同角三角函数关系、诱导公式题型归纳
- 格式:doc
- 大小:140.82 KB
- 文档页数:10
同角三角函数的基本关系与诱导公式考点与提醒归纳1.同角三角函数的基本关系:在一个单位圆上,以原点为中心,作出一个角度为θ的角。
那么,角θ的终边与单位圆交于一点P,点P的坐标可以表示为(Px,Py)。
根据三角函数的定义,可以得到以下关系:(1) 正弦函数(sin):sinθ = Py(2) 余弦函数(cos):cosθ = Px(3) 正切函数(tan):tanθ = Py / Px2.诱导公式:诱导公式是利用同角三角函数的基本关系,通过一些简单的代数运算推导出来的公式。
下面是一些常用的诱导公式:(1)tanθ = sinθ / cosθ -> sinθ = tanθ * cosθ(2)tanθ = py / Px -> Py = tanθ * Px(3)cotθ = 1 / tanθ -> cotθ = cosθ / sinθ(4)secθ = 1 / cosθ -> secθ = 1 / cosθ(5)cscθ = 1 / sinθ -> cscθ = 1 / Py3.开放、诱导角的关系:开放角和诱导角是同角三角函数中的两个重要概念。
(1)开放角:开放角是指角θ的终边所在的象限。
根据角度θ所在的象限,可以确定sinθ、cosθ、tanθ的正负关系。
(2)诱导角:角θ的终边与x轴正半轴之间的夹角记为θ0,称为角θ的诱导角。
根据θ0所在的象限,可以确定sinθ0、cosθ0、tanθ0的值。
4.注意事项:(1)需要记住各个象限中正弦函数、余弦函数、正切函数的正负关系。
通过画图和思考可以帮助记忆。
(2)要掌握正弦函数、余弦函数、正切函数在不同象限中的取值范围,充分理解诱导角与开放角的关系。
(3)熟练掌握诱导公式,能够熟练地根据一个三角函数的值求得其他三个函数的值。
(4)在解决实际问题和解题时,要善于利用诱导公式将一个三角函数转化为其他三个函数,以便更好地解题。
总之,同角三角函数的基本关系与诱导公式是学习三角函数的重要内容,掌握和理解好这一知识点对后续学习和解题非常有帮助。
高考数学复习核心素养提升练十九同角三角函数的基本关系及诱导公式(30分钟60分)一、选择题(每小题5分,共30分)1.sin(-1 020°)=( )A. B.- C. D.-【解析】选C.sin(-1 020°)=sin(-3×360°+60°)=sin60°=.2.α是第四象限角,tan α=-,则sin α=( )A. B.- C. D.-【解析】选D.因为tan α=-,所以=-,所以cos α=-sin α,代入sin2α+cos2α=1得sin α=±,又α是第四象限角,所以sin α=-.【一题多解】选 D.因为tan α=-,且α是第四象限角,所以可设y=-5,x=12,所以r==13,所以sin α==-.3.已知cos 29°=a,则sin 241°·tan 151°的值是( )A. B.C.-D.-【解析】选B.sin 241°·tan 151°=sin(270°-29°)·tan(180°-29°)=(-cos 29°)·(-tan 29°)=sin 29°=.4.若tan α=2,则2cos 2α+3sin2α-sin2α的值为( )A. B.- C.5 D.-【解析】选A.2cos 2α+3sin2α-sin2α=====.5.若sin(π-α)=-2sin,则sin α·cos α的值等于( )A.-B.-C.或-D.【解析】选A.因为sin(π-α)=-2sin,所以sin α=-2cos α,即tan α=-2,所以原式====-.【延伸探究】本题条件不变,试求的值. 【解析】由sin(π-α)=-2sin知tan α=-2,所以原式====.6.已知tan(α-π)=,且α∈,则sinα+等于( )A. B.- C. D.-【解析】选B.因为tan(α-π)=-tan(π-α)=tanα=>0,又α∈,所以α∈,即cos α<0,所以sin α=cos α,又因为sin2α+cos2α=1,故cos2α+cos2α=1,故cos α=-,因此sin=cos α=-.二、填空题(每小题5分,共15分)7.已知cos=,则sin=________.【解析】sin=sin=cos=.答案:8.已知sin α+2cosα=0,则2sin αcosα-cos2α的值是______.【解析】因为sin α+2cosα=0,所以sin α=-2cos α,所以tan α=-2,又因为2sin αcosα-cos2α==,所以原式==-1.答案:-19.若sin=-,且α∈,则sin=________. 【解析】因为α∈,所以α+∈,所以cos=-=-,所以sin=sin=cos=-.答案:-三、解答题10.(15分)已知在△ABC中,sin A+cos A=.(1)求sin Acos A的值.(2)求tan A的值.【解析】(1)因为sin A+cos A=,所以(sin A+cos A)2=,即1+2sin Acos A=, 故sin A cos A=-.(2)因为sin A-cos A====, ①又sin A+cos A=, ②由①②知,sin A=,cos A=-,因此tan A==-.(20分钟40分)1.(5分)已知θ为直线y=3x-5的倾斜角,若A(cos θ,sin θ),B(2cos θ+sin θ,5cos θ-sin θ),则直线AB的斜率为( )A.3B.-4C.D.-【解析】选D.由题意知:tan θ=3,k AB====-.2.(5分)若sin θ,cosθ是方程4x2+2mx+m=0的两根,则m的值为( )A.1+B.1-C.1±D.-1-【解析】选B.由题意知sin θ+cosθ=-,sin θ·cos θ=.又(sin θ+cos θ)2=1+2sin θcos θ,所以=1+,解得m=1±.又Δ=4m2-16m≥0,所以m≤0或m≥4,所以m=1-.【变式备选】(2018·衡水模拟)已知2θ是第一象限的角,且sin4θ+cos4θ=,那么tan θ=( )A. B.-C. D.-【解析】选A.因为sin4θ+cos4θ=,所以(sin2θ+cos2θ)2-2sin2θcos2θ=,所以sin θcosθ=,所以=,所以=,解得tan θ=(舍去,这是因为2θ是第一象限的角,所以tan θ为小于1的正数)或tan θ=.3.(5分)(2018·镇江模拟)已知锐角θ满足tan θ=cos θ,则= ________.【解析】因为tan θ=cos θ,所以sin θ=cos2θ=(1-sin2θ).因为θ为锐角,所以sin θ=,tan θ=,所以===3+2.答案:3+24.(12分)已知<α<,tan α+=.(1)求tan α的值.(2)求的值.【解析】(1)由已知可得tan α+=,3tan2α-10tan α+3=0,即tan α=3或tan α=.又因为<α<,所以tan α=3.(2)===-=-3.5.(13分)已知tan α=-,α为第二象限角.(1)求的值.(2)求++的值.【解析】(1)原式===-cos α.因为tan α=-,α为第二象限角,所以=-.又sin2α+cos2α=1.解得cos α=-,故原式=.(2)原式=++=++=+,因为α为第二象限角,所以上式=-1-=-1-221313=-1.。
同角三角函数的基本关系与诱导公式知识点[归纳·知识整合]1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.[探究] 1.如何理解基本关系中“同角”的含义?提示:只要是同一个角,基本关系就成立,不拘泥于角的形式,如sin 2α3+cos 2α3=1,tan4α=sin 4αcos 4α等都是成立的,而sin 2θ+cos 2φ=1就不成立.2.诱导公式即α+k ·2π(k ∈Z ),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号;π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.[探究] 2.有人说sin(k π-α)=sin(π-α)=sin α(k ∈Z ),你认为正确吗?提示:不正确.当k =2n (n ∈Z )时,sin(k π-α)=sin(2n π-α)=sin(-α)=-sin α; 当k =2n +1(n ∈Z )时,sin(k π-α)=sin[(2n +1)·π-α]=sin(2n π+π-α)=sin(π-α)=sin α. 3.诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”是否与α的大小有关? 提示:无关,只是把α从形式上看作锐角,从而2k π+α(k ∈Z ),π+α,-α,π-α,π2-α,π2+α分别是第一,三,四,二,一,二象限角. [自测·牛刀小试]1.(教材习题改编)已知cos(π+α)=12,则sin α的值为( )A .±12B.12C.32D .±32解析:选D cos(π+α)=-cos α=12,∴cos α=-12,∴sin α=±1-cos α2=±32.2.tan 690°的值为( ) A .-33B.33C. 3 D .- 3解析:选A tan 690°=tan(-30°+2×360°) =tan(-30°)=-tan 30°=-33. 3.(教材习题改编)若tan α=2,则sin α-cos αsin α+cos α的值为( )A .-13B .-53C.13D.53解析:选Csin α-cos αsin α+cos α=tan α-1tan α+1=2-12+1=13.4.(教材习题改编)已知tan α=3,π<α<32π,则cos α-sin α=________.解析:∵tan α=3,π<α<32π,∴α=43π,∴cos α-sin α=cos 43π-sin 43π=-cos π3+sin π3=-12+32=3-12.答案:3-125.计算sin 10π3-2cos ⎝⎛⎭⎫-19π4+tan ⎝⎛⎭⎫-13π3=________. 解析:原式=sin ⎝⎛⎭⎫2π+4π3-2cos ⎝⎛⎭⎫4π+3π4-tan ⎝⎛⎭⎫4π+π3=sin ⎝⎛⎭⎫π+π3-2cos ⎝⎛⎭⎫π-π4-tan π3 =-sin π3+2cos π4-3=-332+1.答案:-332+1[例1] 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值; (2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[自主解答] (1)法一:联立方程⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2α+cos 2α=1, ②由①得cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形内角,∴⎩⎨⎧sin α=45,cos α=-35,∴tan α=-43.法二:∵sin α+cos α=15,∴(sin α+cos α)2=⎝⎛⎭⎫152,即1+2sin αcos α=125, ∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0,cos α<0,∴sin α-cos α>0. ∴sin α-cos α=75.由⎩⎨⎧sin α+cos α=15,sin α-cos α=75,得⎩⎨⎧sin α=45,cos α=-35,∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α. ∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝⎛⎭⎫-432+11-⎝⎛⎭⎫-432=-257.保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由例题可知 tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×⎝⎛⎭⎫-43+2=87. (2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825.———————————————————同角三角函数关系式及变形公式的应用(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.1.已知sin α=2sin β,tan α=3tan β,求cos α. 解:∵sin α=2sin β,tan α=3tan β, ∴sin 2α=4sin 2β,① tan 2α=9tan 2β.②由①÷②得:9cos 2α=4cos 2β.③ 由①+③得sin 2α+9cos 2α=4. 又sin 2α+cos 2α=1, ∴cos 2α=38,∴cos α=±64.[例2] (1)已知cos ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫5π6-α的值; (2)已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan ⎝⎛⎭⎫α-72π的值. [自主解答] (1)∵⎝⎛⎭⎫π6+α+⎝⎛⎭⎫5π6-α=π, ∴5π6-α=π-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫5π6-α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6+α =-cos ⎝⎛⎭⎫π6+α=-33, 即cos ⎝⎛⎭⎫5π6-α=-33.(2)∵cos(α-7π)=cos(7π-α)=co s(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α)·tan ⎝⎛⎭⎫α-72π =sin(π+α)·⎣⎡⎦⎤-tan ⎝⎛⎭⎫72π-α =sin α·tan ⎝⎛⎭⎫π2-α=sin α·sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin α·cos αsin α=cos α=35.——————————————————— 利用诱导公式化简三角函数的思路和要求(1)思路方法:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.2.(1)已知sin α是方程5x 2-7x -6=0的根,且α是第三象限角,则sin ⎝⎛⎭⎫-α-3π2cos ⎝⎛⎭⎫3π2-αtan 2(π-α)cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2+α=( )A.916 B .-916C .-34D.34(2)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝⎛⎭⎫3π2+α-sin 2⎝⎛⎭⎫π2+α⎝⎛⎭⎫sin α≠-12,则f ⎝⎛⎭⎫-23π6=________. 解析:(1)选B ∵方程5x 2-7x -6=0的根为x 1=2,x 2=-35,由题知sin α=-35,∴cos α=-45,tan α=34.∴原式=cos α(-sin α)tan 2αsin αcos α=-tan 2α=-916.(2)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α, ∴f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 答案: 3[例3] 在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.[自主解答] 由已知得⎩⎪⎨⎪⎧sin A =2sin B ①3cos A =2cos B ②①2+②2得2cos 2A =1 即cos A =22或cos A =-22. (1)∵当cos A =22时,cos B =32, 又A 、B 是三角形的内角,∴A =π4,B =π6,∴C =π-(A +B )=7π12.(2)∵当cos A =-22时,cos B =-32. 又A 、B 是三角形的内角, ∴A =3π4,B =5π6,不合题意.综上知,A =π4,B =π6,C =7π12.———————————————————1.三角形中的诱导公式在三角形ABC 中常用到以下结论: sin(A +B )=sin(π-C )=sin C , cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin ⎝⎛⎭⎫A 2+B 2=sin ⎝⎛⎭⎫π2-C 2=cos C 2, cos ⎝⎛⎭⎫A 2+B 2=cos ⎝⎛⎭⎫π2-C 2=sin C 2. 2.求角的一般步骤求角时,一般先求出该角的某一三角函数值,再确定该角的范围,最后求角.3.在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角. 解:∵sin A +cos A =2, ∴1+2sin A cos A =2,∴sin2A =1. ∵A 为△ABC 的内角, ∴2A =π2,∴A =π4.∵3cos A =-2cos(π-B ), ∴3cos π4=2cos B ,∴cos B =32. ∵0<B <π,∴B =π6.∵A +B +C =π,∴C =7π12.∴A =π4,B =π6,C =7π12.1个口诀——诱导公式的记忆口诀 奇变偶不变,符号看象限. 1个原则——诱导公式的应用原则 负化正、大化小、化到锐角为终了.3种方法——三角函数求值与化简的常用方法(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….3个防范——应用同角三角函数关系式与诱导公式应注意的问题(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.易误警示——应用同角三角函数平方关系的误区[典例] (2011·重庆高考)若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=________. [解析] 依题意得sin α=-1-cos 2α=-45,tan α=sin αcos α=43.[答案] 43[易误辨析]1.解答本题时,常会出现以下两种失误(1)忽视题目中已知条件α的范围,求得sin α的两个值而致误; (2)只注意到α的范围,但判断错sin α的符号而导致tan α的值错误. 2.由同角三角函数的平方关系求sin α或cos α时,要注意以下两点(1)题目中若没有限定角α的范围,则sin α或cos α的符号应有两种情况,不可漏掉. (2)若已给出α的范围,则要准确判断在给定范围内sin α或cos α的符号,不合题意的一定要舍去.[变式训练]1.(2013·福州模拟)已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________. 解析:依题意得⎩⎪⎨⎪⎧tan α=sin αcos α=2,sin 2α+cos 2α=1,由此解得cos 2α=15,又α∈⎝⎛⎭⎫π,3π2,因此cos α=-55. 答案:-552.(2013·泰州模拟)若θ∈⎝⎛⎭⎫π4,π2,sin 2θ=116,则cos θ-sin θ的值是________. 解析:(cos θ-sin θ)2=1-sin 2θ=1516.∵π4<θ<π2,∴cos θ<sin θ.∴cos θ-sin θ=-154. 答案:-154一、选择题(本大题共6小题,每小题5分,共30分) 1.α是第一象限角,tan α=34,则sin α=( )A.45 B.35 C .-45D .-35解析:选B tan α=sin αcos α=34,sin 2 α+cos 2α=1,且α是第一象限角,所以sin α=35.2.若sin ⎝⎛⎭⎫π6+α=35,则cos ⎝⎛⎭⎫π3-α=( ) A .-35B.35C.45D .-45解析:选B cos ⎝⎛⎭⎫π3-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6+α=sin ⎝⎛⎭⎫π6+α=35. 3.(2013·安徽名校模拟)已知tan x =2,则sin 2x +1=( ) A .0 B.95 C.43D.53解析:选B sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.4.已知f (α)=sin (π-α)cos (2π-α)cos (-π-α)tan α,则f ⎝⎛⎭⎫-313π的值为( ) A.12 B .-13C .-12D.13解析:选C ∵f (α)=sin αcos α-cos αtan α=-cos α,∴f ⎝⎛⎭⎫-313π=-cos ⎝⎛⎭⎫-313π=-cos ⎝⎛⎭⎫10π+π3 =-cos π3=-12.5.(2013·西安模拟)已知2tan α·sin α=3,-π2<α<0,则sin α=( )A.32B .-32C.12 D .-12解析:选B 由2tan α·sin α=3得,2sin 2αcos α=3,即2cos 2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-32. 6.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A .1+ 5 B .1- 5 C .1±5D .-1- 5解析:选B 由题意知:sin θ+cos θ=-m2,sin θcos θ=m4.∵(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5.二、填空题(本大题共3小题,每小题5分,共15分) 7.化简sin ⎝⎛⎭⎫π2+α·cos ⎝⎛⎭⎫π2-αcos (π+α)+sin (π-α)·cos ⎝⎛⎭⎫π2+αsin (π+α)=________.解析:原式=cos α·sin α-cos α+sin α(-sin α)-sin α=-sin α+sin α=0. 答案:08.若cos(2π-α)=53,且α∈⎣⎡⎦⎤-π2,0,则sin(π-α)=________.解析:由诱导公式可知cos(2π-α)=cos α,sin(π-α)=sin α,由sin 2α+cos 2α=1可得,sin α=±23,∵α∈⎣⎡⎦⎤-π2,0,∴sin α=-23. 答案:-239.已知sin(π-α)-cos(π+α)=23⎝⎛⎭⎫π2<α<π.则sin α-cos α=________.解析:由sin(π-α)-cos(π+α)=23, 得sin α+cos α=23,① 将①两边平方得1+2sin α·cos α=29,故2sin αcos α=-79.∴(sin α-cos α)2=1-2sin αcos α=1-⎝⎛⎭⎫-79=169. 又∵π2<α<π,∴sin α>0,cos α<0.∴sin α-cos α=43.答案:43三、解答题(本大题共3小题,每小题12分,共36分) 10.已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝⎛⎭⎫θ-3π2cos (θ-π)-sin ⎝⎛⎭⎫3π2+θ的值.解:∵sin(3π+θ)=-sin θ=13,∴sin θ=-13.∴原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝⎛⎭⎫-132=18. 11.已知关于x 的方程2x 2-(3+1)x +m =0的两根sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12,故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ =(sin θ+cos θ)2,得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θ·cos θ=34知⎩⎨⎧sin θ=32,cos θ=12,或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π6或θ=π3.12.是否存在α∈⎝⎛⎭⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝⎛⎭⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值,若不存在,请说明理由.解:假设存在α、β使得等式成立,即有⎩⎪⎨⎪⎧sin (3π-α)=2cos ⎝⎛⎭⎫π2-β, ①3cos (-α)=-2cos (π+β), ②由诱导公式可得⎩⎪⎨⎪⎧sin α=2sin β, ③3cos α=2cos β, ④ ③2+④2得sin 2α+3cos 2α=2,解得cos 2α=12.又∵α∈⎝⎛⎭⎫-π2,π2,∴α=π4或α=-π4. 将α=π4代入④得cos β=32.又β∈(0,π),∴β=π6,代入③可知符合.将α=-π4代入④得cos β=32.又β∈(0,π).∴β=π6,代入③可知不符合.综上可知,存在α=π4,β=π6满足条件.1.记cos(-80°)=k ,那么tan 100°=( ) A.1-k 2kB .-1-k 2kC.k1-k 2D .-k1-k 2解析:选B ∵cos(-80°)=cos 80°=k , sin 80°=1-k 2,∴tan 80°=1-k 2k,tan 100°=-tan 80°=-1-k 2k. 2.sin 585°的值为( ) A .-22B.22C .-32D.32解析:选A 注意到585°=360°+180°+45°,因此sin 585°=sin(360°+180°+45°)=-sin 45°=-22. 3.若cos α+2sin α=-5,则tan α=( ) A.12 B .2 C .-12D .-2解析:选B ∵cos α+2sin α=-5,结合sin 2α+cos 2α=1得(5sin α+2)2=0,∴sin α=-255,cos α=-55,∴tan α=2.4.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050)°+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°· (-sin 1 050°)+tan 945°=-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 5.若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.解:∵由题意知:sin θ+cos θ=15,∴(sin θ+cos θ)2=125.∴sin 2θ=-2425,即2sin θcos θ=-2425<0,则sin θ与cos θ异号.又sin θ+cos θ=15>0,∴π2<θ<3π4,∴π<2θ<3π2.故cos 2θ=-1-sin22θ=-725.。
第25讲同角三角函数基本关系式及诱导公式6种题型总结【考点分析】考点一:同角三角函数基本关系①平方关系:1cos sin 22=+αα.②商数关系:)2(tan cos sin ππααααk +≠=;考点二:三角函数诱导公式公式一二三四五六角)(2Z k k ∈+απαπ+α-απ-απ-2απ+2正弦αsin αsin -αsin -αsin αcos αcos 余弦αcos αcos -αcos αcos -αsin αsin -正切αtan αtan αtan -αtan -口诀函数名不变,符号看象限函数名改变,符号看象限【记忆口诀】奇变偶不变,符号看象限注意:①先将诱导三角函数式中的角统一写作2n πα⋅±;②无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;③当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.【典例例题】题型一:同角三角函数公式求值【例1】已知角α为第二象限角,tan 3α=-,则cos α=()A .10B .10C .10-D .10【例2】已知12cos 13α=-,α是第三象限角,求sin α,tan α的值.【题型专练】1.已知13sin ,,322ππαα⎛⎫=∈ ⎪⎝⎭,则tan α=___________.2.下列四个命题中可能成立的一个是()A .1sin 3α=且2cos 3α=B .sin 0α=且cos 1α=-C .tan 1α=且cos 1α=-D .sin tan cos ααα-=(α为第二象限角)3.已知tan 2α=,32παπ<<,则cos sin αα-=()A B .C .5D .题型二:弦的齐次式问题【例1】已知角α的终边过点()13-,,求:①tan α;②sin cos sin 2cos αααα+-;③sin cos αα⋅【例2】已知tan 3α=,则ααααα222cos sin 21sin 2cos sin 2---___________.【例3】已知θ是第四象限角,()1,M m 为其终边上一点,且sin 5m θ=,则2sin cos sin cos θθθθ-+的值()A .0B .45C .43D .5【题型专练】1.已知tan 2α=,则sin 2cos 3cos 2sin αααα+-的值为()A .4B .4-C .54D .54-2.已知π3π,24x ⎛⎫∈ ⎪⎝⎭,且332cos sin sin cos 5x x x x +=-,则tan x =().A .2-B .12-C .52-D .3-3.若sin cos 2sin cos θθθθ+=-,则sin cos θθ的值是()A .310-B .310C .310±D .344.若sin cos 2sin cos θθθθ+=-,则()=++θθθθθcos sin cos sin 21sin ()A .65-B .25-C .65D .25题型三:知一求二问题【例1】已知(0,π)α∈,且1sin cos 5αα+=,给出下列结论:①ππ2α<<;②12sin cos 25αα=-;③3cos 5α=;④7cos sin 5αα-=-.其中所有正确结论的序号是()A .①②④B .②③④C .①②③D .①③④【例2】已知0x π-<<,1sin cos 5x x +=,求下列各式的值.(1)sin cos x x -;(2)223sin 2sin cos cos x x x x -+.【例3】已知sin cos x x +=44sin cos x x +=()A .98B .78C .54D .34)A.2或12B.2C.12D.12-【题型专练】1.已知13sin cos,644ππααα=-<<,则sin-cosαα的值等于()A.3B.3-C.3-D.432.已知1sin cos2θθ-=,则33sin cosθθ-=______.3.已知π(,π)2α∈,且1sin cos5αα+=,则sin cosαα=-____.4.(多选)已知(0,)θπ∈,1sin cos5θθ+=,则下列结论正确的是()A.,2πθπ⎛⎫∈ ⎪⎝⎭B.3cos5θ=-C.3tan4θ=-D.7sin cos5θθ-=5.已知1sin cos5θθ+=-,(0,)θπ∈,则sin cosθθ-=()A.15B.15-C.75D.75-题型四:诱导公式化简求值【例1】sin(9330︒)的值为()A.2B.12-C.12D.2【例2】已知7πtan6a⎛⎫=- ⎪⎝⎭,23πcos3b=,33πsin4c⎛⎫=- ⎪⎝⎭,则a,b,c的大小关系是()A.b c a>>B.a b c>>C.b a c>>D.a c b>>【例3】(1)计算:3sin(90)5tan1805cos0sin540-+︒+︒+︒;(2)化简:()3sin2cos()cos(2)sin()229cos()sin(3)sin()sin()2πππαααπαππαπααπα-+------+.【例4】设()()()sinπcosπxf x a b xαβ++=+,其中,,,a bαβ∈R,若()20215f=,则()2022f=()A.4B.3C.-5D.5【例5】已知sin(3π+θ)=13,则[]cos()cos cos()1πθθπθ+--+cos(2)33sin cos()sin22θπππθθπθ-⎛⎫⎛⎫---+⎪ ⎪⎝⎭⎝⎭=____.【题型专练】1.35πsin6=()2.cos 2040︒=()A .12B .12-C .2D .3.化简:sin(5)cos()cos(8)23sin()sin(4)2πθπθπθπθθπ-------=()A .-sin θB .sin θC .cos θD .-cos θ4.(1)化简:3sin(3)cos(2)sin 2cos()sin()παπαπαπαπα⎛⎫-⋅-⋅- ⎪⎝⎭-⋅--(2)求值:()()sin 150cos 210cos 420tan 60-︒⋅︒⋅-︒⋅︒5.已知()()()()()()sin cos 2tan tan sin f πβπββπββππβ--+=----.(1)若角β是第三象限角,且()1sin 5βπ-=,求()f β的值;(2)若2220β=︒,求()f β的值.题型五:诱导公式与三角函数定义、同角关系的综合运用【例1】已知3sin 5α=,且α是第二象限角,则cos()sin()παπα-++的值等于_______【例2】已知()1tan π2α-=2sin cos αα=-()A .14-B .14C .12D .12-【例3】已知角94α+的终边经过点(2,4)-,则23sin sin()cos απαα-+=()A .4-B .2-C .3D .9【例4】已知()()()()()3sin cos tan cos 222sin 2tan sin f πππααπαααπααππα⎛⎫⎛⎫⎛⎫+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=---+.(1)化简()f α;(2)若31cos 25πα⎛⎫-=- ⎪⎝⎭,求()f α的值.【题型专练】1.已知tan()2πα+=-,则2sin 3cos 2sin 5cos αααα+=-___________.2.已知4sin()5απ+=,且sin cos 0αα<,则2sin()3tan(3)4cos(3)a αππαπ-+-=-________.3.已知22sin(3)cos(5)()3cos ()sin ()22f παπααππαα-+=-++.(1)若tan 2α=,求()f α的值;(2)若12()25f α=,(0,)απ∈,求sin cos αα-的值.4.已知(),0θπ∈-,且sin θ,cos θ为方程250x x m -+=的两根.(1)求m 的值;(2)求()()()23sin cos 2sin 25sin 3sin sin cos 222πθπθπθππππθθθθ⎛⎫-- ⎪-⎝⎭+⎛⎫⎛⎫⎛⎫--+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.5.已知3cos 4cos()02παπα⎛⎫--+= ⎪⎝⎭,求下列各式的值.(1)sin 2cos 5cos sin αααα+-;(2)24sin 3sin cos ααα-.题型六:换元法、角的拼凑【例1】若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【例2】已知5s n 3i πα⎛⎫ ⎪⎝=-⎭+,则3cos 10πα⎛⎫ ⎝-⎪⎭=()A.3B.3-C.3D.3【例3】若1sin 63πα⎛⎫+= ⎪⎝⎭,则5sin 6πα⎛⎫-= ⎪⎝⎭__________.【题型专练】1.当0,2πθ⎛⎫∈ ⎪⎝⎭时,若51cos 62πθ⎛⎫-=-⎪⎝⎭,则sin 6πθ⎛⎫+ ⎪⎝⎭的值为()A .12BC.D .12-2.若sin()63πα-=,则πcos()3α+=()A.B.CD3.(多选)已知π1sin 42α⎛⎫+= ⎪⎝⎭,下列结论正确的是()A.πcos 42α⎛⎫+=⎪⎝⎭B .π1cos 42α⎛⎫-=⎪⎝⎭C .5π1sin 42α⎛⎫+=⎪⎝⎭D .5π1cos 42α⎛⎫-=-⎪⎝⎭。
☆注:请用Microsoft Word2016以上版本打开文件进行编辑,.第四章 三角函数4.1 三角恒等变换单独考查三角变换的题目较少,往往以解三角形为背景,在应用正弦定理、余弦定理的同时,应用三角恒等变换进行化简,综合性比较强,但难度不大.也可能与三角函数等其他知识相结合.题型一.同角三角函数的基本关系、诱导公式1.(2020•新课标Ⅱ)若α为第四象限角,则( ) A .cos2α>0 B .cos2α<0 C .sin2α>0 D .sin2α<0【答案】D .【解答】解:α为第四象限角,则−π2+2k π<α<2k π,k ∈Z ,则﹣π+4k π<2α<4k π,∴2α是第三或第四象限角或为y 轴负半轴上的角,∴sin2α<0, 故选:D .2.(2018•新课标Ⅱ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos2α=23,则|a ﹣b |=( ) A .15B .√55C .2√55D .1【答案】B .【解答】解:∵角α的顶点为坐标原点,始边与x 轴的非负半轴重合, 终边上有两点A (1,a ),B (2,b ),且cos2α=23, ∴cos2α=2cos 2α﹣1=23,解得cos 2α=56,∴|cosα|=√306,∴|sinα|=√1−3036=√66,|tanα|=|b−a 2−1|=|a ﹣b |=|sinα||cosα|=√66√306=√55.故选:B .3.(2017•新课标Ⅱ)已知sinα﹣cosα=43,则sin2α=( ) A .−79B .−29C .29D .79【答案】A .【解答】解:∵sinα﹣cosα=43,∴(sinα﹣cosα)2=1﹣2sinαcosα=1﹣sin2α=169, ∴sin2α=−79, 故选:A .4.(2018•新课标Ⅱ)已知sinα+cosβ=1,cosα+sinβ=0,则sin (α+β)= −12. 【答案】−12.【解答】解:sinα+cosβ=1,两边平方可得:sin 2α+2sinαcosβ+cos 2β=1,①, cosα+sinβ=0,两边平方可得:cos 2α+2cosαsinβ+sin 2β=0,②, 由①+②得:2+2(sinαcosβ+cosαsinβ)=1,即2+2sin (α+β)=1, ∴2sin (α+β)=﹣1. ∴sin (α+β)=−12. 故答案为:−12.5.(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos 2α的值是 ﹣1 . 【答案】﹣1【解答】解:∵sinα+2cosα=0,即sinα=﹣2cosα, ∴tanα=﹣2,则原式=2sinαcosα−cos 2α1=2sinαcosα−cos 2αsin 2α+cos 2α=2tanα−1tan 2α+1=−54+1=−1, 故答案为:﹣16.(2021•新高考Ⅱ)若tanθ=﹣2,则sinθ(1+sin2θ)sinθ+cosθ=( )A .−65 B .−25C .25D .65【答案】C .【解答】解:由题意可得:sinθ(1+sin2θ)sinθ+cosθ=sinθ(sin 2θ+cos 2θ+2sinθcosθ)sinθ+cosθ=sinθ(sinθ+cosθ)2sinθ+cosθ=sinθ(sinθ+cosθ) =sin 2θ+sinθcosθsin 2θ+cos 2θ=tan 2θ+tanθ1+tan 2θ =4−21+4=25. 故选:C .7.(2017•北京)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称,若sinα=13,则cos (α﹣β)= −79. 【答案】−79【解答】解:方法一:∵角α与角β均以Ox 为始边,它们的终边关于y 轴对称, ∴sinα=sinβ=13,cosα=﹣cosβ,∴cos (α﹣β)=cosαcosβ+sinαsinβ=﹣cos 2α+sin 2α=2sin 2α﹣1=29−1=−79 方法二:∵sinα=13,当α在第一象限时,cosα=2√23, ∵α,β角的终边关于y 轴对称,∴β在第二象限时,sinβ=sinα=13,cosβ=﹣cosα=−2√23, ∴cos (α﹣β)=cosαcosβ+sinαsinβ=−2√23×2√23+13×13=−79: ∵sinα=13,当α在第二象限时,cosα=−2√23, ∵α,β角的终边关于y 轴对称,∴β在第一象限时,sinβ=sinα=13,cosβ=﹣cosα=2√23, ∴cos (α﹣β)=cosαcosβ+sinαsinβ=−2√23×2√23+13×13=−79综上所述cos (α﹣β)=−79, 故答案为:−79题型二.两角和与差公式1.(2017•新课标Ⅱ)已知α∈(0,π2),tanα=2,则cos (α−π4)=3√1010.【答案】3√1010【解答】解:∵α∈(0,π2),tanα=2,∴sinα=2cosα,∵sin 2α+cos 2α=1,解得sinα=2√55,cosα=√55, ∴cos (α−π4)=cosαcos π4+sinαsin π4=√55×√22+2√55×√22=3√1010, 故答案为:3√10102.(2020•新课标Ⅱ)已知2tanθ﹣tan (θ+π4)=7,则tanθ=( ) A .﹣2 B .﹣1 C .1 D .2【答案】D .【解答】解:由2tanθ﹣tan (θ+π4)=7,得2tanθ−tanθ+11−tanθ=7,即2tanθ﹣2tan 2θ﹣tanθ﹣1=7﹣7tanθ,得2tan 2θ﹣8tanθ+8=0, 即tan 2θ﹣4tanθ+4=0, 即(tanθ﹣2)2=0, 则tanθ=2, 故选:D .3.(2014•新课标Ⅱ)设α∈(0,π2),β∈(0,π2),且tanα=1+sinβcosβ,则( )A .3α﹣β=π2 B .3α+β=π2C .2α﹣β=π2D .2α+β=π2【答案】C . 【解答】解:由tanα=1+sinβcosβ,得: sinαcosα=1+sinβcosβ,即sinαcosβ=cosαsinβ+cosα,sin (α﹣β)=cosα=sin (π2−α), ∵α∈(0,π2),β∈(0,π2),∴当2α−β=π2时,sin (α﹣β)=sin (π2−α)=cosα成立.故选:C .4.(2015•江苏)已知tanα=﹣2,tan (α+β)=17,则tanβ的值为 3 .【答案】3.【解答】解:tanα=﹣2,tan (α+β)=17, 可知tan (α+β)=tanα+tanβ1−tanαtanβ=17, 即−2+tanβ1+2tanβ=17,解得tanβ=3.故答案为:3.5.(2013•新课标Ⅱ)设θ为第二象限角,若tan (θ+π4)=12,则sinθ+cosθ= −√105 . 【答案】−√105【解答】解:∵tan (θ+π4)=tanθ+11−tanθ=12,∴tanθ=−13, 而cos 2θ=cos 2θsin 2θ+cos 2θ=11+tan 2θ, ∵θ为第二象限角, ∴cosθ=−√11+tan 2θ=−3√1010,sinθ=√1−cos2θ=√1010, 则sinθ+cosθ=√1010−3√1010=−√105. 故答案为:−√1056.(2016•新课标Ⅱ)已知θ是第四象限角,且sin (θ+π4)=35,则tan (θ−π4)= −43 . 【答案】−43.【解答】解:∵θ是第四象限角,∴−π2+2kπ<θ<2kπ,则−π4+2kπ<θ+π4<π4+2kπ,k ∈Z , 又sin (θ+π4)=35,∴cos (θ+π4)=√1−sin 2(θ+π4)=√1−(35)2=45. ∴cos (π4−θ)=sin (θ+π4)=35,sin (π4−θ)=cos (θ+π4)=45.则tan (θ−π4)=﹣tan (π4−θ)=−sin(π4−θ)cos(π4−θ)=−4535=−43. 故答案为:−43.7.(2015•重庆)若tanα=2tan π5,则cos(α−3π10)sin(α−π5)=( ) A .1 B .2C .3D .4【答案】C .【解答】解:tanα=2tan π5,则cos(α−3π10)sin(α−π5)=cosαcos3π10+sinαsin 3π10sinαcos π5−cosαsinπ5=cos3π10+tanαsin 3π10tanαcos π5−sinπ5=cos 3π10+2tan π5sin 3π102tan π5cos π5−sin π5=cos 3π10+2sin π5cosπ5sin 3π102sin π5cosπ5cos π5−sin π5=cos π5cos 3π10+2sin π5sin 3π102sin π5cos π5−cos π5sin π5=cos(π5−3π10)+sin π5sin 3π10sin π5cos π5+sin(π5−π5)=cos π10+sin π5sin 3π10sin π5cos π5=cos π10−12[cos(π5+3π10)−cos(π5−3π10)]12sin 2π5=cos π10+12cos π1012sin 2π5=3cos π10sin 2π5=3cos π10sin(π2−π10)=3cos π10cos π10=3. 故选:C .题型三.倍角公式1.(2021•乙卷)cos 2π12−cos 25π12=( )A .12B .√33C .√22D .√32【答案】D .【解答】解:法一、cos2π12−cos25π12=1+cos π62−1+cos5π62=12+12cos π6−12−12cos 5π6=12×√32−12×(−√32)=√32. 法二、cos 2π12−cos 25π12=cos 2π12−sin 2π12=cosπ6=√32. 故选:D .2.(2020•新课标Ⅱ)已知α∈(0,π),且3cos2α﹣8cosα=5,则sinα=( ) A .√53B .23C .13D .√59【答案】A .【解答】解:由3cos2α﹣8cosα=5,得3(2cos 2α﹣1)﹣8cosα﹣5=0, 即3cos 2α﹣4cosα﹣4=0,解得cosα=2(舍去),或cos α=−23.∵α∈(0,π),∴α∈(π2,π),则sinα=√1−cos 2α=√1−(−23)2=√53.故选:A .3.(2019•新课标Ⅱ)已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( )A .15B .√55C .√33D .2√55【答案】B .【解答】解:∵2sin2α=cos2α+1, ∴可得:4sinαcosα=2cos 2α, ∵α∈(0,π2),sinα>0,cosα>0,∴cosα=2sinα,∵sin 2α+cos 2α=sin 2α+(2sinα)2=5sin 2α=1, ∴解得:sinα=√55. 故选:B .4.(2016•新课标Ⅱ)若cos (π4−α)=35,则sin2α=( )A .725B .15C .−15D .−725【答案】D .【解答】解:法1°:∵cos (π4−α)=35,∴sin2α=cos (π2−2α)=cos2(π4−α)=2cos 2(π4−α)﹣1=2×925−1=−725,法2°:∵cos (π4−α)=√22(sinα+cosα)=35,∴12(1+sin2α)=925,∴sin2α=2×925−1=−725,故选:D .5.(2013•浙江)已知α∈R ,sinα+2cosα=√102,则tan2α=( ) A .43B .34C .−34D .−43【答案】C .【解答】解:由sinα+2cosα=√102,则(sinα+2cosα)2=52,即sin 2α+4sinαcosα+4cos 2α=52, 可得tan 2α+4tanα+4tan 2α+1=52,解得tanα=3或−13.那么tan2α=2tanα1−tan 2α=−34.故选:C .6.(2013•新课标Ⅱ)已知sin2α=23,则cos 2(α+π4)=( ) A .16B .13C .12D .23【答案】A .【解答】解:∵sin2α=23,∴cos 2(α+π4)=12[1+cos (2α+π2)]=12(1﹣sin2α)=12×(1−23)=16. 故选:A .7.(2021•甲卷)若α∈(0,π2),tan2α=cosα2−sinα,则tanα=( )A .√1515B .√55C .√53D .√153【答案】A .【解答】解:由tan2α=cosα2−sinα,得sin2αcos2α=cosα2−sinα,即2sinαcosα1−2sin 2α=cosα2−sinα,∵α∈(0,π2),∴cosα≠0,则2sinα(2﹣sinα)=1﹣2sin 2α,解得sinα=14,则cosα=√1−sin 2α=√154,∴tanα=sinαcosα=14√154=√1515. 故选:A .8.(2010•宁夏)若cosα=−45,α是第三象限的角,则1+tanα21−tanα2=( )A .−12 B .12C .2D .﹣2【答案】A .【解答】解:由cosα=−45,α是第三象限的角, ∴可得sinα=−35,则1+tanα21−tanα2=cos α2+sinα2cos α2−sinα2=1+sinαcosα=1−35−45=−12,故选:A .9.(2012•江苏)设α为锐角,若cos (α+π6)=45,则sin (2α+π12)的值为 17√250. 【答案】17√250. 【解答】解:设β=α+π6,∴sinβ=35,sin2β=2sinβcosβ=2425,cos2β=2cos 2β﹣1=725, ∴sin (2α+π12)=sin (2α+π3−π4)=sin (2β−π4)=sin2βcos π4−cos2βsin π4=17√250. 故答案为:17√250.10.(2011•重庆)已知sinα=12+cosα,且α∈(0,π2),则cos2αsin(α−π4)的值为 −√142 . 【答案】−√142 【解答】解:由sinα=12+cosα,得到sinα﹣cosα=12①, 又sin 2α+cos 2α=1②,且α∈(0,π2), 联立①②解得:sinα=√7+14,cosα=√7−14,∴cos2α=cos 2α﹣sin 2α=−√74,sin (α−π4)=√22(sinα﹣cosα)=√24,则cos2αsin(α−π4)=−√74√24=−√142. 故答案为:−√142题型四.三角函数的最值——辅助角公式1.(2021•乙卷)函数f (x )=sin x3+cos x3的最小正周期和最大值分别是( )A .3π和√2B .3π和2C .6π和√2D .6π和2【答案】C .【解答】解:∵f (x )=sin x 3+cos x3=√2sin (x 3+π4), ∴T =2π13=6π.当sin (x3+π4)=1时,函数f (x )取得最大值√2;∴函数f (x )的周期为 6π,最大值√2. 故选:C .2.(2017•新课标Ⅱ)函数f (x )=15sin (x +π3)+cos (x −π6)的最大值为( ) A .65B .1C .35D .15【答案】A .【解答】解:函数f (x )=15sin (x +π3)+cos (x −π6)=15sin (x +π3)+cos (﹣x +π6)=15sin (x +π3)+sin (x +π3)=65sin (x +π3)≤65. 故选:A .3.(2017•新课标Ⅱ)函数f (x )=sin 2x +√3cos x −34(x ∈[0,π2])的最大值是 1 .【答案】1【解答】解:f (x )=sin 2x +√3cos x −34=1﹣cos 2x +√3cos x −34, 令cos x =t 且t ∈[0,1],则y =﹣t 2+√3t +14=−(t −√32)2+1, 当t =√32时,f (t )max =1, 即f (x )的最大值为1, 故答案为:14.(2018•新课标Ⅱ)已知函数f (x )=2sin x +sin2x ,则f (x )的最小值是 −3√32. 【答案】−3√32. 【解答】解:由题意可得T =2π是f (x )=2sin x +sin2x 的一个周期, 故只需考虑f (x )=2sin x +sin2x 在[0,2π)上的值域, 先来求该函数在[0,2π)上的极值点,求导数可得f ′(x )=2cos x +2cos2x =2cos x +2(2cos 2x ﹣1)=2(2cos x ﹣1)(cos x +1),令f ′(x )=0可解得cos x =12或cos x =﹣1, 可得此时x =π3,π或5π3;∴y =2sin x +sin2x 的最小值只能在点x =π3,π或5π3和边界点x =0中取到,计算可得f ( π3)=3√32,f (π)=0,f ( 5π3)=−3√32,f (0)=0,∴函数的最小值为−3√32, 故答案为:−3√32.5(2020•北京)若函数f (x )=sin (x +φ)+cos x 的最大值为2,则常数φ的一个取值为 π2.【答案】π2.【解答】解:∵sin (x +φ)≤1,cos x ≤1,又函数f (x )=sin (x +φ)+cos x 的最大值为2,所以当且仅当sin (x +φ)=1,cos x =1时函数f (x )取到最大值, 此时x =2k π,k ∈Z ,则sin (x +φ)=sinφ=1, 于是φ=π2+2k π,k ∈Z 时φ均满足题意, 故可选k =0时,φ=π2. 故答案为:π2.1.(2020•广州模拟)sin80°cos50°+cos140°sin10°=( ) A .−√32 B .√32C .−12D .12【答案】D .【解答】解:sin80°cos50°+cos140°sin10°=cos10°cos50°﹣sin50°sin10°=cos (50°+10°)=cos60°=12. 故选:D .2.(2018•沈阳一模)已知tanθ=2,则sinθ+cosθsinθ+sin 2θ的值为( )A .195B .165C .2310D .1710【答案】C .【解答】解:∵tanθ=2,则sinθ+cosθsinθ+sin 2θ=1+1tanθ+sin 2θsin 2θ+cos 2θ=1+12+tan 2θtan 2θ+1=32+44+1=2310,故选:C .3.(2020•福州一模)若tan(π2−α)=3cos(α−π),则cos2α=( ) A .﹣1 B .79C .0或79D .﹣1或79【答案】D .【解答】解:由tan(π2−α)=3cos(α−π),得sin(π2−α)cos(π2−α)=−3cosα,所以cosαsinα=−3cosα,所以cosα=0或sinα=−13,故cos2α=2cos 2α﹣1=﹣1,或cos2α=1−2sin 2α=79. 故选:D .4.(2017秋•乐山期末)已知cos(α+β)=35,sin(β−π6)=13,且α,β均为锐角,则sin(α+π6)=( ) A .8√2−315B .8√2−415C .8−3√215D .8−4√215【答案】A .【解答】解:∵α,β均为锐角, ∴α+β∈(0,π),β−π6∈(−π6,π3), 由cos(α+β)=35,sin(β−π6)=13,得sin (α+β)=√1−cos 2(α+β)=45,cos (β−π6)=√1−sin 2(β−π6)=2√23.∴sin(α+π6)=sin[(α+β)﹣(β−π6)]=sin (α+β)cos (β−π6)﹣cos (α+β)sin (β−π6)] =45×2√23−35×13=8√2−315. 故选:A .5.(2019秋•湖北月考)若sin (π6−θ)=35,则sin (π6+2θ)=( )A .−2425B .2425C .−725D .725【答案】D .【解答】解:sin (π6+2θ)=sin[π2−2(π6−θ)]=cos2(π6−θ)=1﹣2sin 2(π6−θ)=1−1825=725,故选:D .6.已知函数f (x )=sin 2x +sin 2(x +π3),则f (x )的最小值为 12.【答案】12.【解答】解:函数f (x )=sin 2x +sin 2(x +π3)=sin 2x +( 12sin x +√32cos x )2=54sin 2x +34cos 2x +√34sin2x =12sin(2x −π6)+1,当sin (2x −π6)=﹣1时,函数f (x )min =1−12=12. 故答案为:12.7.已知α,β都是锐角,且tanαtanβ=1+1cosβ,则( ) A .2α=β+πB .2α=π﹣βC .3α=π+βD .3α=π﹣β【解答】解:∵α,β都是锐角,且tanαtanβ=1+1cosβ, ∴sinα⋅sinβcosα⋅cosβ=1+1cosβ, ∴cosαcosβ+cosα=sinαsinβ, ∴cos (α+β)=﹣cosα=cos (π±α),∴α+β=2k π+π+α(k ∈Z ),或α+β=2k π+π﹣α(k ∈Z ), ∴β=2k π+π+α(k ∈Z )(舍去),或2α=2k π+π﹣β(k ∈Z ), ∵α,β都是锐角, 当k =0时,2α=π﹣β, 故选:B .8.已知α,β∈(0,π),cosα=−3√1010,若sin (2α+β)=12sinβ,则α+β=( )A .54πB .23πC .76πD .74π【解答】解:∵α(0,π),cosα=−3√1010, ∴sinα=√1−cos 2α=√1010, ∴sin2α=2sinαcosα=2×√1010×(−3√1010)=−35,cos2α=1﹣2sin 2α=1﹣2×(√1010)2=45, ∵sin (2α+β)=12sinβ, ∴sin2αcosβ+cos2αsinβ=12sinβ,∴−35cosβ+45sinβ=12sinβ,即sinβ=2cosβ, 又sin 2β+cos 2β=1,且β∈(0,π), ∴sinβ=2√55,cosβ=√55,∴sin (α+β)=sinαcosβ+cosαsinβ=√1010×√55+(−3√1010)×2√55=−√22<0, ∵α,β∈(0,π),且cosα<0,cosβ>0,∴α∈(π2,π),β∈(0,π2),∴α+β∈(π2,3π2),∴α+β=5π4. 故选:A .。
三角函数概念、同角三角函数关系式和诱导公式归纳总结三角函数概念、同角三角函数关系式和诱导公式归纳总结知识点精讲一、基本概念角的概念包括正角、负角和零角。
其中正角是逆时针旋转而成的角,负角是顺时针旋转而成的角,零角是射线没旋转而成的角。
角α的弧度范围为(−∞,+∞)。
角α的始边与x轴的非负半轴重合,终边落在第几象限,α就叫做第几象限角,终边在坐标轴上的角不是象限角,称之坐标角(或象限界角、轴线角等)。
弧度制度是半径为r的圆心角α所对弧长为l,则α=l/r(弧度或rad)。
与角α(弧度)终边相同的角的集合为β=α+2kπ,k∈Z,其意义在于α的终边逆时针旋转整数圈,终边位置不变。
弧度或rad可省略。
两制互化时,只需记忆π=180,1=π/180两个换算单位即可。
6)弧长公式:l=αr(α∈(0,2π]),扇形面积公式:S=1/2lr=αr2/2.底高=lr,如图4-1所示。
注:关于扇形面积公式的记忆,可以采用类似三角形面积公式的方法,把扇形的弧长类比成三角形的底,半径类比成三角形的高,则有S=l*r/2.二、任意角的三角函数1.定义已知角α终边上的任一点P(x,y)(非原点O),则P到原点O的距离r=OP=sqrt(x^2+y^2)。
sinα=y/r,cosα=x/r,tanα=y/x。
此定义是解直三角形内锐角三角函数的推广。
类比,对∠y,邻∠x,斜∠r,如图4-2所示。
2.单位圆中的三角函数线以α为第二象限角为例。
角α的终边交单位圆于P,PM垂直x轴于M,α的终边或其反向延长线交单位圆切线AT于T,如图4-3所示,由于取α为第二象限角,sinα=MP>0,cosα=OM<0,tanα=AT<0.3.三角函数象限符号与单调性在单位圆中r=sqrt(x^2+y^2)=1,则sinα=y,cosα=x,tanα=y/x。
在第一、二象限,三角函数值为正;在第三、四象限,sinα为负,cosα和tanα为正。
三角函数概念、同角三角函数关系式和诱导公式归纳总结知识点精讲一、基本概念(1)任意角---------⎧⎪⎨⎪⎩正角逆时针旋转而成的角;负角顺时针旋转而成的角;零角射线没旋转而成的角.角α(弧度)(,)∈-∞+∞.(2)角α的始边与x 轴的非负半轴重合,终边落在第几象限,α就叫做第几象限角,终边在坐标轴上的角不是象限角,称之坐标角(或象限界角、轴线角等) (3)弧度制度:半径为r 的圆心角α所对弧长为l ,则lrα=(弧度或rad ). (4)与角α(弧度)终边相同的角的集合为{}2,k k Z ββαπ=+∈,其意义在于α的终边逆时针旋转整数圈,终边位置不变. 注:弧度或rad 可省略(5)两制互化:一周角=036022rrππ==(弧度),即0180π=. 1(弧度)00018057.35718π⎛⎫'=≈= ⎪⎝⎭故在进行两制互化时,只需记忆0180π=,01180π=两个换算单位即可:如:005518015066π=⨯=;036361805ππ=⨯=. (6)弧长公式:l r α=((0,2])απ∈, 扇形面积公式:21122S lr r α==. 注:关于扇形面积公式的记忆,可以采用类似三角形面积公式的方法,把扇形的弧长类比成三角形的底,半径类比成三角形的高,则有11=22S lr =底高,如图4-1所示.二、任意角的三角函数1.定义已知角α终边上的任一点(,)P x y (非原点O ),则P到原点O的距离0r OP ==>.sin ,cos ,tan y x y r r xααα===.此定义是解直三角形内锐角三角函数的推广.类比,对y ↔,邻x ↔,斜r ↔, 如图4-2所示.2.单位圆中的三角函数线以α为第二象限角为例.角α的终边交单位圆于P ,PM 垂直x 轴于M , α的终边或其反向延长线交单位圆切线AT 于T ,如图4-3所示,由于取α为第二象限角,sin α=MP>0, cos α=OM<0, tan α=AT<0.3.三角函数象限符号与单调性在单位圆中1r ==,则:(1)sin yy rα==,即α终边与单位圆交点的纵坐标y 即为α的正弦值sin α. 如图4-4(a )所示,sin α的特征为:01101111.⎧⎪-⎪⎨⎪⎪--⎩上正、下负;上(90),下(270),左、右都为;按逆时针方向旋转,向上(一、四)象限为增,从增到,向下(二,三象限)为减,从减到 (2)cos xx rα==,即α终边与单位圆交点的横坐标x 即为的余弦值cos α. 如图4-4(b )所示,cos α的特征为:01101111.⎧⎪-⎪⎨⎪⎪--⎩右正、左负;右(0),左(180),上、下都为;按逆时针方向旋转,向右(三、四)象限为增,从增到,向左(一,三象限)为减,从减到 (3)tan yxα=.如图4-4(c )所示,tan α的特征为: 0.⎧⎪⎨⎪⎩一、三正,二、四负;上、下是(即不存在),左、右都是;逆时针方向旋转,各象限全增三、同角三角函数的基本关系、诱导公式 1. 同角三角函数的基本关系 平方关系:22sin cos 1αα+= 商数关系:sin tan cos ααα=2. 诱导公式(1)sin ()sin()sin ()n n n ααπα⎧+=⎨-⎩为偶数;为奇数cos ()cos()cos ()n n n ααπα⎧+=⎨-⎩为偶数;为奇数tan()tan ()n n απα+=为整数.(2)奇偶性.()()()sin -=-sin cos -=cos tan -=-tan αααααα,,.(3)1sin -=cos cos -=sin tan -=222tan πππαααααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, 奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可. 例如(1)sin +2πα⎛⎫⎪⎝⎭,因为+22ππαπ<<,所以sin +>02πα⎛⎫⎪⎝⎭,即sin +=cos 2παα⎛⎫⎪⎝⎭, (2)()sin +πα,因为3+2ππαπ<<,所以()sin +<0πα,即()sin +=-cos παα, 简而言之即“奇变偶不变,符号看象限”.题型归纳及思路提示题型1终边相同的角的集合的表示与区别 思路提示(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.例4.1终边落在坐标轴上的角的集合为( ) A. {},k k Zααπ=∈ B. ,2k k Z παα⎧⎫=∈⎨⎬⎩⎭C. ,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭D.,2k k N παα⎧⎫=∈⎨⎬⎩⎭分析 表示终边相同的角的集合,必有k Z ∈,而不是k N ∈.解析 解法 一:排除法.终边在坐标轴上的角有4种可能,x 轴正、负半轴,y 轴正、负半轴,取1,2,3,4,,k =可知只有选项B占有4条半轴,故选B. 解法二;推演法.终边在坐标轴上的角的集合为3113",2,,,,0,,,,2,",2222ππππππππ----可以看作双向等差数列,公差为2π,取初始角0α=,故0()2k k Z πα=+∈,故0()2k k Z πα=+∈⇒,2k k Z παα⎧⎫=∈⎨⎬⎩⎭故选B. 评注 终边在x 轴的角的集合,公差为π,取初始角0α=⇒{},k k Z ααπ=∈;终边在y 轴的角的集合,公差为π,取初始角2πα=⇒,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭.例4.2 请表示终边落在图4-5中阴影部分的角的集合.分析 本题是关于区域角的表示问题,需要借助终边相同角的集合表示知识求解,只需要把握区域角初始角的范围和终边相同角的集合的公差的大小即可顺利求解.解析 (1)如图4-5(a )所示阴影部分的角的集合表示为22,63k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭;(2)如图4-5(b )所示阴影部分的角的集合表示为222,63k k k N ππαπαπ⎧⎫-+≤≤+∈⎨⎬⎩⎭; (3)如图4-5(c )所示阴影部分的角的集合表示为21122,36k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭; (4)如图4-5(d )所示阴影部分的角的集合表示为,63k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 评注 任一角α与其终边相同的角,都可以表示成α与整数个周角的和,正确理解终边相同的角的集合中元素组成等差数列,公差为2π,即集合的周期概念,是解决本题的关键.变式1设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么( ) A .M ⊆N B . N ⊆M C .M =ND .M ∩N =∅例4.3 下列命题中正确的是( )A. 第一象限角是锐角B. 第二象限角是钝角C.()0,απ∈,是第一、二象限角D. ,02πα⎛⎫∈-⎪⎝⎭,α是第四象限角,也叫负锐角 解析 第一象限角的集合为022,2k k k Z παπαπ⎧⎫+<<+∈⎨⎬⎩⎭,锐角的集合是是其真子集(即当0k =时)故选项A 错;同理选项B 错;选项C 中(0,)2ππ∈,但2π不是象限角,选项C 也错,故选D. 题型2 等分角的象限问题 思路提示先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示. 例4.4 α 是第二象限角,2α是第 象限角解析 解法一:α与终边相同的角的集合公差为2π,该集合中每个月的一半组成的集合公差为π,取第二象限的一个初始集合,2ππ⎛⎫ ⎪⎝⎭,得2α的初始集合,42ππ⎛⎫⎪⎝⎭,对比集合以π公差旋转得2α的分布,如图4-6所示,得2α是第一、三象限角.解法二:如图4-7所示,α是第二象限角,2α是第一、三象限角,又若α是第四象限角,2α是第二、四象限角.解法三:取α=0120,000012036060,2402α+⇒=,即2α是第一、三象限角.评注 对于2α是第几象限角的问题,做选填题以记住图示最为便捷,解法三是一种只要答案的特值方法;解法一能准确找出2α的分布. 对于3α是第几象限角可使用象限分布图示的规律,如图4-8所示,那么对于“nα是第几象限角”的象限分布图示规律是什么?只需要把第一个象限平均分成n 部分,并从x 轴正向起,逆时针依次标注1,2,3,4,1,2,3,4,1,2,3,4…..,则数字(α终边所在象限)所在象限即为nα终边所在象限.例如:3α的象限分布图示如图4-8所示,若α为第一象限角,则3α为第一、二、三象限角.变式1 若α是第二象限角,则3α是第 象限角;若α是第二象限角,则3α的取值范围是 题型3 弧长与扇形面积公式的计算 思路提示(1) 熟记弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2(弧度制(0,2]απ∈)(2) 掌握简单三角形,特别是直角三角形的解法例4.5 有一周长为4的扇形,求该扇形面积的最大值和相应圆心角的大小. 解析:设扇形的半径为r ,弧长为l ,圆心角为α(弧度),扇形面积S.依题意0024r l r l >⎧⎪>⎨⎪+=⎩,12S lr =,则12S lr =11(42)(42)224r r r r =-=-32π 2π4π O yx 54π 图 4-62 3 1 4 x 4 13 2 y图 4-7O21422()142r r -+≤=,(当且仅当422r r -=时,即1r =时取“=”,此时2l =)故扇形的面积最大值为1,此时lrα==2(弧度).评注本题亦可解作21112212442l r S lr l r +⎛⎫==⋅≤= ⎪⎝⎭,当且仅当22l r ==,即2l =,1r =时“=”成立,此时lr α==2.本题可改为扇形面积为1,求周长的最小值,2C l r =+≥且112lr =得2lr =,故4C ≥(当且仅当22l r ==时“=”成立),扇形周长的最小值为4.变式1 扇形OAB 的圆心角∠OAB=1(弧度),则AB =() A. 1sin2 B. 6π C. 11sin 2D. 21sin 2变式2 扇形OAB ,其圆心角∠OAB=0120,其面积与其内切圆面积之比为 题型4 三角函数定义题 思路提示(1) 任意角的正弦、余弦、正切的定义; (2) 诱导公式;(3) 理解并掌握同角三角函数基本关系.例4.6 角α终边上一点(2sin 5,2cos5)P -,(0,2)απ∈,则α=( ) A. 52π-B. 35π-C. 5D.5+2π 解析 解法一:排队法. 005557.3286.5≈⨯=,是第四象限角,2sin50x =<,2cos50y =-<,2r ==,α是第三象限角.选项C 中,5是第四象限角,选项D 中,5+2π是第一象限角,故排除C 、D ;选项B 中, ()cos cos 35cos5απ=-=-,与cos sin 5xrα==矛盾,排除B ,故选A.解法二:推演法.由解法一,35,2πθαπθ'=+=+,,(0,)2πθθ'∈(这样设的原因是cos sin5α=),cos cos()απθ'=+=cos θ'-,3sin 5sin()cos 2πθθ=+=-⇒cos cos θθ'-=-⇒cos cos θθ'=,,(0,)2πθθ'∈⇒352πθθ'==-, ⇒35522ππαπ⎛⎫=+-=- ⎪⎝⎭故选A.变式1 已知角α终边上一点(2sin 2,2cos 2)P -,(0,2)απ∈,则α=( )A.2B.-2C.22π-D. 22π- 变式2 已知角α终边上一点22(2sin ,2cos )77P ππ-,则α=变式3 已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线2y x =上,则cos2θ=( ) A. 45-B. 35-C. 35D. 45题型5 三角函数线及其应用 思路提示正确作出单位圆中正弦、余弦、正切的三角函数线 一,利用三角函数线证明三角公式 例4.7 证明(1)()sin -=sin παα, (2)sin -=cos 2παα⎛⎫⎪⎝⎭(3)31tan =-2tan παα⎛⎫+⎪⎝⎭解析 (1)如图4-9所示,角-πα与α的终边关于y 轴对称,MP MP '=⇒()sin -=sin παα. (2)如图4-10所示,角-2πα与α的终边关于直线y x =对称.OM M P ''=⇒sin -=cos 2παα⎛⎫⎪⎝⎭(3) 如图4-11所示,.2311tan =k =--2tan tan OT πααα⎛⎫+=⎪⎝⎭评注 用单位圆中的三角函数线证明诱导公式是新课标的要求,必须掌握,重点在(),,2ππααα±-±.在(1)证明中易得()cos -=-cos παα,,相除得()tan -=-tan παα,,在(2)证明 中易得cos -=sin 2παα⎛⎫⎪⎝⎭,相除得1tan =2tan παα⎛⎫-⎪⎝⎭.角α与-πα的终边关于终边(即y 轴)对称,角-2πα与α的终边关于终边所在的直线y x =轴对称.一般地,角α,β的终边关于终边所在直线2αβ+轴对称二.利用三角函数线比较大小 例4.8 ,42ππα⎛⎫∈⎪⎝⎭,比较sin ,cos ,tan ααα的大小. 解析 如图4-12所示,,42ππα⎛⎫∈⎪⎝⎭,在单位圆中作出α的正弦线MP ,余弦线OM 和正切线AT ,显然有OM<MP<A T,故cos sin tan ααα<<.评注 由本例可看出,三角函数线可直观、形象地处理三角函数中的大小比较问题变式1 求证:(1)当角α的终边靠近y 轴时,cos sin αα<及tan 1α>; (2)当角α的终边靠近x 轴时,cos sin αα>及tan 1α<;变式2 (1)α为任意角,求证:cos sin 1αα+>; (2)0,2πα⎛⎫∈ ⎪⎝⎭,比较sin ,cos ,tan ααα的大小 变式3 比较大小 (1)sin 2,sin 4,sin 6 (2)cos 2,cos 4,cos6(3)tan 2,tan 4,tan 6 变式4 1sin tan ()tan 22ππαααα>>-<< ,则α∈() A. ,24ππ⎛⎫-- ⎪⎝⎭ B. ,04π⎛⎫- ⎪⎝⎭C. 0,4π⎛⎫⎪⎝⎭D. ,42ππ⎛⎫ ⎪⎝⎭三、利用三角函数线求解特殊三角方程例4.9 利用单位圆中的三角函数线求解下列三角方程: (1)1sin 22x =;(2)2cos 22x =;(3)tan 23x =.解析 (1)在单位圆中作为正弦为12的正弦线,如图4-13所示,得正弦为12的两条终边,即16πα=,256πα=,故226x k ππ=+或5226x k ππ=+,k Z ∈. 解得12x k ππ=+或512x k ππ=+,k Z ∈.(2)如图4-14所示14πα=,24πα=-,故224x k ππ=+或224x k ππ=-+,k Z ∈,解得8x k ππ=+或8x k ππ=-+,k Z ∈.(3)如图4-15所示,得13πα=,243πα=,公差为π,故23x k ππ=+,k Z ∈. 解得6x k ππ=+,k Z ∈.评注(1)sin 1α≤ ,cos 1α≤,tan x R ∈;(2)当1k <时,方程sin ,cos x k x k ==在[0,2)π有两解. 四、利用三角函数线求解特殊三角不等式例4.10利用单位圆,求使下列不等式成立 的角的集合. (1)1sin 2x ≤;(2)2cos 2x ≥;(3)tan 1x ≤.分析 这是一些较简单的三角函数不等式,在单位圆中,利用三角函数线作出满足不等式的角所在的区域,由此写出不等式的解集.解析 (1)如图4-16所示,作出正弦线等于12的角:5,66ππ,根据正弦上正下负,得在图4-16中的阴影区域内的每一个角均满足1sin 2x ≤,因此所求的角x 的集合为 51322,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭.(2)如图4-17所示,由余弦左负右正得满足2cos 2x ≥的角的集合为 22,44x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭. (3)如图4-18所示,在[0,2]π内,作出正切线等于1的角5,44ππ:则在如图4-18所示的阴影区域内(不含y 轴)的每一个角均满足tan 1x ≤,因此所求的角的集合为,24x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭.评注 解简单的三角不等式,可借助于单位圆中的三角函数线,先在[0,2]π内找出符合条件的角,再利用终边相同的角的表达式写出符合条件的所有角的集合,借助关于单位圆中的三角函数线,还可以比较三角函数值的大小.例4.11利用单位圆解下列三角不等式: (1)2sin 10α+>; (2)23cos 30α+≤; (3)sin cos αα>;(4)若02απ≤<,sin 3cos αα>,则则α∈() A. ,32ππ⎛⎫⎪⎝⎭ B. ,3ππ⎛⎫⎪⎝⎭ C. 4,33ππ⎛⎫⎪⎝⎭D. 3,32ππ⎛⎫ ⎪⎝⎭解析 (1)由题意1sin 2α>-,令1sin 2α=-,如图4-19所示,在单位圆中标出第三、四象限角的两条终边,这两条终边将单位圆分成上、下两部分,根据正弦上正下负,取α终边上面的部分,按逆时针从小到大标出16πα=-,2766ππαπ=+=,故不等式的解集为 722,66k k k Z ππαπαπ⎧⎫-+≤≤+∈⎨⎬⎩⎭.(2)如图4-20所示,3cos α≤标出3cos α=的角在单位圆中第二、三象限的两条终边,这两条终边将单位圆分成左,右两部分,根据余弦左负右正,取α终边在左侧的部分,按逆时针从小到大标出1566ππαπ=-=,2766ππαπ=+=,.故不等式的解集为 5722,66k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. (3)sin cos αα>y x y x r r ⇒>⇒>.如图4-21所示,在单位圆中作出y x =所对的两个角14πα=,254πα=.这两个角的终边将单位圆分成上、下两部分.在上面的部分取2πα=,sin cos 22ππ>成立 ,故不等式的解集为522,44k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 注 本题也可通过线性规划的知识直接判断出表示y x >的平面区域为如图4-21所示的阴影部分.(4)sin 3cos αα>,得33y x y x r r>⇒>,如图4-22所示,在单位圆中标出3y x =所对的角13πα=,243πα=.,.这两个角的终边把单位圆分为上、下两部分,因为02απ≤<,在上面的部分取2πα=,sin 3cos αα>成立 ,所以取α终边上面的部分,故不等式的解集为433ππαα⎧⎫≤≤⎨⎬⎩⎭,故选C.评注 三角函数线的应用(1)证明 三角公式;(2)比较大小;(3)解三角方程;(4)求解三角不等式. 变式1 已知函数()3cos ,,()1f x x x x R f x =-∈≥若,则x 的取值范围() A. ,3xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B. 22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ C. 5,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭D. 522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭题型6 象限符号与坐标轴角的三角函数值思路提示正弦函数值在第一、二象限为正,第三、四象限为负;. 余弦函数值在第一、四象限为正,第二、三象限为负;. 正切函数值在第一、三象限为正,第二、四象限为负.例4.12(1)若()0,2απ∈,sin cos 0αα<,则α的取值范围是 ; (2)3tan 0sincos sincos 222ππππ+---= ; 解析:(1)由sin cos 0αα<得sin 0cos 0αα>⎧⎨>⎩或sin 0cos 0αα<⎧⎨<⎩,得α为第二象限角或第四象限角⇒α的取值范围是3,,222ππππ⎛⎫⎛⎫⋃⎪ ⎪⎝⎭⎝⎭. (2)01(1)(1)12+-----=.变式1 sin 0α>是α为第一、二象限的( )A.充分而不必要条件B. 必要而不充分条件C.充分必要条件D.既不充分也不必要条件 变式2 ,43sin,cos 2525αα==-,2α是第 象限角,α是第 象限角. 变式3若sin cos 1=-,则α的取值范围是 .变式4 已知tan cos 0αα<,则α是第( )象限角.A.一或三B. 二或三C.三或四D.一或四 变式5 若α为第二象限角,则tan2α的符号为变式6 若点(tan ,cos )P αα在第三象限,则角α的终边在第 象限角变式7 函数cos sin tan sin tan x x xy x cox x=++的值域为 . 题型7 同角求值-----条件中出现的角和结论中出现的角是相同的思路提示(1) 若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2) 若无象限条件,一般“弦化切”. 例4.13 (1)已知3,22παπ⎛⎫∈ ⎪⎝⎭,1sin 3α=-,cos α= , tan α=(2)已知tan α=2, 1. 3,2παπ⎛⎫∈ ⎪⎝⎭,sin α= , cos α= 2.2sin cos 3sin 4cos αααα-+= ,3. 22sin 2sin cos 3cos αααα--= , (3)已知2sin cos αα-= 1. sin cos tan ααα+= ; 2. sin cos αα-= . 解析 (1)因为3,22παπ⎛⎫∈⎪⎝⎭,cos 0,tan 0αα><,故cos α==.sin tan cos ααα==(2)1.因为3,2παπ⎛⎫∈ ⎪⎝⎭,所以sin 0,cos 0αα<<,22sin tan cos sin cos 1ααααα⎧=⎪⎨⎪+=⎩, 得22sin 2cos sin cos 1αααα=⎧⎨+=⎩,得21cos 5α=.cos 5α=-,sin 5α=-2.无象限条件,弦化切.2sin cos 3sin 4cos αααα-+=2tan 122133tan 432410αα-⨯-==+⨯+3. 22sin 2sin cos 3cos αααα--=2222sin 2sin cos 3cos sin cos αααααα--=+22tan 2tan 3tan 1ααα--=+35- (3)无象限条件,弦化切.,两边平方,得()()2222sin cos 5sin cos αααα-=+222sin 4sin cos 4cos (sin 2cos )0αααααα⇒++⇒+=sin 2cos 0αα⇒+=,tan 20α+=⇒tan 2α=-.1. sin cos tan ααα+=22sin cos tan sin cos ααααα+=+2tan 12tan tan 15ααα+=-+2. 2sin cos αα-=()αϕ+=可知当x α=时,2sin cos x x -取最小值.()2sin cos sin 2cos 0x x x ααα='-=+=.2sin cos sin 2cos 0αααα⎧-=⎪⎨+=⎪⎩⇒cos 5sin αα⎧=⎪⎪⎨⎪=⎪⎩,sin cos αα-=5-. 评注 本题给出同角求值的几种基本题型..(1)及(2)中的1体现了有象限条件的任意角三角函数与锐角三角函数的本质联系(只多了一个象限符号);(2)中的2体现了无象限条件弦化切的解题策略.(3)中无象限条件,2sin cos αα-=()αϕ+=表示函数2sin cos y x x =-在处取得极小值,导数0x y α='=,故有更简便做法:()2sin cos sin 2cos 0x x x ααα='-=+=.如已知sin cos αα-=()0,απ∈,则tan α= .答案为-1,与本题(3)同理可解.变式1 若tan α=2,则2212sin cos cos sin αααα+=-=( ) A. 13 B.3 C. 13- D.-3变式2 当x θ=时,函数sin 2cos y αα=-取得最大值,则cos θ= ; 例4.14 已知1sin cos 5αα+=-时,,22ππα⎛⎫∈-⎪⎝⎭,则tan α=( )A. 34-B. 43-C. 34D.- 43解析 解法一:已知角的象限条件,将方程两边平方得112sin cos 25αα+=12sin cos 025αα⇒=-<,,22ππα⎛⎫∈- ⎪⎝⎭,tan 0α<,排除C 和D., sin 0,cos 01sin cos 05αααα<>⎧⎪⎨+=-<⎪⎩⇒sin cos ,αα>tan 1α>,故排除A ,故选B. 解法二:将方程两边平方得,()22221sin 2sin cos cos sin cos 25αααααα++=+ 2212sin 25sin cos 12cos 0αααα⇒++=212tan 25tan 120αα⇒++=43tan 34α⇒=--或由解法一知tan 1α>,得4tan 3α=-,故选B. 变式1 已知R α∈,sin 2cos αα+=,则tan 2α=( ) A.43 B. 34 C. 34- D. 43- 变式2 已知3sin cos 8αα=,42ππα<<,则cos sin αα-=( )A. 12B. 12-C. 14D. 14-题型8 诱导求值与变形 思路提示(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数. (2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化例4.15 求下列各式的值.(1)0sin(3000)-; (2)41cos 3π⎛⎫-⎪⎝⎭; (3)51tan 4π⎛⎫-⎪⎝⎭解析 (1)0sin(3000)-=0sin(8360120)sin120-⨯+=-000sin(18060)sin 602=--=-=-;(2)41cos 3π⎛⎫-⎪⎝⎭=411cos cos 14cos 3332ππππ⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)5151tan tan tan(13)tan 14444πππππ⎛⎫-=-=--== ⎪⎝⎭. 评注 利用诱导公式化简或求值,可以参照口决“负角化正角,大角化小角,化为锐角,再计算比较”.变式1 若()cos 2-3πα=,且,02πα⎛⎫∈- ⎪⎝⎭,则()sin -πα= ; 变式2 若3,22ππα⎛⎫∈⎪⎝⎭,()3tan 74απ-=,则cos sin αα+=( ) A. 15± B. 15- C.15 D. 75- 变式3 若cos-80°= k ,则tan 100°的值为( )A.B. D.变式4 已知1sin 64x π⎛⎫+= ⎪⎝⎭,则25sin sin ()63x x ππ⎛⎫-+- ⎪⎝⎭= ; 最有效训练题A. 15± B. 15- C. 15 D. 75-2.已知点33(sin ,cos )44P ππ落在角θ的终边上,且[]0,2θπ∈,则θ的值为( )A. 4πB. 34πC. 54πD. 74π3.若角α的终边落在直线0x y +==( )A. 2B. 2-C. 1D. 0 4.若角A 是第二象限角,那么2A 和2A π-都不是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5.已知sin -=cos ,cos -=sin 22ππαααα⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,对于任意角α均成立.若(sin )cos 2f x x =,则(cos )f x =( )A. cos2x -B. cos2xC. sin 2x -D. sin 2x6.已知02x π-<<,1cos sin 5αα+=-,则sin cos 1αα-+=( ) A. 25- B. 25 C. 15 D. 15-7.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若(4,)P y 是角θ终边上一点,且25sin 5θ=-,则y = .8.函数2lgsin 29y x x =+-的定义域为 .9.如图4-23所示,已知正方形ABCD 的边长为1,以A 为圆心,AD 长为半径画弧,交BA 的延长线于1P ,然后以B 为圆心,1BP 长为半径画弧,交CB 的延长线于2P ,再以C 为圆心,2CP 长为半径画弧,交DC 的延长线于3P ,再以D 为圆心,3DP 长为半径画弧,交AD 的延长线于4P ,再以A 为圆心,4AP 长为半径画弧,…,如此继续下去,画出的第8道弧的半径是 ,画出第n 道弧时,这n 道弧的弧度之和为 .10.在平面直角坐标系xOy 中,将点3,1)A 绕点O 逆时针旋转090到点B ,那么点B 的坐标为 ;若直线OB 的倾斜角为α,则sin 2α的值为 . 11.一条弦的长度等于半径r ,求: (1)这条弦所对的劣弧长;(2)这条弦和劣弧所围成的弓形的面积.12.已知001tan(720)3221tan(360)θθ++=+--. 求2221cos ()sin()cos()2sin ()cos (2)πθπθπθπθθπ⎡⎤-++-++⎣⎦--的值.。
备战高考数学复习考点知识与题型讲解第29讲同角三角函数的基本关系与诱导公式考向预测核心素养考查利用同角三角函数的基本关系、诱导公式解决条件求值问题,常与三角恒等变换相结合起到化简三角函数关系的作用,强调利用三角公式进行恒等变换的技能以及基本的运算能力.数学运算、逻辑推理一、知识梳理1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:tan α=sin αcos α⎝⎛⎭⎪⎫其中α≠kπ+π2,k∈Z.2.三角函数的诱导公式组数一二三四五六角α+2kπ(k∈Z)π+α-απ-απ2-απ2+α正弦sin α-sinα-sinαsinαcosαcosα余弦cos α-cosαcosα-cosαsinα-sinα正切tan αtanα-tanα-tanα常用结论1.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.2.同角三角函数的基本关系式的几种变形(1)sin2α=1-cos2α=(1+cos α)(1-cos α);cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α.(2)sin α=tan αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .(3)sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1; cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1.二、教材衍化1.(人A 必修第一册P 185习题5.2T 6(2)改编)已知α是第二象限角,sin α=513,则cos α=( )A .-1213B.-513C.513D.213解析:选A.因为α是第二象限角,所以cos α<0,又sin 2α+cos 2α=1,所以cos α=-1-sin 2α=-1213. 2.(人A 必修第一册P 195习题5.3T 8改编)已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则cos ⎝ ⎛⎭⎪⎫π6+α=________;sin ⎝ ⎛⎭⎪⎫23π+α=________. 解析:因为⎝ ⎛⎭⎪⎫π3-α+⎝ ⎛⎭⎪⎫π6+α=π2,所以cos ⎝ ⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α=12. sin ⎝ ⎛⎭⎪⎫23π+α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫23π+α=sin ⎝ ⎛⎭⎪⎫π3-α=12. 答案:12123.(人A 必修第一册P 194练习T 3(1)改编)化简cos ⎝⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫52π+α·cos (2π-α)的结果为________.解析:原式=sin αcos α·cos α=sin α.答案:sin α一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)对任意的角α,β,都有sin 2α+cos 2β=1.( ) (2)若α∈R ,则tan α=sin αcos α恒成立.( ) (3)sin (π+α)=-sin α成立的条件是α为锐角.( ) (4)若cos(n π-θ)=13(n ∈Z ),则cos θ=13.( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏1.(多选)(应用平方关系致误)已知cos (π+α)=23,则tan α=( )A.52B.255 C.-52D.-255解析:选AC.因为cos (π+α)=23,所以cos α=-23,则α为第二或第三象限角,所以sin α=±1-cos 2α=±53.所以tan α=sin αcos α=±53-23=∓52.2.(忽视诱导公式符号致误)已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2} B.{-1,1}C .{2,-2}D.{1,-1,0,2,-2}解析:选C.当k 为偶数时,A =sin αsin α+cos αcos α=2; 当k 为奇数时,A =-sin αsin α-cos αcos α=-2.3.(忽视角的范围致误)已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为________.解析:因为sin θ+cos θ=43,所以sin θcos θ=718.又因为(sin θ-cos θ)2=1-2sin θcos θ=29,θ∈⎝⎛⎭⎪⎫0,π4,所以sin θ-cos θ=-23. 答案:-23考点一 同角三角函数的基本关系(自主练透)复习指导:理解同角三角函数的基本关系:sin 2α+cos 2α=1,sin αcos α=tan α(其中α≠k π+π2,k ∈Z ).1.已知α是第四象限角,tan α=-815,则sin α=( )A.1517B.-1517C.817D.-817 解析:选D.因为tan α=-815,所以sin αcos α=-815, 所以cos α=-158sin α,代入sin 2α+cos 2α=1,得sin 2α=64289, 又α是第四象限角,所以sin α=-817. 2.(多选)(2022·湛江二十一中9月月考)已知sin α+3cos α3cos α-sin α=5,下列计算结果正确的是( )A .tan α=12B.tan α=2C .cos 2α+sin αcos α=35 D.2sin 2α-cos 2α=65解析:选BC.由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,解得tan α=2,故A 错误,B 正确;cos 2α+sin αcos α=cos 2α+sin αcos αsin 2α+cos 2α=1+tan αtan 2α+1=1+24+1=35,故C 正确;2sin 2α-cos 2α=2sin 2α-cos 2αsin 2α+cos 2α=2tan 2α-1tan 2α+1=75,故D 错误.3.已知π2<α<π,化简:cos α1-cos 2α+sin α1-sin 2α1-cos 2α=________. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以原式=cos αsin α-sin αcos αsin 2α=cos αsin α-cos αsin α=0.答案:04.已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为________.解析:由tan α=-13,得sin α=-13cos α,且sin α>0,cos α<0,将其代入sin 2α+cos 2α=1,得109cos 2α=1,所以cos α=-31010,sin α=1010, 故sin α+cos α=-105.答案:-105同角三角函数的基本关系的应用策略(1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)由一个角的任意一个三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.考点二 诱导公式的应用(综合研析)复习指导:借助单位圆中的三角函数线推导出诱导公式⎝ ⎛⎭⎪⎫π2±α、π±α的正弦、余弦、正切. (1)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),则sin ⎝⎛⎭⎪⎫α-2 021π2=( )A .-45B.-35C.35D.45(2)(2022·江西临川九校联考)已知α∈(0,π),且cos α=-1517,则sin ⎝ ⎛⎭⎪⎫π2+α·tan (π+α)=( ) A .-1517B.1517C.-817 D.817(3)已知角θ的顶点在坐标原点,始边与x 轴非负半轴重合,终边在直线3x -y =0上,则sin ⎝ ⎛⎭⎪⎫3π2+θ+2cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (π-θ)=________.【解析】 (1)由题意知sin α=45,cos α=35,所以sin ⎝ ⎛⎭⎪⎫α-2 021π2=sin ⎝⎛⎭⎪⎫α-π2=-cos α=-35. (2)sin ⎝ ⎛⎭⎪⎫π2+α·tan(π+α)=cos α·tan α=sin α,因为α∈(0,π),且cos α=-1517,所以sin α=1-cos 2α=817,即sin ⎝ ⎛⎭⎪⎫π2+α·tan (π+α)=817 . (3)由题可知tan θ=3,原式=-cos θ-2cos θcos θ-sin θ=-31-tan θ=32.【答案】 (1)B (2)D (3)32(1)诱导公式用法的一般思路①化负为正,化大为小,化到锐角为止; ②角中含有加减π2的整数倍时,用公式去掉π2的整数倍. (2)常见的互余和互补的角 ①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等; ②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等. |跟踪训练|1.已知cos α=13,且-π2<α<0,则cos (-α-π)sin (2π+α) tan (2π-α)sin ⎝ ⎛⎭⎪⎫3π2-αcos ⎝ ⎛⎭⎪⎫π2+α=________.解析:因为cos α=13,且-π2<α<0,所以sin α=-1-⎝ ⎛⎭⎪⎫132=-223,所以原式=-cos αsin α(-tan α)-cos α(-sin α)=tan α=sin αcos α=-2 2.答案:-2 22.(2022·江西上饶模拟)已知sin ⎝ ⎛⎭⎪⎫α-π12=13,则cos ⎝ ⎛⎭⎪⎫α+17π12的值为________.解析:由sin ⎝⎛⎭⎪⎫α-π12=13,得cos ⎝ ⎛⎭⎪⎫α+17π12=cos ⎝ ⎛⎭⎪⎫α+3π2-π12=sin ⎝ ⎛⎭⎪⎫α-π12=13. 答案:13考点三 同角三角函数的基本关系和诱导公式的综合应用(思维发散)复习指导:利用同角三角函数的基本关系和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.(1)(2022·聊城模拟)已知α为锐角,且2tan (π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan (π+α)+6sin (π+β)-1=0,则sin α的值是( )A.355B.377C.31010D.13(2)已知-π<x <0,sin (π+x )-cos x =-15.求sin 2x +2sin 2x1-tan x 的值.【解】 (1)选C.由已知得⎩⎨⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,所以sin α=3cos α,代入sin 2α+cos 2α=1, 化简得sin 2α=910,则sin α=31010(α为锐角). (2)由已知,得sin x +cos x =15,两边平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425. 因为(sin x -cos x )2=1-2sin x cos x =4925, 由-π<x <0知,sin x <0, 又2sin x cos x =-2425<0, 所以cos x >0,所以sin x -cos x <0, 故sin x -cos x =-75.sin 2x +2sin 2x 1-tan x =2sin x (cos x +sin x )1-sin xcos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.本例(2)中若将条件“-π<x <0”改为“0<x <π”,求sin x -cos x 的值. 解:若0<x <π,又2sin x cos x =-2425,所以sin x >0,cos x <0,所以sin x -cos x >0,故sin x -cos x =75.求解诱导公式与同角关系综合问题的基本思路和化简要求基本 思路 ①分析结构特点,选择恰当的公式; ②利用公式化成单角三角函数; ③整理得最简形式. 化简 要求①化简过程是恒等变换;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.|跟踪训练|1.(2022·潍坊调研)已知3sin ⎝ ⎛⎭⎪⎫33π14+α=-5cos ⎝ ⎛⎭⎪⎫5π14+α,则tan ⎝ ⎛⎭⎪⎫5π14+α=( )A .-53B.-35C.35D.53解析:选A.由3sin ⎝ ⎛⎭⎪⎫33π14+α=-5cos ⎝ ⎛⎭⎪⎫5π14+α, 得sin ⎝⎛⎭⎪⎫5π14+α=-53cos ⎝ ⎛⎭⎪⎫5π14+α, 所以tan ⎝ ⎛⎭⎪⎫5π14+α=sin ⎝⎛⎭⎪⎫5π14+αcos ⎝ ⎛⎭⎪⎫5π14+α=-53cos ⎝ ⎛⎭⎪⎫5π14+αcos ⎝ ⎛⎭⎪⎫5π14+α=-53.2.已知函数f (x )=a sin (πx +α)+b cos (πx +β),且f (4)=3,则f (2 023)的值为________.解析:由题意得f (4)=a sin (4π+α)+b cos (4π+β) =a sin α+b cos β=3,所以f (2 023)=a sin (2 023π+α)+b cos (2 023π+β) =a sin(π+α)+b cos (π+β) =-a sin α-b cos β=-3. 答案:-3[A 基础达标]1.sin 1 050°=( ) A.12B.-12C.32D.-32解析:选B.sin 1 050°=sin (3×360°-30°)=-sin 30°=-12.2.(2022·河北冀州中学期末)若sin ⎝ ⎛⎭⎪⎫5π2+α=15,则cos (π+α)=( ) A .-25B.-15C.15D.25解析:选B.因为sin ⎝⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫2π+π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=15, 所以cos (π+α)=-cos α=-15.3.已知tan θ=2,则sin ⎝ ⎛⎭⎪⎫π2+θ-cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (2π+θ)=( )A .2 B.-2 C.0D.23解析:选B.sin ⎝ ⎛⎭⎪⎫π2+θ-cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (2π+θ)=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.4.(2022·天津西青区模拟)已知sin α+cos α=-2,则tan α+1tan α等于( )A .2 B.12 C.-2D.-12解析:选A.由已知得1+2sin αcos α=2, 所以sin αcos α=12,所以tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2. 5.(多选)在平面直角坐标系中,若角α的终边与单位圆交于点P ⎝ ⎛⎭⎪⎫45,n (n >0),将角α的终边按逆时针方向旋转π2后得到角β的终边,记角β的终边与单位圆的交点为Q ,则下列结论正确的为( )A .tan α=34B.sin β=45C .tan β=43D.Q 的坐标为⎝ ⎛⎭⎪⎫-35,45解析:选ABD.由题意知cos α=45,角α的终边在第一象限,则n =sin α=1-cos 2α=35,所以tan α=sin αcos α=34,A 正确.由题意知β=α+π2,所以cos β=cos ⎝ ⎛⎭⎪⎫α+π2=-sin α=-35,sin β=sin ⎝ ⎛⎭⎪⎫α+π2=cos α=45, tan β=sin βcos β=-43,即Q 点的坐标为⎝ ⎛⎭⎪⎫-35,45,所以可得B ,D 正确,C 错误. 6.(多选)在△ABC 中,下列结论正确的是( ) A .sin(A +B )=sin C B .sinB +C2=cos A2C .tan(A +B )=-tan C ⎝ ⎛⎭⎪⎫C ≠π2D .cos(A +B )=cos C解析:选ABC.在△ABC 中,有A +B +C =π, 则sin(A +B )=sin (π-C )=sin C ,A 正确. sinB +C2=sin ⎝ ⎛⎭⎪⎫π2-A 2=cos A 2,B 正确. tan(A +B )=tan (π-C )=-tan C ⎝⎛⎭⎪⎫C ≠π2,C 正确. cos(A +B )=cos (π-C )=-cos C ,D 错误.7.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析:sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225. 因为0<α<π4,所以0<sin α<cos α. 又因为sin 2α+cos 2α=1,所以sin α=35,cos α=45.答案:35458.化简1-2sin 40°cos 40°cos 40°-1-sin 250°=________.解析:原式=sin 240°+cos 240°-2sin 40°cos 40°cos 40°-cos 50°=|sin 40°-cos 40°|sin 50°-sin 40° =|sin 40°-sin 50°|sin 50°-sin 40° =sin 50°-sin 40°sin 50°-sin 40° =1. 答案:19.已知α为第三象限角,f (α)=sin ⎝ ⎛⎭⎪⎫α-π2·cos ⎝⎛⎭⎪⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)因为cos ⎝⎛⎭⎪⎫α-3π2=15,所以-sin α=15,从而sin α=-15.又α为第三象限角,所以cos α=-1-sin 2α=-265,所以f (α)=-cos α=265. 10.已知-π2<α<0,且函数f (α)=cos ⎝⎛⎭⎪⎫3π2+α-sin α·1+cos α1-cos α-1.(1)化简f (α);(2)若f (α)=15,求sin αcos α和sin α-cos α的值.解:(1)f (α)=sin α-sin α·(1+cos α)21-cos 2α-1=sin α+sin α·1+cos αsin α-1=sin α+cos α.(2)由f (α)=sin α+cos α=15,平方可得sin 2α+2sin α·cos α+cos 2α=125,即2sin α·cos α=-2425. 所以sin αcos α=-1225. 又-π2<α<0,所以sin α<0,cos α>0,所以sin α-cos α<0,因为(sin α-cos α)2=1-2sin α·cos α=4925,所以sin α-cos α=-75. [B 综合应用]11.已知sin (π+θ)=-3cos (2π-θ),|θ|<π2,则θ=( ) A .-π6B.-π3C.π6D.π3解析:选D.因为sin (π+θ)=-3cos (2π-θ), 所以-sin θ=-3cos θ, 所以tan θ=3,因为|θ|<π2,所以θ=π3. 12.(2022·南阳第一中学高三月考)已知tan(α+β)=-1,tan(α-β)=12,则sin 2αsin 2β的值为( )A.13B.-13C.3D.-3解析:选A.因为tan(α+β)=-1,tan(α-β)=12,sin 2αsin 2β=sin[(α+β)+(α-β)]sin[(α+β)-(α-β)]=sin (α+β)cos (α-β)+cos (α+β)sin (α-β)sin (α+β)cos (α-β)-cos (α+β)sin (α-β) =tan (α+β)+tan (α-β)tan (α+β)-tan (α-β)=-1+12-1-12=13. 13.(2022·河北六校联考)若sin α是方程5x 2-7x -6=0的根,则sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝⎛⎭⎪⎫3π2-αtan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)=( )A.35B.53C.45D.54解析:选B.由题解得方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,则sin α=-35.原式=cos α(-cos α)tan 2αsin α(-sin α)(-sin α)=-1sin α=53.14.(2022·杭州新东方高三数学考试)已知cos ⎝ ⎛⎭⎪⎫π6-α=33,则cos ⎝⎛⎭⎪⎫5π6+α-sin ⎝⎛⎭⎪⎫α+4π3的值为________.解析:因为cos ⎝ ⎛⎭⎪⎫π6-α=33, 所以cos ⎝ ⎛⎭⎪⎫5π6+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-33,sin ⎝⎛⎭⎪⎫α+4π3=-sin ⎝ ⎛⎭⎪⎫α+π3=-sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-33,所以cos ⎝⎛⎭⎪⎫5π6+α-sin ⎝ ⎛⎭⎪⎫α+4π3=-33-⎝ ⎛⎭⎪⎫-33=0. 答案:0[C 素养提升]15.若k ∈Z 时,sin (k π-α)·cos (k π+α)sin[(k +1)π+α]·cos[(k +1)π+α]的值为________.解析:当k 为奇数时,原式=sin α·(-cos α)sin α·cos α=-1;当k 为偶数时,原式=-sin α·cos α-sin α·(-cos α)=-1.答案:-116.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈()0,π使等式sin (3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos (π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在角α,β满足条件.由已知条件可得⎩⎪⎨⎪⎧sin α=2sin β,①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2. 所以cos 2α=12,所以cos α=±22.因为α∈⎝ ⎛⎭⎪⎫-π2,π2,所以α=±π4.当α=π4时,由②式知cos β=32, 又β∈(0,π),所以β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π), 所以β=π6,此时①式不成立,故舍去. 所以存在α=π4,β=π6满足条件.。
同角三角函数基本关系式与诱导公式一、知识梳理1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tanα.2.三角函数的诱导公式总结:1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.()(2)六组诱导公式中的角α可以是任意角.()(3)若α∈R,则tan α=sin αcos α恒成立.()(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( ) 解析 (1)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴,商数关系不成立. (4)当k 为奇数时,sin α=13, 当k 为偶数时,sin α=-13. 答案 (1)× (2)√ (3)× (4)×2.已知tan α=-3,则cos 2α-sin 2α=( ) A.45B.-45C.35D.-35解析 由同角三角函数关系得cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-91+9=-45.答案 B3.已知α为锐角,且sin α=45,则cos (π+α)=( ) A.-35B.35C.-45D.45解析 因为α为锐角,所以cos α=1-sin 2α=35, 故cos(π+α)=-cos α=-35. 答案 A4.(2017·全国Ⅲ卷)已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.79 解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α, ∴sin 2α=1-⎝ ⎛⎭⎪⎫432=-79.答案 A5.(2019·济南质检)若sin α=-513,且α为第四象限角,则tan α=( ) A.125B.-125C.512D.-512解析 ∵sin α=-513,α为第四象限角,∴cos α=1-sin 2α=1213,因此tan α=sin αcos α=-512. 答案 D6.(2018·上海嘉定区月考)化简:sin 2(α+π)·cos(π+α)·cos(-α-2π)tan(π+α)·sin 3⎝ ⎛⎭⎪⎫π2+α·sin(-α-2π)=________.解析 原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1.答案 1考点一 同角三角函数基本关系式 角度1 公式的直接运用【例1-1】 (2018·延安模拟)已知α∈⎝⎛⎭⎪⎫-π,-π4,且sin α=-13,则cos α=( ) A.-223 B.223 C.±223 D.23解析 因为α∈⎝ ⎛⎭⎪⎫-π,-π4,且sin α=-13>-22=sin ⎝ ⎛⎭⎪⎫-π4,所以α为第三象限角,所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-132=-223. 答案 A角度2 关于sin α,cos α的齐次式问题 【例1-2】 已知tan αtan α-1=-1,求下列各式的值.(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2.解 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53. (2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.角度3 “sin α±cos α,sin αcos α”之间的关系 【例1-3】 已知x ∈(-π,0),sin x +cos x =15. (1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x 1-tan x 的值.解 (1)由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425.所以(sin x -cos x )2=1-2sin x cos x =4925. 由x ∈(-π,0),知sin x <0,又sin x +cos x >0, 所以cos x >0,则sin x -cos x <0, 故sin x -cos x =-75.(2)sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练1】 (1)(2019·烟台测试)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A.-32B.32C.-34D.34(2)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35B.-35C.-3D.3解析 (1)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34, ∴cos α-sin α=32.(2)由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.答案 (1)B (2)A考点二 诱导公式的应用【例2】 (1)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0),则f ⎝ ⎛⎭⎪⎫76π=________. (2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________. 解析 (1)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴f ⎝ ⎛⎭⎪⎫76π=1tan 76π=1tan π6= 3. (2)∵cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a ,sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=-a +a =0.答案 (1)3 (2)0【训练2】 (1)(2019·衡水中学调研)若cos ⎝ ⎛⎭⎪⎫π2-α=23,则cos(π-2α)=( )A.29B.59C.-29D.-59 (2)(2017·北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=________. 解析 (1)由cos ⎝ ⎛⎭⎪⎫π2-α=23,得sin α=23.∴cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×29-1=-59. (2)α与β的终边关于y 轴对称,则α+β=π+2k π,k ∈Z ,∴β=π-α+2k π,k ∈Z .∴sin β=sin(π-α+2k π)=sin α=13. 答案 (1)D (2)13考点三 同角三角函数基本关系式与诱导公式的综合应用【例3】 (1)(2019·菏泽联考)已知α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,则tan(π+2α)=( ) A.427B.±225C.±427D.225(2)(2019·福建四地六校联考)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355B.377C.31010D.13解析 (1)∵α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,∴cos α=13,sin α=-223,tan α=sin αcos α=-2 2.∴tan(π+2α)=tan 2α=2tan α1-tan 2α=-421-(-22)2=427. (2)由已知得⎩⎨⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角). 答案 (1)A (2)C(3)已知-π<x <0,sin(π+x )-cos x =-15. ①求sin x -cos x 的值; ②求sin 2x +2sin 2 x 1-tan x的值.解 ①由已知,得sin x +cos x =15, 两边平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925,由-π<x <0知,sin x <0, 又sin x cos x =-1225<0, ∴cos x >0,∴sin x -cos x <0, 故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练3】 (1)(2019·湖北七州市联考)已知α∈(0,π),且cos α=-513,则sin ⎝ ⎛⎭⎪⎫π2-α·tan α=( ) A.-1213 B.-513C.1213D.513(2)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析 (1)∵α∈(0,π),且cos α=-513,∴sin α=1213,因此sin ⎝ ⎛⎭⎪⎫π2-α·tan α=cos α·sin αcos α=sin α=1213.(2)由题意,得cos ⎝ ⎛⎭⎪⎫θ+π4=45,∴tan ⎝ ⎛⎭⎪⎫θ+π4=34.∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫θ+π4-π2=-1tan ⎝ ⎛⎭⎪⎫θ+π4=-43. 答案 (1)C (2)-43三、课后练习1.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A.1+ 5 B.1-5 C.1± 5D.-1-5解析 由题意知sin θ+cos θ=-m 2,sin θ·cos θ=m4.又()sin θ+cos θ2=1+2sin θcos θ,∴m 24=1+m2,解得m =1± 5.又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5. 答案 B2.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析 sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.∵0<α<π4,∴0<sin α<cos α.又∵sin 2α+cos 2α=1,∴sin α=35,cos α=45. 答案 35 453.已知k ∈Z ,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)=________.解析 当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α(-cos α)=-1. 综上,原式=-1. 答案 -14.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由. 解 假设存在角α,β满足条件,则由已知条件可得⎩⎨⎧sin α=2sin β, ①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2. ∴sin 2α=12,∴sin α=±22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4. 当α=π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式不成立,故舍去.∴存在α=π4,β=π6满足条件.5.已知sin α=23,α∈⎝ ⎛⎭⎪⎫0,π2,则cos(π-α)=________,cos 2α=________.解析 cos(π-α)=-cos α=-1-sin 2α=-73,cos 2α=cos 2α-sin 2α=⎝ ⎛⎭⎪⎫-732-⎝ ⎛⎭⎪⎫232=59.答案 -73 59。
同角三角函数的关系式及诱导公式一、基础知识(一) 同角三角函数的基本关系式:①平方关系1cos sin 22=+αα;②商式关系αααtan cos sin =;③倒数关系1cot tan =αα。
(二) 正弦余弦的诱导公式:απ±⋅2k )(Z k ∈与α的三角函数关系是“奇变偶不变,符号看象限”。
注:1、诱导公式的主要作用是将任意角的三角函数转化为 0~ 90角的三角函数。
2、主要用途:a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便);b) 化简同角三角函数式;证明同角的三角恒等式。
二、题型剖析1、化简求值例1:化简(1)())cos(])1sin[(])1cos[(sin απαπαπαπ+⋅++--⋅-k k k k (Z k ∈) (2)αααα4266sin sin cos sin 1--- 解:(1)当k 为偶数时,原式=ααααcos sin )cos (sin --⋅-=-1;当k 为奇数时同理可得,原式=-1,故当Z k ∈时,原式=-1。
(2)原式=()()()αααααααα222222222sin 1sin ]cos sin 3cos sin [cos sin 1-⋅-++-=3 【思维点拨】(1)分清k 的奇偶,决定函数值符号是关键;(2)平方降次是化简的重要手段之一。
练习:(变式2)()z n n n ∈⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛--απαπ414cos 414sin 化简 解:原式=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-αππαππ4cos 4sin n n (1)当n 为奇数时,设()z k k n ∈+=12,则原式=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+απππαπππ42cos 42sin k k =04cos 4cos 4cos 4sin =⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+απαπαπαπ。
三角函数典型题型归纳三角函数专题题型全归纳
第七章:三角函数
第一节:三角函数概念及同角三角函数关系
题型一:概念辨析
题型二:象限角及终边相同的角
题型三:扇形的弧长及面积公式
题型四:三角函数的定义及应用
题型五:同角三角函数直接应用
题型六:同角三角函数之弦的齐次式
第二节:诱导公式及恒等变换
题型一:诱导公式的运用
题型二:恒等变换
题型三:角的拼凑
第三节:三角函数的图像及性质
题型一:三角函数的周期
题型二:三角函数的定义域
题型三:三角函数的单调性
题型四:三角函数的对称性
题型五:三角函数的奇偶性
题型六:三角函数的值域
第四节:三角函数的图像变换及综合
题型一:图像变换
题型二:已知图像求解解析式
题型三:三角函数性质综合(多选题专练)题型四:三角函数解答题
题型五:三角函数实际应用
第五节:解三角形
题型一:正余弦定理选择
题型二:边角互换
题型三:与三角形面积有关
题型四:三角形形状判断
题型五:三角形的个数判断
题型六:最值与取值范围
题型七:解三角形在平面图形中的运用
题型八:解三角形的实际应用
题型九:解三角形解答题专练。
第二节同角三角函数的基本关系式及诱导公式复习目标学法指导1.同角三角函数的两个基本关系.2.三角函数的诱导公式(1)π+α与α的正弦、余弦、正切值的关系.(2)-α与α的正弦、余弦、正切值的关系.(3)π-α与α的正弦、余弦、正切值的关系.(4)π2±α与α的正弦、余弦值的关系. 1.在高考中,常给出角α的一个三角函数值,求其他异名的三角函数值,解题的关键就是灵活地掌握同角三角函数的基本关系的正用、逆用及变形应用.2.诱导公式的基本作用在于将任意角的三角函数转化为[0,π2]内的三角函数,其解题思路是化负角为正角,化复杂角为简单角.3.求值问题是三角公式的主要应用,求解时首先根据题目特点选择公式类型,再正确应用.一、同角三角函数的基本关系式1.平方关系sin 2α+cos 2α=1. 2.商数关系tan α=sin cos αα.1.公式理解(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin cos αα=tan α可以实现弦切互化.(2)只要是同一个角,基本关系式就成立,不要拘泥于角的形式,如sin 22α+cos 22α=1,sin3cos3x x=tan 3x 都成立. 2.与公式应用相关的结论(1)1的代换:1=sin 2α+cos 2α=cos 2α(1+tan 2α)=tan π4. (2)弦切互化法:弦切共存的代数式往往利用公式把切化为弦.(3)和积转换法:因为(sin α±cos α)2=1±2sin αcos α,所以对于sin α+cos α,sin α-cos α,sin αcos α这三个式子可以知一求二,但要注意角的范围. 二、诱导公式 组序 一 二三四五 六 角2k π+α(k ∈Z)π+α-απ-απ2-απ2+α正弦 sin α -sin α -sin α sin α cos α cos α 余弦 cos α -cos α cos α -cos α sin α -sin α正切 tan αtan α-tan α-tan α口诀函数名不变 函数名改变符号看象限符号看象限记忆规律奇变偶不变,符号看象限1.公式理解诱导公式可简记为:奇变偶不变,符号看象限,“奇”“偶”指的是“k ·π2+α”中的整数k 是奇数还是偶数.“变”与“不变”是指函数名称的变化,若k 是奇数,则正、余弦互变,若k 为偶数,则函数名称不变.“符号看象限”指的是在“k ·π2+α”中,将α看成锐角时“k ·π2+α”的终边所在的象限. 2.与诱导公式应用相关的知识诱导公式在三角形中经常使用,常用的角的变形有:A+B=π-C,2A+2B=2π-2C,2A +2B +2C =π2等,于是可得sin(A+B)=sin C,cos 2A B +=sin 2C 等.1.已知sin(π-α)=log 814,且α∈(-π2,0),则tan(2π-α)的值为( B ) 2525(C)255解析:sin(π-α)=sin α=log 814=-23, 又α∈(-π2,0), 所以cos α21sin α-5则tan(2π-α)=tan(-α)=-tan α=-sin cos αα25. 故选B.2.已知sin 3cos 3cos sin αααα+-=5,则sin 2α-sin αcos α的值是( A ) (A)25 (B)-25 (C)-2 (D)2解析:由sin 3cos 3cos sin αααα+-=5, 得tan 33tan αα+-=5,解得tan α=2. 所以sin 2α-sin αcos α=222sin sin cos sin cos ααααα-+=22tan tan tan 1ααα-+=25.故选A.3.(2018·宁波模拟)sin 210°cos 120°的值为( A ) (A)14(B)-3(C)-32 (D)3解析:sin 210°cos 120°=-sin 30°(-cos 60°)=12×12=14. 故选A.4.已知-π2<x<0,sin x+cos x=15,则sin x-cos x= . 解析:因为(sin x+cos x)2=1+2sin xcos x=125,所以2sin xcos x=-2425. 又因为-π2<x<0, 所以sin x<0,cos x>0.又因为(sin x-cos x)2=1-2sin xcos x=4925, 所以sin x-cos x=-75. 答案:-75考点一 同角三角函数的基本关系[例1] (1)已知α∈(π,3π2),tan α=2,则cos α= . (2)已知α是三角形的内角,且sin α+cos α=15. ①求tan α的值; ②把221cos sinαα-用tan α表示出来,并求其值.(1)解析:依题意得22sin tan 2,cos sin cos 1,ααααα⎧==⎪⎨⎪+=⎩由此解得cos 2α=15, 又α∈(π,3π2), 因此cos α.答案(2)解:①法一联立方程221sin cos , (*)5sin cos 1,(**)αααα⎧+=⎪⎨⎪+=⎩由(*)得cos α=15-sin α, 将其代入(**),整理得 25sin 2α-5sin α-12=0.解得sin α=45或sin α=-35.因为α是三角形的内角,所以4sin ,53cos ,5αα⎧=⎪⎪⎨⎪=-⎪⎩所以tan α=-43. 法二 因为sin α+cos α=15, 所以(sin α+cos α)2=(15)2, 即1+2sin αcos α=125,所以2sin αcos α=-2425,所以(sin α-cos α)2=1-2sin αcos α=1+2425=4925.因为sin αcos α=-1225<0且0<α<π, 所以sin α>0,cos α<0,所以sin α-cos α>0.所以sin α-cos α=75.由1 sin cos,57sin cos,5αααα⎧+=⎪⎪⎨⎪-=⎪⎩解得4sin,53cos,5αα⎧=⎪⎪⎨⎪=-⎪⎩所以tan α=-43.②221cos sinαα-=2222sin coscos sinαααα+-=22tan11tanαα+-.因为tan α=-43,所以221cos sinαα-=22tan11tanαα+-=224()1341()3-+--=-257.(1)利用和积互换公式时,要注意依据和、差、积的值对角的范围进行确定,必要时要与特殊值比较,进一步优化缩小角的范围.(2)若某一三角函数值中含有参数,要讨论值的正负,否则会漏根或增根.(3)对于含有sin α,cos α的齐次式,可根据1的代换化为齐次分式,通过除以某一齐次项,转化为只含有正切的式子,即化弦为切、整体代入.1.(2019·金华模拟)已知sin α+cos α2则tan α+cossinαα的值为( D )(A)-1 (B)-2 (C)12 (D)2 解析:因为sin α+cos α所以(sin α+cos α)2=2, 所以sin αcos α=12. 所以tan α+cos sin αα=sin cos αα+cos sin αα=1sin cos αα=2.故选D. 2.已知sin θ+cos θ=43,θ∈(0,π4),则sin θ-cos θ的值为 . 解析:因为(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θ·cos θ =1+2sin θcos θ =169, 所以2sin θcos θ=79, 则(sin θ-cos θ)2=sin 2θ+cos 2θ-2sin θcos θ =1-79=29.又因为θ∈(0,π4),所以sin θ<cos θ, 即sin θ-cos θ<0,所以sin θ-cos θ.答案考点二 三角函数的诱导公式[例2] (1)已知cos α是方程3x 2-x-2=0的根,且α是第三象限角,则23π3πsin ()cos()tan (π)22ππcos()sin ()22ααααα-++-+-等于( )(A)916 (B)-916 (C)-54 (D)54(2)在△ABC 中,若sin(2πππ-B),求△ABC的三个内角.(1)解析:方程3x 2-x-2=0的根为x 1=1,x 2=-23, 由题知cos α=-23, 所以sin α=-5,tan α=5.所以原式=2cos sin tan sin cos ααααα--=tan 2α=54.故选D. (2)解:由已知得sin 2sin ,3cos 2cos A B A B ⎧=⎪⎨=⎪⎩①,②①2+②2得sin 2A+3cos 2A=2, 所以1-cos 2A+3cos 2 A=2, 所以2cos 2A=1, 即cos A=2或cos A=-2.当cos A=2时,cos B=3,又A,B 是三角形的内角,所以A=π4,B=π6, 所以C=π-(A+B)=712π.当cos A=-2时,cos B=-3,又A,B 是三角形的内角,所以A=34π,B=56π,不合题意. 综上可知,A=π4,B=π6,C=712π. 利用诱导公式化简三角函数的思路和要求(1)思路方法:①分析结构特点,选择恰当公式;②利用公式化成“单角”三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.(3)求角时,通常是先求出该角的某一个三角函数值,再结合其范围,确定该角的大小.1.已知cos(π6-θ)=a,则cos(5π6+θ)+sin(2π3-θ)的值是 . 解析:因为cos(5π6+θ)=-cos[π-(5π6+θ)]=-a,sin(2π3-θ)=sin[π2+(π6-θ)] =cos(π6-θ) =a,所以cos(5π6+θ)+sin(2π3-θ)=-a+a=0. 答案:02.在△ABC 中,求cos 22A B ++cos 22C 的值. 解:在△ABC 中,A+B=π-C,所以2A B +=π2-2C , 所以cos 2A B +=cos(π2-2C )=sin 2C , 所以cos 22A B ++cos 22C =sin 22C +cos 22C =1. 考点三 三角函数的求值 [例3] (1)已知cos(π6-α3,则cos(56π+α)-sin 2(α-π6)的值是( ) 23+23+23- 23-+212sin 40cos40cos401sin 50-︒︒︒--︒= .解析:(1)因为cos(56π+α)=cos[π-(π6-α)] =-cos(π6-α) 3而sin 2(α-π6)=1-cos 2(α-π6)=1-13=23, 所以原式=-3-23=-23+. 故选B. (2)原式=22sin 40cos 402sin 40cos40︒︒+︒-︒=sin 40cos 40sin 50sin 40︒︒-︒︒- =sin 40sin 50sin 50sin 40︒︒-︒︒- =sin 50sin 40sin 50sin 40︒︒︒-︒-=1.答案:(1)B (2)1(1)已知角求值问题,关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.转化过程中注意口诀“奇变偶不变,符号看象限”的应用.(2)对给定的式子进行化简或求值时,要注意给定的角之间存在的特定关系,充分利用给定的关系结合诱导公式将角进行转化.特别要注意每一个角所在的象限,防止符号及三角函数名出错.1.若tan α=12,则sin 4α-cos 4α的值为 . 解析:因为tan α=12, 所以sin 4α-cos 4α=(sin 2α+cos 2α)·(sin 2α-cos 2α)=2222sin cos cos sin αααα-+=22tan 11tan αα-+=-35.答案:-352.(2018·绍兴一中适应性考试)已知sin α=12+cos α,且α∈(0,π2),则cos2πsin ()4αα-的值为 .解析:由sin α=12+cos α可得sin α-cos α=12, 即2sin(α-π4)=12,可得sin(α-π4)=2,又α∈(0,π2),则α-π4∈(-π4,π4), 可得cos(α-π4)=2π1sin ()4α--=14,则cos2πsin ()4αα-=πsin (2)2πsin ()4αα---=ππ2sin ()cos()44πsin ()4ααα---- =-2cos(α-π4) =-14.答案:-14考点四 易错辨析[例4] 已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α= . 解析:因为5π4<α<3π2,所以cos α<0,sin α<0,且|cos α|<|sin α|,所以cos α-sin α>0.因为(cos α-sin α)2=1-2sin αcos α=34, 所以cos α-sin α=3. 答案:3本题常因不能断定cos α-sin α的符号而致误,所以在利用和积互换公式时,要特别注意对sin α±cos α,sin αcos α符号的关注,其中sin α-cos α的符号如图所示.sin α+cos α的符号如图所示.已知sin α=13,0<α<π,则tan α= ,sin 2α+cos 2α= . 解析:因为0<α<π,所以tan α=sin cos αα=22sin cos αα=22sin 1sin αα-2,又0<2α<π2, 所以sin 2α>0,cos 2α>0, 所以sin 2α+cos 2α2(sin +cos )22αα12sin cos 22αα+1sin α+ 23答案:2 23。
第二节 同角三角函数的基本关系与诱导公式❖ 基础知识1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.平方关系对任意角都成立,而商数关系中α≠k π+π2(k ∈Z).2.诱导公式诱导公式可简记为:奇变偶不变,符号看象限.“奇”“偶”指的是“k ·π2+α(k ∈Z )”中的k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在“k ·π2+α(k ∈Z )”中,将α看成锐角时,“k ·π2+α(k ∈Z )”的终边所在的象限.❖ 常用结论同角三角函数的基本关系式的几种变形(1)sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝⎛⎭⎫α≠π2+k π,k ∈Z .考点一 三角函数的诱导公式[典例](1)已知f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α),则f ⎝⎛⎭⎫-25π3的值为________. (2)已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. [解析] (1)因为f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α)=-sin α(-cos α)(-cos α)⎝⎛⎭⎫-sin αcos α=cos α, 所以f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3=cos π3=12. (2)sin ⎝⎛⎭⎫α-2π3=-sin ⎝⎛⎭⎫2π3-α=-sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+α=-sin ⎝⎛⎭⎫π3+α=-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. [答案] (1)12 (2)-23[题组训练]1.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则cos ⎝⎛⎭⎫α-π2=________. 解析:法一:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角, 联立⎩⎪⎨⎪⎧tan α=sin αcos α=12,sin 2α+cos 2α=1,解得5sin 2α=1,故sin α=-55.法二:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角,由tan α=12,可知点(-2,-1)为α终边上一点,由任意角的三角函数公式可得sin α=-55. 答案:-552. sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°=________.解析:原式=sin(-3×360°-120°)cos(3×360°+180°+30°)+cos(-3×360°+60°) sin(-3×360°+30°)+tan(2×360°+180°+45°)=sin 120°cos 30°+cos 60°sin 30°+tan 45°=34+14+1=2.答案:23.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________.解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α=-tan ⎝⎛⎭⎫π6-α=-33. 答案:-33考点二 同角三角函数的基本关系及应用[典例](1)若tan α=2,则sin α+cos αsin α-cos α+cos 2α=( )A.165 B .-165C.85D .-85(2)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12 B .±12C .-14D .-12[解析] (1)sin α+cos αsin α-cos α+cos 2α=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α =tan α+1tan α-1+1tan 2α+1,将tan α=2代入上式,则原式=165.(2)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0, 所以cos α-sin α=-12.[答案] (1)A (2)D [题组训练]1.(2018·甘肃诊断)已知tan φ=43,且角φ的终边落在第三象限,则cos φ=( )A.45 B .-45C.35D .-35解析:选D 因为角φ的终边落在第三象限,所以cos φ<0,因为tan φ=43,所以⎩⎪⎨⎪⎧sin 2φ+cos 2φ=1,sin φcos φ=43,cos φ<0,解得cos φ=-35.2.已知tan θ=3,则sin 2θ+sin θcos θ=________.解析:sin 2θ+sin θcos θ=sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θtan 2θ+1=32+332+1=65.答案:653.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α=________.解析:由已知可得sin α+3cos α=5(3cos α-sin α),即sin α=2cos α,所以tan α=sin αcos α=2, 从而sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.答案:254.已知-π<α<0,sin(π+α)-cos α=-15,则cos α-sin α的值为________.解析:由已知,得sin α+cos α=15,sin 2α+2sin αcos α+cos 2α=125, 整理得2sin αcos α=-2425.因为(cos α-sin α)2=1-2sin αcos α=4925,且-π<α<0,所以sin α<0,cos α>0, 所以cos α-sin α>0,故cos α-sin α=75.答案:75[课时跟踪检测]A 级1.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan x 的值为( ) A.34 B .-34C.43D .-43解析:选B 因为x ∈⎝⎛⎭⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34. 2.(2019·淮南十校联考)已知sin ⎝⎛⎭⎫α-π3=13,则cos ⎝⎛⎭⎫α+π6的值为( ) A .-13B.13C.223D .-223解析:选A ∵sin ⎝⎛⎭⎫α-π3=13,∴cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π3=-sin ⎝⎛⎭⎫α-π3=-13. 3.计算:sin11π6+cos 10π3的值为( ) A .-1 B .1 C .0D.12-32解析:选A 原式=sin ⎝⎛⎭⎫2π-π6+cos ⎝⎛⎭⎫3π+π3 =-sin π6-cos π3=-12-12=-1.4.若sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=12,则tan θ的值为( )A .1B .-1C .3D .-3解析:选D 因为sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=12,所以2(sin θ+cos θ)=sin θ-cos θ, 所以sin θ=-3cos θ,所以tan θ=-3.5.(2018·大庆四地六校调研)若α是三角形的一个内角,且sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,则tan α的值为( )A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π),∴sin α>0,cos α<0, ∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43.6.在△ABC 中,3sin ⎝⎛⎭⎫π2-A =3sin(π-A ),且cos A =-3cos(π-B ),则△ABC 为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等边三角形解析:选B 将3sin ⎝⎛⎭⎫π2-A =3sin(π-A )化为3cos A =3sin A ,则tan A =33,则A =π6,将cos A =-3cos(π-B )化为 cos π6=3cos B ,则cos B =12,则B =π3,故△ABC 为直角三角形.7.化简:1-cos 22θcos 2θtan 2θ=________.解析:1-cos 22θcos 2θtan 2θ=sin 22θcos 2θ·sin 2θcos 2θ=sin 2θ.答案:sin 2θ8.化简:cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)=________. 解析:原式=cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫2π+π2+α·(-sin α)·cos α=sin αsin ⎝⎛⎭⎫π2+α·(-sin α)·cos α =sin αcos α·(-sin α)·cos α=-sin 2α. 答案:-sin 2α9.sin 4π3·cos 5π6·tan ⎝⎛⎭⎫-4π3的值为________. 解析:原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3=⎝⎛⎭⎫-32×⎝⎛⎭⎫-32×(-3)=-334.答案:-33410.(2019·武昌调研)若tan α=cos α,则1sin α+cos 4α=________.解析:tan α=cos α⇒sin αcos α=cos α⇒sin α=cos 2α,故1sin α+cos 4α=sin 2α+cos 2αsin α+cos 4α=sin α+cos 2αsin α+cos 4α=sin α+sin αsin α+sin 2α=sin 2α+sin α+1=sin 2α+cos 2α+1=1+1=2.答案:211.已知α为第三象限角,f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)∵cos ⎝⎛⎭⎫α-3π2=15, ∴-sin α=15,从而sin α=-15.又∵α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-cos α=265.12.已知sin α=255,求tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α的值.解:因为sin α=255>0,所以α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α.①当α为第一象限角时,cos α=1-sin 2α=55, 原式=1sin αcos α=52.②当α为第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.B 级1.已知sin α+cos α=12,α∈(0,π),则1-tan α1+tan α=( )A .-7 B.7 C. 3D .- 3解析:选A 因为sin α+cos α=12,所以(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又因为α∈(0,π),所以sin α>0,cos α<0,所以cos α-sin α<0,因为(cos α-sin α)2=1-2sin αcos α=1-2×⎝⎛⎭⎫-38=74, 所以cos α-sin α=-72, 所以1-tan α1+tan α=1-sin αcos α1+sin αcos α=cos α-sin αcos α+sin α=-7212=-7.2.已知θ是第一象限角,若sin θ-2cos θ=-25,则sin θ+cos θ=________.解析:∵sin θ-2cos θ=-25,∴sin θ=2cos θ-25,∴⎝⎛⎭⎫2cos θ-252+cos 2θ=1, ∴5cos 2θ-85cos θ-2125=0,即⎝⎛⎭⎫cos θ-35⎝⎛⎭⎫5cos θ+75=0. 又∵θ为第一象限角,∴cos θ=35,∴sin θ=45,∴sin θ+cos θ=75.答案:753.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由已知,得sin θ+cos θ=3+12,sin θcos θ=m2, 因为1+2sin θcos θ=(sin θ+cos θ)2, 所以1+2×m 2=⎝ ⎛⎭⎪⎫3+122,解得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θcos θ=34,得⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.故当sin θ=32,cos θ=12时,θ=π3;12,cos θ=32时,θ=π6.当sin θ=。