中考数学复习课件 第42课 动态几何型问题
- 格式:ppt
- 大小:1.88 MB
- 文档页数:27
考点概述:存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
解答题:1.【日照市五莲县】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A、B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.(3)连接ME,根据CE是⊙M的切线得到ME⊥CE,∠CEM=90°,从而证得△COD≌△MED,设OD=x,在RT△COD中,利用勾股定理求得x的值即可求得点D的坐标,然后利用待定系数法确定线段CE的解析式即可.∴△COD≌△MED(AAS),∴OD=DE,DC=DM设OD=x则CD=DM=OM﹣OD=4﹣x则RT△COD中,OD2+OC2=CD2,∴x2+22=(4﹣x)2∴x=3 2∴D(32,0)设直线CE的解析式为y=kx+b(k≠0),∵直线CE过C(0,2),D(32,0)两点,则322k bb⎧+=⎪⎨⎪=⎩,解得:432kb⎧=-⎪⎨⎪=⎩∴直线CE的解析式为423y x=-+.考点: 二次函数综合题.2.【江西省万载县】如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.(1)求A、B、C三点的坐标.(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与∆PCA相似.若存在,请求出M点的坐标;否则,请说明理由.∵AG=m+1,MG=m2-12322=解得m1=-1(舍去)m2=43.∴M(43,79).(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由。
图12四十二章 几何综合型问题7.(2018贵州六盘水,7,3分)下列命题为真命题的是( ▲ )A .平面内任意三个点确定一个圆B .五边形的内角和为540°C .如果a>b,则ac 2>bc 2D .如果两条直线被第三条直线所截那么所截得的同位角相等分析:根据命题的定义:对一件事情做出判断的语句叫命题.正确的命题叫真命题,据此即对四个选项进行分析即可回答.解答:解:A 、平面内任意三点确定一个圆是一个假命题,,如三点在一条直线上,不能构成圆,故本选项错误; B 、五边形的内角和为540°,故本选项正确;C 、如果a b >则22ac bc >,如果c=0,结论不成立,故本选项错误;D 、如果两条直线被第三条直线所截,那么所得的同位角相等.没有平行线,故本选项错误; 故选B .点评:此题考查了命题的定义,包括真命题和假命题.13. (2018贵州省毕节市,13,3分)下列命题是假命题的是( )A.同弧或等弧所对的圆周角相等B.平分弦的直径垂直于弦C.两条平行线间的距离处处相等D.正方形的两条对角线互相垂直平分解析:分析是否为假命题,可以举出反例;也可以分别分析各题设是否能推出结论,从而利用排除法得出答案. 解答:解:A 、错误,同弧或等弧所对的圆周角相等或互补,是假命题;B 、平分弦的直径垂直于弦是正确的,是真命题;C 、两条平行线间的距离处处相等是正确的,是真命题;D 、正方形的两条对角线互相垂直平分是正确的,是真命题.故选A .点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.31. ( 2019年四川省巴中市,31,12)如图12,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO为矩形,AB=16,点D 与点A 关于y 轴对称,tan∠ACB=43 ,点E 、F 分别是线段AD 、AC 上的动点(点E 不与点A 、D 重合),且∠CEF=∠ACB. (1)求AC 的长和点D 的坐标; (2)说明△AEF 与△DCE 相似;(3)当△EFC 为等腰三角形时,求点E 的坐标.【解析】①∵四边形ABCO 为矩形,∴∠B=900tan∠ACB=43,在Rt △ACB 中,设BC=3k,AB=4k,股定理,AC=5K,∵AB=4k=16,∴k=4, ∴AC=20,OA=BC==3k=12, ∴点A 的坐标为(-12,0),而点D 与点A 关于y 轴对称,∴点D 的坐标为(12,0) ②由:∠CDE=∠EAF,∠AEF =∠DCE,得出△AEF∽△DCE ③分类讨论:当CE=EF 时,则△AEF∽△DCE,27题答案图∴AE=CD,即AO+OE=CD设E(x,0),有12+x=20,∴x=8 此时,点E 的坐标为(8.0)当EF=FC 时,∠FCE=∠FEC=∠ACB,∴tan∠FCG =tan∠ACB=43,作FG ⊥CE 于G,在Rt △FCG 中,设CE=6a,则FG=4a,于是CF=5a, ∵△AEF∽△DCE∴CE 2=CF ·AC,即36a 2=5a ·20,a=259∴CE=259 ×6=503 .在Rt △CEO 中,OE=CE 2-OC 2=143 ∴E (143,0) 当CE=CF 时,E 与D 重合与题目矛盾。
中考总复习第二阶段专题:动态几何问题动态几何问题是一类用函数的观点来解决的新型几何问题.函数是中学数学的一个重要概念,加强对函数思想方法的考查是近年来中考试题的一个显著特点.大量涌现的动态几何型问题,即建立几何中元素的函数关系式问题是这一特点的体现.这类问题有一定的实际意义,因此,对函数解析式中自变量的取值范围必须认真考虑,一般需要有约束条件,即自变量的取值限定在一定的范围内。
例1:反比例函数xk y =)0(≠k 的图象如图所示,点M 是该函数图象上一动点,MN 垂直于x 轴,垂足是点N ,如果MON S ∆=2,则k 的值为 .分析:由待定系数法知,要求k 的值就需知道点M 的坐标, 但在此题中,M 为双曲线上的动点,其坐标不确定;因此,设M ),(y x 且M 在第二象限,则MN=y y =,NO=x x -=,由MON S ∆ =2)(2121=-⋅⋅=⋅⋅x y ON MN ,得xy =-4,由x k y =可得xy k =,故k =-4. 【双曲线中k 的几何意义是双曲线上任一点向x 轴、y 轴作垂线所围成的矩形的面积】 例2:如图,在梯形ABCD 中,AD ∥BC ,∠B=90°,AB=14cm,AD=15cm ,BC=21cm ,点M 从点A 开始,沿AD 边向点D 运动,速度是1cm/s ;点N 从点C 开始,沿CB 边向点B 运动,速度是2cm/s.设运动时间为t (s ).(1)当t 为何值时,四边形MNCD 是平行四边形?(2)当t 为何值时,四边形MNCD 是等腰梯形?分析:(1)由题意知,AD ∥BC ,即MD ∥CN ,只要当MD=NC 时,四边形MNCD 就是平行四边形;(2)从等腰梯形的判定出发,当MN=CD 且MD ≠CN 时,四边形MNCD 就是等腰梯形.如图,过D 作DF ⊥BC 于F ,过M 作ME ⊥BC 于E ,得矩形MEFD ,得MD=EF ;证△CDF ≌△NME ,得NE=CF=6cm ,进而可以通过把MD 与CF 建立等量关系,从而列出关于t 的方程求解.解:(1)由AD ∥BC ,即MD ∥CN ,当MD=CN 时,四边形MNCD 是平行四边形,即15-t=2t ,解得t=5.故当t=5时,四边形MNCD 为平行四边形.(2)当MN=CD 且MD ≠CN 时,四边形MNCD 就是等腰梯形.如图,过D 作DF ⊥BC 于F ,过M 作ME ⊥BC 于E ,得矩形MEFD ,则MD=EF ; 由△CDF ≌△NME ,得NE=CF=6cm ,当运动时间为t (s )时,MD=EF=15-t ,NC=2t, 有NE+CF=NC-EF,即6+6=2t-(15-t),解得t=9.故当t=9(s )时,四边形MNCD 是等腰梯形.【在由点运动构造的动态几何问题中,要注意点运动的路线所形成的分类讨论问题,解答方法是将各个时刻的图形分解出来,各个击破;在解题过程中,应善于借助方程做桥梁,再设法分别求解.】例3:如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t(s),解答下列问题:(1)设△BPQ 的面积为S (2cm ),求S 与t 的函数关系式;(2)作QR ∥BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?分析:(1)如图,要表示△BPQ 的面积,则需过点Q 作QE ⊥AB 于E ,且含t 的代数式分别表示出△BPQ 的底(PB )和高(QE )即可;(2)由QR ∥BA 得△QRC 也是等边三角形,从而可以用含t 的代数式表示出QR ;再证四边形EPRQ 是矩形,又因为要满足△APR ∽△PRQ ,则必有∠QPR=∠A=60°,最后在Rt △PRQ 中运用锐角三角函数即可求出t 的值. 解:(1)过Q 作QE ⊥AB ,垂足为E ,由QB=2t ,得QE=2t ︒⋅60sin =3t.由AP=t ,得PB=6-t , 故.33233)6(21212t t t t QE BP S BPQ +-=⋅-=⋅⋅=∆(0≤t ≤3) (2)∵QR ∥BA , ∴∠QRC=∠A=60°,∠RQC=∠B=60°,∴△RQC 是等边三角形, ∴QR=RC=QC=6-2t.∵BE=BQ ︒⋅60cos =⨯212t=t , ∴EP=AB-AP-BE=6-t-t=6-2t, ∴EP ∥QR ,EP=QR, ∴四边形EPRQ 是平行四边形, ∴PR=EQ=3t.又∵∠PEQ=90°, ∴∠APR=∠PRQ=90°.∵△APR ∽△PRQ, ∴∠QPR=∠A=60°,∴tan60°=PR QR ,即3326=-tt .解得t=1.2, ∴当t=1.2时,△APR ∽△PRQ.【点评】这类题目的一般解法是抓住变化中的“不变”,以“不变”解决几何图形中的“变”的问题,在解题过程中,要善于利用相似三角形的性质定理、勾股定理、锐角三角函数、圆幂定理、面积关系,借助方程做桥梁,再设法求解.例4:如图1,在矩形ABCD 中,AB=12cm ,BC=6cm,点P 从A 点出发沿A →B →C →D 路线运动,到D 点停止;点Q 从点D 出发,沿D →C →B →A 路线运动,到A 点停止.若点P 、Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm.a 秒时,点P 、Q 同时改变速度,点P 的速度变为每秒b (cm ),点Q 的速度变为每秒c (cm ).如图2是点P 出发x 秒后△APD 的面积1S (2cm )与x (秒)的函数关系图象;图3是点Q 出发x 秒后△AQD 的面积2S (2cm )与x (秒)的函数关系图象.根据图象,(1)求c b a ,,的值;(2)设点P 离开点A 的路程为1y (cm ),点Q 到点A 还需走的路程为2y (cm ),请分别写出改变速度后1y 、2y 与出发后的运动时间x 秒的函数关系式,并求出P 与Q 相遇时x 的值.分析:图2是点P 出发x 秒后△APD 的面积1S (2cm )与x (秒)的函数关系图象.由图象可知有坐标(24,a ),表示当运动时间为a 秒时,APD S ∆=⋅21AP ⋅AD=24,因此可求出AP ,即可求出a 的值;又由图2中(10,36)可知P 在AB 上运动时间共为10秒,此段1S (2cm )随x (秒)的增大而增大,当P 点运动到BC 边时(含B 、C 两点),△APD 的面积1S (2cm )保持不变;图3除反映点Q 出发x 秒后△AQD 的面积2S (2cm )与x (秒)的函数关系为,还反映了点Q 共运动了22秒.解:(1)由图1和图2知APD S ∆=⋅21AP ⋅AD=24,又AD=BC=6,所以AP=8,即=a 8秒.图1中,当运动时间为8秒时,PB=12-8=4cm ,由图2得224==b cm/秒.当Q 从D 出发a =8秒时,Q 运动了2⨯8=16cm ,而Q 沿D →C →B →A 路线运动,到A 点停止,则Q 到点A 还剩余30-16=14cm ,则图3知点Q 运动总时间为22秒,则有1)822()1630(=--=秒cm c cm/秒. (2)由题意得822)8(181-=⨯-+⨯=x x y ;22]1)8(28[302+-=⨯-+⨯-=x x y ;由图1可知点A 的路程1y (cm )即为点Q 到点A 还需走的路程2y (cm ),故2282+-=-x x ,解得10=x ,即P 与Q 相遇时x 为10秒.【点评】(1)弄清楚题目中各个变量所表示的实际意义;(2)对于图形中各运动点所运动的距离用代数式表示;(3)能通过阅读图2和图3中函数的图象,知道图象上特殊点所表示的实际意义和每段图象所表达的实际意义.能力训练:一、选择题:1、如图,正方形ABCD 与正方形OPQR 的边长均为2,正方形OPQR的顶点O 与正方形ABCD 的中心重合,且正方形OPQR 绕点O 旋转,两正方形重叠部分的面积是( )A. 0.25B. 0.5C. 1D. 无法判断2、如图,在平行四边形ABCD 中,∠BAD=60°,AB=5,BC=3,点P从起点D 出发,沿DC 、CB 向终点B 匀速运动,设点P 所走过的路程为x ,点P 经过的线段与AD 、AP 所围成的图形的面积为y ,y 随x 的变化而变化.在下列图象中,最能正确反映y 与x 的函数关系式的是( )A. B. C. D.3、在等腰梯形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发,以3个单位/s 的速度沿AD →DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动,在运动期间,当四边形PQBC 为平行四边形时,运动时间为( )A. 3sB. 4sC. 5sD. 6s二、填空题:1、如图,小明在操场上从A 点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,……,照这样走下去,他第一次回到出发地A 点时,一共走了 米.2、如图,菱形ABCD 中,∠BAD=60°,M 是AB 的中点,P 是对角线AC 上的一个动点,若PM+PB 的最小值是3,则AB 长为 .三、解答题:1、已知如图,在平面直角坐标系xOy 中,一次函数343+=x y 的图象与x 轴和y 轴分别交于A 、B 两点,将△AOB 绕点O 顺时针旋转90°后得到△A ´OB ´.(1)求直线A ´B ´的解析式;(2)若直线A ´B ´与直线AB 相交于点C ,求AOB BCA S S ∆∆:'的值.2、如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C顺时针方向旋转60°得△ADC,连结OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.3、李老师在与同学进行“蚂蚁怎样爬行最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁爬行的最短路程的长.(1)如图①,正方体的棱长为5cm,一只蚂蚁欲从正方体底面上的点A沿着正方体的表面爬到点C’处;(2)如图②,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁欲从正四棱柱底面上的点A沿着棱柱的表面爬到点C’处;(3)如图③,圆锥的母线长为4cm,圆锥的侧面展开图如图④所示,且∠AOA’=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.4、已知如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 分别从A 、B 两点出发,分别沿AB 、BC 方向匀速运动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点都停止运动.设点P 的运动时间为t(s),解答下列问题:(1)当t 为何值时,△PBQ 是直角三角形?(2)设四边形APQC 的面积为)(2cm y ,求y 与t 的关系式.是否存在某一时刻t ,使四边形APQC 的面积是△ABC 面积的三分之二?如果存在,求出相应的t 值,如果不存在,说明理由;(3)设PQ 的长为)(cm x ,试确定y 与x 的关系式.5、如图,在Rt △ABC 中,∠C=90°,AB=50,AC=30,D 、E 、F 分别是AC 、AB 、BC 的中点,点P 从点D 出发沿折线DE →EF →FC →CD 以每秒7个单位长的速度匀速运动,点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK ⊥AB ,交折线BC →CA 于点G.点P 、Q 同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)D 、F 两点间的距离是 .(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值;若不能,说明理由.(3)当点P 运动到折线EF →FC 上,且点P 又恰好落在射线QK 上时,求t 的值.。
初三数学专题复习之动态几何知识精讲一.与函数结合动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们一般用以下几种方法建立函数:(1)应用勾股定理建立函数解析式;(2)应用比例式建立函数解析式;(3)应用求图形面积的方法建立函数关系式.二.动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值.动态几何常见的题型有三大类:(1)点动问题;(2)线动问题;(3)面动问题.解决动态几何问题的常见方法有:(1)特殊探路,一般推证;(2)动手实践,操作确认;(3)建立联系,计算说明.动态几何习题的共性:1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数;2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值.三.双动点问题点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力,其中以灵活多变而著称的双动点问题更成为今年中考试题的热点.常以双动点为载体,探求函数图象问题、探求结论开放性问题、探求存在性问题、探求函数最值问题.双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.三点剖析一.考点:1.三角形、四边形与函数综合问题;2.三角形、四边形中的动点问题.二.重难点:1.三角形、四边形与函数综合问题;2.三角形、四边形中的动点问题.题模精讲题模一:三角形与动点问题例1.1如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D,A,E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,连接PA,PB,PC,求PA+PB+PC的最小值.小慧的作法是:以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,那么就将PA+PB+PC的值转化为CP+PM+MN的值,连接CN,当点P落在CN上时,此题可解.请你参考小慧的思路,在图3中证明PA+PB+PC=CP+PM+MN.并直接写出当AC=BC=4时,PA+PB+PC的最小值.【答案】(1)①②2【解析】(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,(2)证明:如图所示,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.由旋转可得,△AMN≌△ABP,∴MN=BP,PA=AM,∠PAM=60°=∠BAN,AB=AN,∴△PAM、△ABN都是等边三角形,∴PA=PM,∴PA+PB+PC=CP+PM+MN,当AC=BC=4时,当C、P、M、N四点共线时,由CA=CB,NA=NB可得CN垂直平分AB,∴,∴此时例1.2以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中(1)点E、F、M分别是AC、CD、DB的中点,连接①如图1,当点D、C分别在AO、BO;②如图2,将图1中的△AOB绕点O(2)如图3N在线段OD P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.【答案】(12【解析】该题考查旋转与相似.(1)①连接EF,∵点E、F、M分别是AC、CD、DB的中位线,∴EF、FM分别是△ACD和△DBC的中位线,∴EF//AD,FM//CB,∴△EFM是直角三角形∵EM//CD.连接EF、AD、BC.(如图8)∵Rt△AOB∵Rt△COD∴△AOD∽△BOC.∵点E、F、M分别是AC、CD、DB的中点,∴EF∥AD,FM∥CB∵在Rt△EFM(2)过O E,∴当点P在点E处时,点P到O这时当旋转到OE与OD重合时,NP当点P在点B处时,且当旋转到OB在DO的延长线时,NP例 1.3在△ABC中将△ABC绕顶点C顺时针旋转,旋转角''.A B C(1)如图1AC时,设AB相交于点D.证明:△BCD是等边三角形;(2)如图2、B B',设比;(3)如图3,设AC 中点为E P EP EP 长度最大,并求出EP 的最大值.【答案】 (1)见解析;(2'':3:1ACA BCB S S=3EP 长度最大,其最大值是【解析】 (1)证明:如图1,∵在△ABCAC ,∴在△CDB∴△BCD 是等边三角形;(2)解:如图2(3)解:如图,连接CP ,当△ABCEP例 1.4 用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC 和ED 重合),在BC 边上有一动点P . (1)当点P 运动到∠CFB 的角平分线上时,连接AP ,求线段AP 的长;(2)当点P PAB 的度数.探究二:如图④,将△DEF 的顶点D 放在△ABC 的BC 边上的中点处,并以点D 为旋转中心旋转△DEF ,使△DEF 的两直角边与△ABC 的两直角边分别交于M 、N 两点,连接MN .在旋转△DEF 的过程中,△AMN 的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由. 【答案】 见解析【解析】探究一:(1)依题意画出图形,如图所示:FP为角平分线,过点A作AG⊥BC于点G在Rt△APG(2)由(1如图所示,以点ABC过点A过AG⊥BC于点G在Rt△AGP1∴∠P AB的度数为15°或75°.探究二:△AMN的周长存在有最小值.如图所示,连接AD,∵△ABC为等腰直角三角形,点D为斜边BC的中点,∵在△AMD与△CND∴△AMD≌△CND(ASA在Rt△AMN中,由勾股定理得:∴△AMN.∴△AMN例1.5如图,在△ABC中,AB=AC=10cm,BC=16cm,DE=4cm.动线段DE(端点D从点B开始)沿BC边以1cm/s的速度向点C运动,当端点E到达点C时运动停止.过点E作EF∥AC交AB于点F(当点E与点C 重合时,EF与CA重合),连接DF,设运动的时间为t秒(t≥0).(1)直接写出用含t的代数式表示线段BE、EF的长;(2)在这个运动过程中,△DEF能否为等腰三角形?若能,请求出t的值;若不能,请说明理由;(3)设M、N分别是DF、EF的中点,求整个运动过程中,MN所扫过的面积.【答案】(1)t+4)(cm)(2)t=03【解析】(1)∵BD=tcm,DE=4cm,∴BE=BD+DE=(t+4)cm,∵EF∥AC,∴△BEF∽△BCA,∴EF:CA=BE:BC,即EF:10=(t+4):16,解得:t+4)(cm);(2)分三种情况讨论:①如图1,∵当DF=EF时,∴∠EDF=∠DEF,∵AB=AC,∴∠B=∠C,∵EF∥AC,∴∠DEF=∠C,∴∠EDF=∠B,∴点B与点D重合,∴t=0;②如图2,当DE=EF时,则t+4),解得:③如图3,∵当DE=DF时,有∠DFE=∠DEF=∠B=∠C,∴△DEF∽△ABC.解得:综上所述,当t=0DEF为等腰三角形.(3)如图4,设P是AC的中点,连接BP,∵EF∥AC,∴△FBE∽△ABC.又∵∠BEN=∠C,∴△NBE∽△PBC,∴∠NBE=∠PBC.∴点B,N,P共线,∴点N沿直线BP运动,MN也随之平移.如图5,设MN从ST位置运动到PQ位置,则四边形PQST是平行四边形.∵M、N分别是DF、EF的中点,∴MN∥DE,且.分别过点T、P作TK⊥BC,垂足为K,PL⊥BC,垂足为L,延长ST交PL于点R,则四边形TKLR是矩形,∵当t=0时,0+4)∠当t=12时,EF=AC=10,•sin∠10.∴PR=PL﹣RL=PL﹣TK=3∴S平行四边形PQST=ST•PR=2∴整个运动过程中,MN2.题模二:四边形与动点问题例2.1如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,连结AM、CM.(1)当M点在何处时,AM+CM的值最小;(2)当M点在何处时,AM+BM(3)当AM+BM+CM【答案】(1)见解析(2)见解析(3【解析】该题考查的是四边形综合.(1)当M点落在BD……………………………1分(2)如图,连接CE,当M点位于BD与CE……………………………2分理由如下:∵M是正方形ABCD对角线上一点∴△ABM≌△CBM分EC上取一点N BN∴△BNE≌△ABM……………………3分∴△BMN是等边三角形.分根据“两点之间线段最短”∴当M点位于BD与CE EC的长.……………………………5分(3)过E CB的延长线于F设正方形的边长为x分在Rt△EFC中,……………………………7分1B关于直线AC的对称点是点D,点E为射线CA上一点,且DE,BE.(1)依题意补全图1,并证明:△BDE为等边三角形;C关于直线BD的对称点为点F,连接FD、FB.将△CDE绕点D顺时针旋转αE C②如图3,点为中点,点PM长度的取值范围?【答案】(1)如图1,证明见解析;(2【解析】(1)补全图形,如图1所示;证明:由题意可知:射线CA垂直平分BD∴△EBD是等边三角形(2)①证明:如图2又∵点C与点F关于BD对称∴四边形BCDF为正方形,由(1)△BDE为等边三角形∴△EDF SAS)②线段PM设射线CA交BD于点O,I:如图3(1)DC,MP D、M、P、C共线时,PM有最小值II:如图3(2)当点P P、D、M、C共线时,PM有最大值.∴线段PM例2.3如图1,在菱形ABCD中,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t=___秒时,DF的长度有最小值,最小值等于___;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y关于时间t的函数表达式.【答案】(1)见解析(2),12(3)6秒和(4)﹣12【解析】分析:(1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;(2)当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得(4)连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,证△DCE≌△GCF可得∠3=∠4=∠1=∠2,即GF∥CD,从而知四边形CDMN是平行四边形,由平行四边形得∠CGN=∠DCN=∠CNG知tan∠ABC=tan∠CGN=2可得,由GF=DE=t得FM=t﹣12,利用tan∠FMH=tan∠ABC=2即可得FH.(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴则AE′=6∴,DF=BE′=12,故答案为:,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴∴(4)﹣12如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴∵tan∠ABC=tan∠CGN=2,∴GN=12,∴,∵GF=DE=t,∴FM=t﹣12,∵tan∠FMH=tan∠ABC=2,∴t﹣12),即﹣12例2.4在正方形ABCD中,点E是对角线AC的中点,点F在边CD上,连接DE、AF,点G在线段AF上(1)如图①,若DG是△ADFD的中线,DG=2.5,DF=3,连接EG,求EG的长;(2)如图②,若DG⊥AF交AC于点H,点F是CD的中点,连接FH,求证:∠CFH=∠AFD;(3)如图③,若DG⊥AF交AC于点H,点F是CD上的动点,连接EG.当点F在边CD上(不含端点)运动时,∠EGH的大小是否发生改变?若不改变,求出∠EGH的度数;若发生改变,请说明理由.【答案】(1(2)答案见解析(3)不改变,∠EGH=45°【解析】(1)解:∵四边形ABCD是正方形,∴AD=CD=BC,∠ADF=∠BCD=90°,∠DAC=∠ACB=∠ACD=45°,∵DG是△ADF的中线,DG=2.5,∴AF=2DG=5,∴,∴CF=CD﹣DF=1,∵点E是对角线AC的中点,G是AF的中点,∴EG是△ACF的中位线,∴(2)证明:延长DH交BC于M,如图所示,∵DG⊥AF,∴∠AGH=∠DGA=∠DGF=90°,∴∠AFD+∠FDG=90°,∵∠DMC+∠FDG=90°,∴∠AFD=∠DMC,在△CDM和△DAF∴△CDM≌△DAF(AAS),∴CM=DF,∵点F是CD的中点,∴DF=CF,∴CM=CF,在△CMH和△CFH,∴△CMH≌△CFH(SAS),∴∠CMH=∠CFH,∴∠CFH=∠AFD;(3)解:∠EGH的大小不发生改变,∠EGH=45°;理由如下:∵点E是对角线AC的中点,∠ADC=90°,∴,∴∠ADE=∠DAC=45°,∴∠AED=90°=∠AGD,∴A、D、G、E四点共圆,∴∠AGE=∠ADE=45°,∴∠EGH=90°﹣45°=45°.例2.5如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=6cm,BD=8cm,动点P,Q分别从点B,D 同时出发,运动速度均为1cm/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B运动,到点O停止1s后继续运动,到点B停止,连接AP,AQ,PQ.设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).(1)填空:AB=______cm,AB与CD之间的距离为______cm;(2)当4≤x≤10时,求y与x之间的函数解析式;(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.【答案】(1)5(2)(3)满足条件的x【解析】(1)∵菱形ABCD中,AC=6cm,BD=8cm,∴AC⊥BD,∴,设AB与CD间的距离为h,∴△ABC的面积,又∵△ABC的面积菱形ABCD6×8=12,,∴(2)设∠CBD=∠CDB=θ,则易得:①当4≤x≤5时,如答图1﹣1所示,此时点Q与点O重合,点P在线段BC上.∵PB=x,∴PC=BC﹣PB=5﹣x.过点P作PH⊥AC于点H,则5﹣x).∴y=S△APQ35﹣x)=;②当5<x≤9时,如答图1﹣2所示,此时点Q在线段OB上,点P在线段CD上.PC=x﹣5,PD=CD﹣PC=5﹣(x﹣5)=10﹣x.过点P作PH⊥BD于点H,则10﹣x).∴y=S△APQ=S菱形ABCD﹣S△ABQ﹣S四边形BCPQ﹣S△APD=S菱形ABCD﹣S△ABQ﹣(S△BCD﹣S△PQD)﹣S△APD×h6×89﹣x)×3﹣8×3x﹣1)10﹣x)]10﹣x=2③当9<x≤10时,如答图1﹣3所示,此时点Q与点B重合,点P在线段CD上.y=S△APQ×5.综上所述,当4≤x≤10时,y与x之间的函数解析式为:(3)有两种情况:①若PQ∥CD,如答图2﹣1所示.此时BP=QD=x,则BQ=8﹣x.∵PQ∥CD,∴②若PQ∥BC,如答图2﹣2所示.此时PD=10﹣x,QD=x﹣1.∵PQ∥BC,∴综上所述,满足条件的x随堂练习随练1.1在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)【答案】(1)(2(3【解析】(1)如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴′O′∴∴O(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把OC(0,﹣3∴直线O′C的解析式为﹣3,当y=0﹣3=0,解得P0),∴∴O′P′作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′′P′P′′∴DH=O′H﹣O′∴P随练1.2如图,在四边形ABCD M为对角线BD(不含点B)上任意一点,△ABE是等边三角形,将绕点逆时针旋转60°得到,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2②当点M【答案】(1)见解析;(2)连接AC,当点M位于BD与AC3)当点M位于BD、CE EC的长.理由见解析【解析】(1)∵△ABE是等边三角形,在△AMB和△ENB中,∴△AMB≌△ENB(SAS);(2)①根据“两点之间线段最短”,连接AC,当点M位于BD与AC②连接CE,当点M位于BD、CE理由如下:如图,连接CE交BD于点M,连接AM,在EM上取一点N在△ABD和△CBD中,∴△ABD≌△CBD(SSS),在△EBN和△CBM中,∴△EBN≌△CBM(ASA),∴此时BN由BM绕点B逆时针旋转60°得到,由(1)知:△AMB≌△ENB,∴△BMN是等边三角形,∴根据“两点之间线段最短”可知当点M位于BD、CEEC的长.随练1.3在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.【答案】(1)见解析(2(3)6【解析】(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,在△EDH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,∵BD为正方形ABCD的对角线,∴∠MDA=45°,在Rt△AMD中,∠MDA=45°,∴cos45°∵AD=2,∴在Rt△AMG中,根据勾股定理得:,∵,∴(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.随练1.4正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.【答案】(12)成立,证明见解析(3【解析】(1………………………………… 1分(2)结论成立.………………………………… 2分证明:如图11,连接BE.在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°.∵DE=DF,∴AF=CE.在△ABF和△CBE中,∴△ABF≌△CBE.∴∠1=∠2.…………………………………………3分∵EH⊥BF,∠BCE=90°,∴H,C两点都在以BE为直径的圆上.∴∠3=∠2.∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC.∴CH=CB.………………………………………………………………… 5分∴CH=AB.………………………………………………………………… 6分(3………………………………………………………………………7分随练 1.5已知,如图①,在▱ABCD中,AB=3cm,BC=5cm.AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动.如图②,设运动时间为t(s)(0<t<4).解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.【答案】(1)2)y=3)2;(4)当PQ⊥MQ【解析】如图1,在Rt△ABC中,由勾股定理得:,由平移性质可得MN∥AB;∵PQ∥MN,∴PQ∥AB,解得(2)如图2,作PF⊥BC于点F,AE⊥BC于点E,由S△ABC BC3×5AE,∴则由勾股定理得:∵PF⊥BC,AE⊥BC,∴AE∥PF,∴△CPF∽△CAE,解得:∵PM∥BC,所以M到BC的距离所以,△QCM是面积(3)∵PM∥BC,∴S△PQC=S△MQC,∵S△QMC:S四边形ABQP=1:4,∴S△MQC:S△ABC=1:5,则54×3,t2﹣4t+4=0,解得:t1=t2=2,∴当t=2时,S△QMC:S四边形ABQP=1:4;(4)如图2,∵PQ⊥MQ,∴∠MQP=∠PFQ=90°,∵MP∥BC,∴∠MPQ=∠PQF,∴△MQP∽△PFQ,∴PQ2=PM×FQ,即:PF2+FQ2=PM×FQ,由∴FQ=CF﹣整理得2t2﹣3t=0,解得t1=0(舍),t2答:当PQ⊥MQ.随练1.6如图,矩形ABCD中,AB=4,AD=8,点E、F分别在线段BC、CD上,将△CEF沿EF翻折,点C的落点为M(1)如图1,当 CE=5,M点落在线段AD上时,求MD的长(2)如图2,若点F是CD的中点,点E在线段BC上运动,将△CEF沿EF折叠,①连接BM,△BME是否可以是直角三角形?如果可以,求此时CE的长,如果不可以,说明理由②连接MD,如图3,求四边形ABMD的周长的最小值和此时CE的长【答案】(1)MD的长为2(2)①可以;CE=2②四边形ABMD的周长的最小值为(12),此时CE的长为4【解析】(1)如图1,作EN⊥AD于点N,∴∠ANE=∠ENM=90°.∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,AB=CD=4,AD=BC=8,∴∠A=∠B=∠ANE=90°,∴AB=NE=4,AN=BE.∵EC=5,∴BE=3,∴AN=3.∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴EC=EM=5.在Rt△EMN中,由勾股定理,得MN=3,∴MD=8﹣3﹣3=2.答:MD的长为2;(2)①如图2,当∠BME=90°时,∵∠EMF=90°,∴∠BMF=180°,∴B、M、F在同一直线上.∵F是BC的中点,∴.∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴MF=CF=2,EC=EM.在Rt△BCF中,由勾股定理,得∴2.设EC=EM=x,则BE=8﹣x,在Rt△BME中,由勾股定理,得(8﹣x)2﹣x2=(2)2,解得:∴如图3,当∠BEM=90°时,∴∠MEC=90°∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴∠EMF=∠C=90°,CF=FM=2,∴四边形ECFM是正方形,∴MF=CE=2.∴CE=2②如图4,∵四边形ABMD的周长最小,∴BM+MD最小,∴B、M、D在同一直线上,∴点M在BD上.连结MC,∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴EC=EM,FC=FM.∴EF垂直平分MC,∴MG=CG,∴GF是△CDM的中位线,∴FG∥BD,∴BE=CE.∵BC=8,∴CE=4.在Rt△ABD中,由勾股定理,得∴四边形ABMD的周长的最小值为:4+12.答:四边形ABMD的周长的最小值为(12),此时CE的长为4.随练1.7如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)【答案】(1)5(23【解析】(1)∵四边形ABCD为矩形,∴CD=AB=4,∠D=90°,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴PD=PH=3,CD=MH=4,∠H=∠D=90°,∴(2)如图1,作点M关于AB的对称点M′,连接M′E交AB于点F,则点F即为所求,过点E作EN⊥AD,垂足为N,∵AM=AD﹣MP﹣PD=12﹣5﹣3=4,∴AM=AM′=4,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴∠CEP=∠MEP,而∠CEP=∠MPE,∴∠MEP=∠MPE,∴ME=MP=5,在Rt△ENM中,∴NM′=11,∵AF∥NE,∴△AFM′∽△NEM′,即△MEF的周长最小;(3)如图2,由(2)知点M′是点M关于AB的对称点,在EN上截取ER=2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,∵ER=GQ,ER∥GQ,∴四边形ERGQ是平行四边形,∴QE=GR,∵GM=GM′,∴MG+QE=GM′+GR=M′R,此时MG+EQ最小,四边形MEQG的周长最小,在Rt△M′RN中,NR=4﹣2=2,∵ME=5,GQ=2,∴四边形MEQG随练1.8边长为2A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,AB边交DF于点M,BC边交N.(1(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(123)见解析【解析】该题考查的是三角形全等与旋转问题.(12分(2..............................5分(3△≌6分∴△≌.......................................7分∴在旋转正方形的过程中,值无变化............................8分课后作业作业1已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是;②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.【答案】(1)①90°;②OA2+OB2=OC2;证明见解析(2)①α=β=120°,OA+OB+OC有最小值;图形见解析【解析】(1)①∠AOB=150°,∠BOC=120°,∴∠AOC=360°﹣120°﹣150°=90°,∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠OCD=60°,∠D=∠BOC=120°,∴∠DAO=360°﹣∠AOC﹣∠OCD﹣∠D=90°,故答案为:90°;②线段OA,OB,OC之间的数量关系是OA2+OB2=OC2,如图1,连接OD,∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°,∴CD=OC,∠ADC=∠BOC=120°,AD=OB,∴△OCD是等边三角形,∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°,∴∠DAO=90°,在Rt△ADO中,∠DAO=90°,∴OA2+OB2=OD2,∴OA2+OB2=OC2;(2)①当α=β=120°时,OA+OB+OC有最小值.如图2,将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′,∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°,∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.∴△OC O′是等边三角形,∴OC=O′C=OO′,∠COO′=∠CO′O=60°,∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°,∴∠BOO′=∠OO′A′=180°,∴四点B,O,O′,A′共线,∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小;②∵∠AOB=∠BOC=120°,∴∠AOC=120°,∴O为△ABC的中心,∵四点B,O,O′,A′共线,∴BD⊥AC,∵将△AOC绕点C按顺时针方向旋转60°得△A′O′C,∴A′C=AC=BC,∴A′B=2BD,在Rt△BCD中,∴∴当等边△ABC的边长为1时,OA+OB+OC的最小值作业2几何模型:条件:如图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连结A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连结BD,由正方形对称性可知,B与D关于直线AC对称.连结ED交AC于P,则PB+PE的最小值是____;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC 的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.【答案】(12)3)【解析】(1)由题意知:连接ED交AC于点P,此时PB+PE最小,最小值为ED,∵点E是AB的中点,∴AE=1,由勾股定理可知:ED2=AE2+AD2=5,∴∴PB+PE(2)延长AO交⊙O于点D,连接DC,AC,∴AD=4,∵∠AOC=60°,OA=OC,∴△AOC是等边三角形,∴AC=OA=2,∵AD是⊙O直径,∴∠ACD=90°,∴由勾股定理可求得:∴PA+PC的最小值为(3)作点C,使得点P与点C关于OB对称,作点D,使得点P与点D关于OA对称,连接OC、OD、CD,CD交OA、OB于点Q、R,此时PR+RQ+PQ最小,最小值为CD的长,∵点P与点C关于OB对称,∴∠BOP=∠COB,OP=OC=10,同理,∠DOA=∠POA,OP=OD=10,∵∠BOP+∠POA=45°,∴∠COD=2(∠BOP+∠POA)=90°,由勾股定理可知:∴△PQR周长的最小值为作业3如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点M是BC的中点,作正方形MNPQ,使点A、C分别在MQ和MN上,连接AN、BQ.(1)直接写出线段AN和BQ的数量关系是______.(2)将正方形MNPQ绕点M逆时针方向旋转θ(0°<θ≤360°)①判断(1)的结论是否成立?请利用图2证明你的结论;②若BC=MN=6,当θ(0°<θ≤360°)为何值时,AN取得最大值,请画出此时的图形,并直接写出AQ 的值.【答案】(1)BQ=AN(2)【解析】(1)BQ=AN.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点M是BC的中点,∴AM⊥BC,BM=AM,∴∠AMB=∠AMC=90°.∵四边形PQMN是正方形,∴QM=NM.在△QMB和△NMA中,∴△QMB≌△NMA(SAS),∴BQ=AN.故答案为:BQ=AN;(2)①BQ=AN成立.理由:如图2,连接AM,∵在Rt△BAC中,M为斜边BC中点,∴AM=BM,AM⊥BC,∴∠AMQ+∠QMB=90°.∵四边形PQMN为正方形,∴MQ=NM,且∠QMN=90°,∴∠AMQ+∠NMA=90°,∴∠BMQ=∠AMN.在△BMQ和△AMN中,∴△BMQ≌△AMN(SAS),∴BQ=AN;②由①得,BQ=AN,∴当BQ取得最大值时,AN取得最大值.如图3,当旋转角θ=270°时,BQ=AN(最大),此时∠AMQ=90°.∵BC=MN=6,M是BC的中点,∴MQ=6,,∴在Rt△AMQ中,由勾股定理得作业4(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于_________时,线段AC的长取得最大值,且最大值为_________(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上;a+b(2)见解析(3)见解析【解析】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵∴最大值为;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴∴OE=BO3=2∴P(2作业5(1(2等方法判断(1DEFG绕点D的值.【答案】(1)垂直且相等(2【解析】(1)如图(1),∵△ABC D是BC的中点,∵在△BDG和△ADE∴△BDG≌△ADE(SAS),延长EA到BG于一点M∴线段BG和AE相等且垂直;(2)成立,如图(2),延长EA分别交DG、BG∵△ABCD是BC的中点,∵在△BDG和△ADE∴△BDG≌△ADE(SAS),BG⊥AE(3)由(2)知,要使AE最大,只要将正方形绕点D逆时针旋旋转270°,即A,D,E在一条直线上时,AE最大;∵正方形DEFG在绕点D旋转的过程中,E点运动的图形是以点D为圆心,DE为半径的圆,∴当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG 最大,如图(3),在Rt△AEFDEFG旋转过程中,当AE作业6如图1,已知B点坐标是(6),BA⊥x轴于A,BC⊥y轴于C,D在线段OA上,E在y轴的正半轴上,DE⊥BD,M是DE中点,且M在OB上.(1)点M的坐标是(____,____),DE=____;(2)小明在研究动点问题时发现,如果有两点分别在两条互相垂直的直线上做匀速运动,连接这两点所F从点B出发以每秒1个单位长度的速度向点A运动,同时有一点G从点D O运动,点H从点E开始沿y轴正方向自由滑动,并始终保持GH=DE,P为FG的中点,Q为GH的中点,F与G 两个点分别运动到各自终点时停止运动,分别求出在运动过程中点P、Q运动的路线长.(3)连接PQ,求当运动多少秒时,PQ最小,最小值是多少?【答案】(1)(2),8(23【解析】∵点B的坐标为(6),∴tan∠∴∠BOA=30°.∵在Rt△EOD中,点M是ED的中点,∴∴∠MDO=∠BOA=30°,∵BD⊥ED,∴∠EDB=90°.∴∠EDO+∠BDA=90°.∵∠BDA+∠DBA=90°,∴∠EDO=∠DBA=30°∴AD=AB•tan30°=6∴∴OE=ODtan30°.∵M是DE的中点,∴点M的坐标为(2).∴DE=8.(2)根据题意画出点P、点Q运动的轨迹.D的运动时间秒;点F运动的时间=6÷1=6秒;∵点P是BD的中点,∴点P P的坐标为(3),P1的坐标为(1)∴PP1P1P2P点运动的路线长PP1+P1P2=5;∵M是DE的中点,∠EOD=90°∴∴点M运动的路线为弧ME.∵∠BOA=30°,∴∠EOM=60°.∴点M运动的路线长∵GH=DE,∴点G(3)∵点P、Q分别为FG和GH的中点,。