发,讨论一下同一个角的不同三角函数之间的关系吗?。
数学《同角三角函数的基本关系》教案教案:同角三角函数的基本关系一、教学目标:1.理解同角三角函数的概念及意义。
2.掌握正弦、余弦和正切函数之间的基本关系。
3.能够在给定角度范围内计算同角三角函数的值。
二、教学重点与难点:1.理解同角三角函数的概念及意义。
2.掌握正弦、余弦和正切函数之间的基本关系。
三、教学准备:1.教材、课件、黑板、粉笔。
2.学生课前复习笔记。
四、教学过程:1.引入(10分钟)教师可通过提问的方式引导学生复习和回忆上节课所学的三角函数概念及性质,例如:“什么是三角函数?它们有什么特点?”2.概念讲解(10分钟)教师介绍同角三角函数的概念和意义,同角三角函数是以角度的大小和方向为自变量,以比值为因变量的一类函数。
其中,正弦函数、余弦函数和正切函数是最常用和基础的三角函数。
通过图示的方式向学生展示正弦函数、余弦函数和正切函数的形象及它们之间的关系。
3.基本关系的推导(15分钟)3.1正弦函数与余弦函数的基本关系:教师指导学生通过绘制各象限内角度相同的锐角三角形,并利用其定义推导出正弦函数和余弦函数的基本关系:sin^2θ + cos^2θ = 13.2正切函数与正弦函数、余弦函数的基本关系:教师指导学生通过绘制直角三角形,利用其定义推导出正切函数、正弦函数和余弦函数的基本关系:tanθ = sinθ / cosθ。
4.同角三角函数的计算及性质(25分钟)4.1计算角度对应的三角函数值:教师引导学生通过练习,掌握计算给定角度对应的正弦、余弦和正切函数值的方法和技巧。
4.2使用同角三角函数的性质:教师讲解同角三角函数的周期性和奇偶性,并指导学生根据这些性质简化计算,例如,sin(180° + θ) = -sinθ,cos(π + θ) = -cosθ,等等。
5.练习与巩固(20分钟)教师提供一系列基础练习题,让学生在课堂上进行计算和解答,以巩固所学的同角三角函数的基本关系和计算方法。
《同角三角函数的基本关系》教学设计一、教学目标1.知识目标:了解同角三角函数的定义,掌握同角三角函数的基本关系。
2.技能目标:能够根据同角三角函数的定义计算出未知角的正弦、余弦和正切值,能够应用同角三角函数的基本关系解决问题。
3.情感目标:培养学生对数学知识的兴趣,提高学生的数学运算能力和问题解决能力。
二、教学重难点1.教学重点:同角三角函数的概念及其基本关系。
2.教学难点:利用同角三角函数的基本关系计算未知角的值。
三、教学准备1.教具准备:黑板、彩色粉笔、多媒体课件。
2.学具准备:尺子、直角三角板、相关教材。
3.材料准备:课堂练习题。
四、教学过程教学环节一:导入(10分钟)1.教师在黑板上写出同角三角函数的定义,并给出一个已知角度,要求学生根据定义计算出该角度的正弦、余弦和正切值。
2.学生根据题目计算,教师逐个询问学生的计算结果,并将学生的回答记录在黑板上。
3.教师根据学生的回答进行讲解和总结,引出同角三角函数的基本关系。
教学环节二:讲解(20分钟)1.教师利用多媒体课件给出同角三角函数的基本关系的图示,并对每个关系进行解释。
2.教师在黑板上讲解同角三角函数的基本关系的推导过程,并引导学生理解每个关系的几何意义。
3.学生在听讲的同时,可用尺子和直角三角板进行实验验证。
教学环节三:拓展(15分钟)1.教师给出一些例题,要求学生利用同角三角函数的基本关系计算未知角的值,并解决相关问题。
2.学生在黑板上解题,教师逐个引导学生进行讨论和解答。
3.教师根据学生的解答情况进行讲解和总结,巩固同角三角函数的基本关系及其应用。
教学环节四:练习(15分钟)1.教师发放课堂练习题,要求学生独立完成并逐题检查。
2.学生完成练习后,教师逐个核对答案,并解答学生可能存在的疑问。
3.教师根据学生的练习情况进行讲解和总结,培养学生的自主学习能力和问题解决能力。
教学环节五:归纳总结(10分钟)1.教师让学生自由发言,总结同角三角函数的基本关系及其应用。
《同角三角函数的基本关系》学习任务单一、学习目标1、理解同角三角函数的基本关系:平方关系和商数关系。
2、能够熟练运用同角三角函数的基本关系进行三角函数的求值、化简和证明。
3、通过学习同角三角函数的基本关系,提高逻辑推理和数学运算能力。
二、学习重点1、同角三角函数的平方关系:sin²α +cos²α = 1。
2、同角三角函数的商数关系:tanα =sinα/cosα。
三、学习难点1、灵活运用同角三角函数的基本关系解决复杂的三角函数问题。
2、理解同角三角函数基本关系中角的范围对三角函数值的影响。
四、知识讲解(一)同角三角函数的基本关系1、平方关系在单位圆中,设角α的终边与单位圆交于点 P(x, y),则有 x =cosα,y =sinα。
因为点 P 到原点的距离为 1,所以根据勾股定理可得 x²+ y²= 1,即cos²α +sin²α = 1。
2、商数关系因为tanα =对边/邻边= y/x,且sinα = y,cosα = x,所以tanα=sinα/cosα(cosα ≠ 0)。
(二)同角三角函数基本关系的应用1、求值已知一个三角函数值,求其他三角函数值。
例如,已知sinα =3/5,且α为锐角,求cosα 和tanα。
因为sin²α +cos²α = 1,所以cosα =±√(1 sin²α) =±√(1(3/5)²) = ±4/5。
又因为α为锐角,所以cosα > 0,即cosα = 4/5。
tanα =sinα/cosα =(3/5) /(4/5) = 3/4。
2、化简化简三角函数式时,常常利用同角三角函数的基本关系将式子化为最简形式。
例如,化简√(1 sin²x) / cosx 。
因为 sin²x + cos²x = 1,所以 1 sin²x = cos²x ,则原式=|cosx|/ cosx 。
第6课时 同角三角函数的基本关系(2)对应学生用书P11知识点一 化简问题1.当2k π-π4≤α≤2k π+π4(k ∈Z )时,化简1-2sin αcos α+1+2sin αcos α的结果是( )A .2sin αB .-2sin αC .2cos αD .-2cos α 答案 C解析 当2k π-π4≤α≤2k π+π4(k ∈Z )时,sin α+cos α>0,cos α-sin α>0, ∴1-2sin αcos α+1+2sin αcos α=sin α-cos α2+sin α+cos α2=|sin α-cos α|+|sin α+cos α|=cos α-sin α+sin α+cos α=2cos α.2.化简:1-cos 4α-sin 4α1-cos 6α-sin 6α. 解 原式=1-cos 4α-sin 4α1-cos 6α-sin 6α =1-cos 2α1+cos 2α-sin 4α1-cos 2α1+cos 2α+cos 4α-sin 6α=sin 2α1+cos 2α-sin 4αsin 2α1+cos 2α+cos 4α-sin 6α =1+cos 2α-sin 2α1+cos 2α+cos 4α-sin 4α =2cos 2α1+cos 2α+cos 2α+sin 2αcos 2α-sin 2α=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23.3.已知-2<x <0,sin x +cos x =5,求下列各式的值.(1)sin x -cos x ; (2)1cos 2x -sin 2x . 解 (1)∵sin x +cos x =15,∴(sin x +cos x )2=⎝ ⎛⎭⎪⎫152,即1+2sin x cos x =125,∴2sin x cos x =-2425.∵(sin x -cos x )2=sin 2x -2sin x cos x +cos 2x =1-2sin x cos x =1+2425=4925,又-π2<x <0,∴sin x <0,cos x >0,∴sin x -cos x <0, ∴sin x -cos x =-75.(2)解法一:由已知条件及(1),可知⎩⎪⎨⎪⎧sin x +cos x =15,sin x -cos x =-75,解得⎩⎪⎨⎪⎧sin x =-35,cos x =45,∴1cos 2x -sin 2x =11625-925=257.解法二:由已知条件及(1),可知⎩⎪⎨⎪⎧sin x +cos x =15,sin x -cos x =-75,∴1cos 2x -sin 2x =1cos x +sin x cos x -sin x=115×75=257. 4.已知tan α=3,求下列各式的值: (1)sin 2α-2sin αcos α-cos 2α4cos 2α-3sin 2α; (2)34sin 2α+12cos 2α. 解 (1)原式的分子、分母同除以cos 2α,得 原式=tan 2α-2tan α-14-3tan 2α=9-2×3-14-3×32=-223. (2)原式=34sin 2α+12cos 2αsin 2α+cos 2α=34tan 2α+12tan 2α+1 =34×9+129+1=2940.知识点三 证明问题5.求证:sin α(1+tan α)+cos α⎝⎛⎭⎪⎫1+tan α=sin α+cos α. 证明 1sin α+1cos α=sin 2α+cos 2αsin α+sin 2α+cos 2αcos α=sin α+cos α·cos αsin α+sin α·sin αcos α+cos α=sin α+cos α·1tan α+sin αtan α+cos α=sin α(1+tan α)+cos α⎝ ⎛⎭⎪⎫1+1tan α. 6.求证:1-2sin2x cos2x cos 22x -sin 22x =1-tan2x1+tan2x . 证明 左边=cos 22x +sin 22x -2sin2x cos2xcos 22x -sin 22x =cos2x -sin2x2cos2x -sin2x cos2x +sin2x=cos2x -sin2x cos2x +sin2x =1-tan2x1+tan2x=右边. ∴原等式成立.对应学生用书P12一、选择题1.已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为( )A .23 B .-23 C .13 D .-13答案 B解析 由sin θ+cos θ=43,得1+2sin θcos θ=169,∴2sin θcos θ=79,又θ∈⎝⎛⎭⎪⎫0,π4,∴sin θ-cos θ=-1-2sin θcos θ=-23. 2.已知sin α-cos α=2,则tan α=( ) A .-1 B .-22 C .22D .1 答案 A解析 将等式sin α-cos α=2的两边平方,整理得1+2sin αcos α=0,即sin 2α+cos 2α+2sin αcos α=0,∴(sin α+cos α)2=0,∴sin α+cos α=0,∴sin α=-cos α.由已知得cos α≠0,∴tan α=sin αcos α=-1.故选A .3.下列结论能成立的是( ) A .sin α=12且cos α=12B .tan α=2且cos αsin α=13C .tan α=1且cos α=22D .sin α=1且tan α·cos α=12答案 C解析 同角三角函数的基本关系式是指同一个角的不同三角函数值之间的关系,这个角可以是任意角,利用同角三角函数的基本关系即得C 成立.4.若π<α<3π2,1-cos α1+cos α+1+cos α1-cos α的化简结果为( )A .2tan αB .-2tan αC .2sin αD .-2sin α 答案 D解析 ∵π<α<3π2,∴sin α<0.原式=1-cos α21-cos 2α+1+cos α21-cos 2α=1-cos α|sin α|+1+cos α|sin α|=-2sin α,故选D .5.化简1-sin 2160°的结果是( ) A .cos160° B.-cos160° C .±cos160° D.±|cos160°| 答案 B解析 ∵cos160°<0,∴原式=|cos160°|=-cos160°. 二、填空题6.若2cos α+sin α=5,则1tan α=________. 答案 2解析 将已知等式两边平方,得4cos 2α+sin 2α+4sin αcos α=5(cos 2α+sin 2α),化简得4sin 2α-4sin αcos α+cos 2α=0,即(2sin α-cos α)2=0,则2sin α=cos α,故1tan α=2. 7.若cos 2x +cos x =1,则sin 4x +sin 2x 的值等于________. 答案 1解析 ∵cos 2x +cos x =1,∴cos x =1-cos 2x =sin 2x , ∴sin 4x +sin 2x =cos 2x +cos x =1.8.若tan α=2,则sin α+cos αsin α-cos α+cos 2α=________.答案165解析 原式=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α=tan α+1tan α-1+1tan 2α+1=2+12-1+14+1=165. 三、解答题9.已知0<α<π2,若cos α-sin α=-55,求2sin αcos α-cos α+11-tan α的值.解 由cos α-sin α=-55,得1-2sin αcos α=15, ∴2sin αcos α=45,∴(cos α+sin α)2=1+2sin αcosα=1+45=95.又0<α<π2,∴sin α+cos α=355,与cos α-sin α=-55联立, 解得sin α=255,cos α=55,∴2sin αcos α-cos α+11-tan α=2sin αcos α-cos α+11-sin αcos α=cos α2sin αcos α-cos α+1cos α-sin α=55×45-55+1-55=5-95. 10.已知关于x 的方程4x 2-2(m +1)x +m =0的两个根恰好是一个直角三角形的一个锐角的正、余弦,求实数m 的值.解 设直角三角形的一个锐角为β,因为方程4x 2-2(m +1)x +m =0中,Δ=4(m +1)2-4×4m =4(m -1)2≥0,所以当m ∈R 时,方程恒有两实根. 又因为sin β+cos β=m +12,sin βcos β=m4, 所以由以上两式及sin 2β+cos 2β=1,得1+2×m 4=m +122,解得m =±3.当m =3时,sin β+cos β=3+12>0, sin β·cos β=34>0,满足题意, 当m =-3时,sin β+cos β=1-32<0,这与β是锐角矛盾,舍去.综上,m =3.周周回馈练对应学生用书P13一、选择题 1.给出下列说法:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,角的大小与角所在扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确说法的个数是( ) A .1 B .2 C .3 D .4 答案 A解析 对于①,150°是第二象限角,390°是第一象限角,但150°<390°,错误;对于②,三角形的内角还可能为90°,是y 轴非负半轴上的角,错误;显然③正确;对于④,α与β的终边还可以关于y 轴对称,错误;对于⑤,θ还可以是x 轴非正半轴上的角,错误.2.下列各式正确的是( )A .π2=90B .π18=10° C.3°=60π D .38°=38π答案 B解析 A 中,π2=90°,故错误;B 中,π18=10°,故正确;C 中,3°=3×π180=π60,故错误;D 中,38°=38×π180=19π90,故错误.3.若角α的终边经过点P (sin780°,cos(-330°)),则sin α=( ) A .32 B .12 C .22D .1 答案 C解析 因为sin780°=sin(2×360°+60°)=sin60°=32,cos(-330°)=cos(-360°+30°)=cos30°=32,所以P ⎝ ⎛⎭⎪⎫32,32,sin α=22. 4.扇形的圆心角为150°,半径为3,则此扇形的面积为( ) A .5π4 B .π C.3π3 D .23π29答案 A解析 ∵150°=5π6,∴S =12×5π6×(3)2=5π4,故选A .5.若角α与β的终边互相垂直,则α与β的关系是( ) A .β=α+90° B .β=α±90°C .β=α+k ·360°+90°(k ∈Z )D .β=k ·360°+α±90°(k ∈Z ) 答案 D解析 如图1,角α与β终边互相垂直,β=α+90°. 如图2,角α与β终边互相垂直,α=β+90°.由终边相同角的表示方法知:角α与β终边互相垂直,则有β=k ·360°+α±90°(k ∈Z ).6.已知α是锐角,且tan α是方程4x 2+x -3=0的根,则sin α=( ) A .45 B .35 C .25 D .15 答案 B解析 因为方程4x 2+x -3=0的根为x =34或x =-1.又因为tan α是方程4x 2+x -3=0的根且α为锐角,所以tan α=34,所以sin α=34cos α,即cos α=43sin α.又sin 2α+cos 2α=1, 所以sin 2α+169sin 2α=1,所以sin 2α=925(α为锐角),所以sin α=35.二、填空题7.将90°角的终边按顺时针方向旋转30°所得的角等于________. 答案 60°解析 按顺时针方向旋转,角度减少,即90°-30°=60°.8.已知|cos θ|=-cos θ且tan θ<0,则代数式lg (sin θ-cos θ)________0.(填“>”“<”)答案 >解析 由|cos θ|=-cos θ,得cos θ≤0.又∵tan θ<0,∴角θ的终边在第二象限.∴sin θ>0,cos θ<0.由三角函数线可知sin θ-cos θ>1.∴lg (sin θ-cos θ)>0.9.已知tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,且3π<α<7π2,则cos α+sin α=________.答案 - 2解析 ∵tan α·1tan α=k 2-3=1,∴k =±2,而3π<α<7π2,则tan α+1tan α=k =2,得tan α=1,则sin α=cos α=-22,∴cos α+sin α=-2. 三、解答题10.如图所示,用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分的角的集合.解 (1)将阴影部分看成是由OA 逆时针转到OB 所形成.故满足条件的角的集合为α3π4+2k π<α<4π3+2k π,k ∈Z . (2)若将终边为OA 的一个角改写为-π6,此时阴影部分可以看成是OA 逆时针旋转到OB 所形成,故满足条件的角的集合为α-π6+2k π<α≤5π12+2k π,k ∈Z . (3)将图中x 轴下方的阴影部分看成是由x 轴上方的阴影部分旋转π rad 而得到,所以满足条件的角的集合为αk π≤α≤π2+k π,k ∈Z .(4)与第(3)小题的解法类似,将第二象限阴影部分旋转π rad 后可得到第四象限的阴影部分.所以满足条件的角的集合为α2π3+k π<α<5π6+k π,k ∈Z . 11.若0<α<β<π2,试比较β-sin β与α-sin α的大小. 解 如图,在单位圆中,sin α=MP ,sin β=NQ ,弧AP 的长为α,弧AQ 的长为β,则弧PQ 的长为β-α.过P 作PR ⊥QN 于R ,连接PQ ,则MP =NR .所以RQ =sin β-sin α<PQ <PQ =β-α.所以β-sin β>α-sin α.12.(1)已知sin α是方程5x 2-7x -6=0的根,求 cos α+2πcos 4π+αtan 22π+αtan 6π+αsin 2π+αsin 8π+α的值;(2)已知sin(4π+α)=2sin β,3cos(6π+α)=2cos(2π+β),且0<α<π,0<β<π,求α和β的值.解 (1)由于方程5x 2-7x -6=0的两根为2和-35,所以sin α=-35. 由sin 2α+cos 2α=1,得cos α=±1-sin 2α=±45. 当cos α=45时,tan α=-34; 当cos α=-45时,tan α=34. 所以原式=cos α·cos α·tan 2α·tan αsin α·sin α=tan α=±34. (2)因为sin(4π+α)=2sin β,所以sin α=2sin β.①因为3cos(6π+α)=2cos(2π+β), 所以3cos α=2cos β.②①2+②2,得sin 2α+3cos 2α=2(sin 2β+cos 2β)=2, 所以cos 2α=12,即cos α=±22.又0<α<π,所以α=π4或α=3π4.又0<β<π,当α=π4时,由②得β=π6;当α=3π4时,由②得β=5π6.所以α=π4,β=π6或α=3π4,β=5π6.。
第一章三角函数第二节同角三角函数的基本关系(第2课时)一、学习目标1.识记同角三角函数的基本关系。
2.初步掌握其应用。
【重点、难点】同角三角函数的基本关系及其应用。
二、学习过程【情景创设】1.阅读教材,根据下面的知识结构图阅读教材,并识记同角三角函数间的关系式,初步掌握其应用.【导入新课】1.三角函数的推广定义:设角α终边上任一点坐标(x,y),它与原点距离为r,则()2.正切函数y=tan α的定义域:3.同角三角函数基本关系(1)写出下列各角的三角函数值,观察它们的值,猜想它们之间的联系.(30°、45°、60°)(2)从以上的过程中,你能发现什么一般规律?你能否用代数式表示这些规律?(3)根据以上探究过程,试着写出同角三角函数基本关系.a.平方关系:_______________.b.商数关系:_____________【典型例题】例1.21sin7π-的结果是___________.2.已知tanα=错误!未找到引用源。
,α∈错误!未找到引用源。
,则cosα的值是.【变式拓展】1.已知α∈错误!未找到引用源。
,sinα=错误!未找到引用源。
,则cosα= ( )A.错误!未找到引用源。
B.-错误!未找到引用源。
C.-错误!未找到引用源。
D.错误!未找到引用源。
2.若α是第三象限角,则错误!未找到引用源。
+错误!未找到引用源。
的值为( )A.3B.-3C.1D.-1三、总结反思1.对同角三角函数基本关系的三点说明(1)关系式中的角一定是同角,否则公式可能不成立,如sin230°+cos260°≠1.(2)同角不要拘泥于形式,将α换成或2α也成立,如22sin2sin cos 1,tan .222cos 2αααα+==α (3)商的关系中要注意公式中的隐含条件,cos α≠0,即k (k Z).2πα≠π+∈2.同角三角函数基本关系式的变形形式(1)平方关系:1-sin2α=cos2α,1-cos2α=sin2α. (2)商数关系:sin sin tan cos ,cos .tan αα=ααα=α四、随堂检测 1.若tan α=2,则错误!未找到引用源。
第2课时 同角三角函数的基本关系式与诱导公式考纲点击:1.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.2.理解同角三角函数的基本关系式:高考分析:高考对本节的考查主要集中在利用诱导公式或同角三角函数基本关系式求值上,题型多为选择题、填空题,主要考查学生运算能力和逻辑推理能力,由于本节知识的基础性,试题难度不大,属于易得分题.教学过程:一、基础知识梳理1. 同角三角函数的基本关系式2.诱导公式师生活动:学生课前自主完成,生生相互订正,教师强调各知识点的应用。
xcos xsin x tan 1x cos x sin 22==+x cos xsin x tan 21x cos x sin )1(22==+)商数关系:(平方关系:二、基础自测())(()()())A 23cos(21)A sin()(5cos ,0tan ,54sin )(423D 23C 21B 21A cos ,21)sin()(322D 22C 42B 42A tan 0,2,31cos 2012233D 33C 3B 3A 330tan 20121=-π=+π=θ>θ-=θ±±=α=α+π--=α⎪⎭⎫⎝⎛π-∈α=α--=︒,那么如果教材改编则若教材改编则已知教材改编则若陕西咸阳模拟浙江台州第一模拟考试 设计意图及师生活动:设计了5个小题帮助生回顾基础知识和方法。
让学生给出答案,如有问题师生共同订正答案。
学生出错的题目由生自主订正,不会的题目教师讲解。
三、聚焦考向透析考向一:同角三角函数关系及应用[例1] (2013·枣庄月考)已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值. 〔思路点拨〕(1)由已知式和平方关系式求出sin α和cos α,再利用商数关系求出tan α。
1.2.2《同角三角函数的基本关系》——第一课时(教学设计)一、教材分析1、教材的地位和作用:《同角三角函数的基本关系》是高中新教材人教A版必修4第1章1.2.2的内容,本节内容是学习了三角函数定义后,安排的一节继续深入学习的内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数的基础,在教材中起承上启下的作用。
同时,它体现的数学思想与方法在整个中学数学学习中起重要作用。
2、教学目标根据大纲要求,考虑到学生的接受能力和课容量,确定了本次课的教学目标:A、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:1)已知一个角的一个三角函数值能求这个角的其他三角函数值;2)证明简单的三角恒等式。
B、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生数形结合的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
C、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
3、教学重点和难点根据《课程标准》,我将本节课的教学重点确立为:重点:同角三角函数基本关系式的推导及应用。
教学上结合我校学生真实情况我将本节课的教学难点确立为:难点:1)对于“同角”的理解;2)角α二、教学流程本节的教学流程由以下几个环节构成三:教学设计:四、教法分析在前节课的学习中,学生已经理解了任意角三角函数的定义,并且从图像与公式上应该有所发现,这节内容则是对他们直观感觉上的理解进行系统的研究,在这节课上我主要采用了以下的教法:(1)“引导—探究式”教学方法。
在引入公式方面,我通过几个特殊角三角函数值之间的关系,引导学生逐步猜想出公式,进而形成认识。
再从理论出发,结合图像与定义,证明两个公式的正确性,培养了学生观察——猜想——证明的科学分析方法。
2019-2020学年高一数学《122 同角三角函数的基本关系》学案
班级:____________ 姓名:____________
学习目标:⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;
2 通过运用公式的训练过程,培养解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;
3注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,培养思维的灵活性及思维的深化;培养分析问题的能力,从而提高逻辑推理能力. 学习重点:同角三角函数的基本关系
学习难点:(1)已知某角的一个三角函数值,求它的其余各三角函数值时正负号的选择;(2)三角函数式的化简;(3)证明三角恒等式
复习:终边相同的角的同一三角函数值相等
诱导公式一(其中Z ∈k ): 用弧度制可写成
新授探究案:
同一个角α的正弦、余弦的平方和等于 商等于 即 , 。
例1:已知5
4
sin =α,求α的其他三角函数值
变式练习:若cos α=-8
17,求α的其他三角函数值.
例2求证x
x
x x cos sin 1sin 1cos +=-
变式练习:化简x
x
x x sin 1sin 1sin 1sin 1+--
-+,其中X 为第二象限角。
课堂练习: 1. 已知2
1
cos =
θ ,求θtan 的值。
2.已知2tan =α,求αsin 的值
3若θθcos ,sin 是方程0242=++m mx x 的两根,则m 的值为 课后作业 1.),0(,54
cos παα∈=
,则tan α的值等于 ( )
A .34
B .43
C .3
4±
D . 4
3
± 2.若15tan =α,则=αcos
;=αsin
.
3.化简sin
2
α+sin 2β-sin 2αsin 2β+cos 2αcos 2β=
.
4.已知1
sin =
α,求ααtan ,cos 的值。