2015届高考数学一轮复习:立体几何
- 格式:doc
- 大小:412.80 KB
- 文档页数:18
[课堂练通考点]1.(2013·济南模拟)一个几何体的三视图如图所示,则它的体积为( )A.203 B.403 C .20D .40解析:选B 该空间几何体是一个四棱锥,其直观图如图所示.其体积为13×12(1+4)×4×4=403.2.(2014·临沂模拟)一个几何体的三视图如图所示,则该几何体的体积是( )A .6B .8C .10D .12解析:选D 该几何体是一个长方体在左边挖去一个三棱柱再拼接到右边而得到的,它的体积就是长方体的体积,体积为V =(2.4+0.6)×2×(1+1)=12.3.(2014·湖北八校联考)已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V 1,直径为4的球的体积为V 2,则V 1∶V 2=________.解析:由三视图知,该几何体为圆柱内挖去一个底面相同的圆锥,因此V 1=8π-8π3=16π3,V 2=4π3×23=32π3,V 1∶V 2=1∶2. 答案:1∶24.已知三棱锥O -ABC 中,∠BOC =90°,OA ⊥平面BOC ,其中AB =AC =7,BC =11,O ,A ,B ,C 四点均在球S 的表面上,则球S 的表面积为________.解析:易知以O 点为顶点的三条棱两两垂直,则球S 即为以O 为顶点,以OA ,OB ,OC 为棱的长方体的外接球,所以2R =OA 2+OB 2+OC 2=12×2(OA 2+OB 2+OC 2)=522(R 为球S 的半径),所以R =524,表面积S =4πR 2=25π2. 答案:25π25.(2013·郑州模拟)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =23,AB =1,AC =2,∠BAC =60°,求球O 的表面积.解:取SC 的中点E ,连接AE ,BE ,依题意,BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,∴AC 2=AB 2+BC 2,即AB ⊥BC .又SA ⊥平面ABC ,∴SA ⊥BC ,又SA ∩AB =A ,∴BC ⊥平面SAB ,BC ⊥SB ,AE =12SC =BE ,∴点E 是三棱锥S -ABC 的外接球的球心,即点E 与点O重合,OA =12SC =12SA 2+AC 2=2,球O 的表面积为4π×OA 2=16π.[课下提升考能]第Ⅰ组:全员必做题1.正六棱柱的高为6,底面边长为4,则它的全面积为( ) A .48(3+3) B .48(3+23) C .24(6+2) D .144解析:选A S 底=6×34×42=243,S 侧=6×4×6=144,∴S 全=S 侧+2S 底=144+483=48(3+3).2.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .3解析:选A 设圆台较小底面半径为r ,则另一底面半径为3r .由S =π(r +3r )·3=84π,解得r =7.3.(2013·深圳调研)如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积、体积分别是( )A .32π,128π3B .16π,32π3C .12π,16π3D .8π,16π3解析:选C 根据三视图可知,该几何体是一个半球,且半径为2,故其表面积S =12(4×π×22)+π×22=12π,体积V =12⎝⎛⎭⎫43×π×23=16π3. 4.(2014·南昌第一次模拟)已知正三角形ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A.7π4 B .2π C.9π4D .3π解析:选C 由题意知,正三角形ABC 的外接圆半径为22-12=3,则AB =3,过点E 的截面面积最小时,截面是以AB 为直径的圆,截面面积S =π×⎝⎛⎭⎫322=9π4,选C.5.(2013·洛阳统考)如图是某几何体的三视图,则该几何体的体积为( )A .64+32πB .64+64πC .256+64πD .256+128π解析:选C 依题意,该几何体是一个正四棱柱及一个圆柱的组合体,其中正四棱柱的底面边长是8、侧棱长是4,圆柱的底面半径是4、高是4,因此所求几何体的体积等于π×42×4+82×4=256+64π,选C.6.某几何体的三视图如图所示,则其体积为________.解析:易知原几何体是底面圆半径为1,高为2的圆锥体的一半,故所求体积为V =12×13×(π×12)×2=π3.答案:π37.(2014·杭州模拟)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________cm 3.解析:根据三视图,几何体是一个三棱柱削去一个三棱锥,体积V =12×3×4×5-13×12×4×3×3=24 cm 3.答案:248.(创新题)如图,在三棱锥D -ABC 中,已知BC ⊥AD ,BC =2,AD =6,AB +BD =AC +CD =10,则三棱锥D -ABC 的体积的最大值是________.解析:由题意知,线段AB +BD 与线段AC +CD 的长度是定值,因为棱AD 与棱BC 相互垂直.设d 为AD 到BC 的距离. 则V D -ABC =AD ·BC ×d ×12×13=2d ,当d 最大时,V D -ABC 体积最大,∵AB+BD=AC+CD=10,∴当AB=BD=AC=CD=5时,d有最大值42-1=15.此时V=215.答案:2159.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3,所以V=1×1×3= 3.(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1×3+1×2)=6+2 3.10.(2014·徐州质检)如图,在直三棱柱ABC -A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.(1)求证:DE∥平面ABC;(2)求三棱锥E -BCD的体积.解:(1)证明:如图,取BC的中点G,连接AG,EG,因为E是B1C的中点,所以EG∥BB 1,且EG =12BB 1.由题意知,AA 1綊BB 1.而D 是AA 1的中点,所以EG 綊AD . 所以四边形EGAD 是平行四边形. 所以ED ∥AG .又DE ⊄平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)因为AD ∥BB 1,所以AD ∥平面BCE . 所以V E -BCD =V D -BCE =V A -BCE =V E -ABC . 由(1)知,DE ∥平面ABC ,所以V E -BCD =V E -ABC =V D -ABC =13AD ·12BC ·AG =16×3×6×4=12. 第Ⅱ组:重点选做题1.(2013·昆明调研)如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边长均为1,则该几何体的表面积为( )A .1+ 2B .2+2 2 C.13 D .2+ 2解析:选D 依题意得,题中的几何体是底面为正方形,侧棱垂直于底面的四棱锥P -ABCD (如图),其中底面边长为1,PD =1,PD ⊥平面ABCD ,S △P AD =S △PCD =12×1×1=12,S △P AB =S △PBC =12×1×2=22,S 四边形ABCD =12=1,因此该几何体的表面积为2+2,选D.2.(2014·绍兴模拟)已知正四面体的俯视图如图所示,其中四边形ABCD 是边长为2的正方形,则这个正四面体的体积为________.解析:由题意知BD 为实长,即正四面体的边长为22,所以S =34·(22)2=23,h=(22)2-⎝⎛⎭⎫2632=433,故V =13·S ·h =13×23×433=83.答案:83。
2015届高考数学(文)一轮复习质量检测:5 立体几何 北师大版测试内容:立体几何 (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2012年大连期末)一几何体的三视图如图所示,已知这个几何体的体积为103,则h =( )A.32B. 3 C .2 3D .5 3解析:分析几何体的三视图,可知该几何体是底面为矩形的四棱锥,体积V =13×5×6×h =103,解得h = 3.答案:B2.设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥βD .m ∥β且n ∥l 2解析:⎭⎬⎫l 1∥m m ⊂α⇒l 1∥α,⎭⎬⎫同理l 2∥αl 1与l 2相交l 1,l 2⊂β⇒α∥β. 答案:B3.(2012年郑州质检)一个几何体的三视图及其尺寸如下图所示,其中正(主)视图是直角三角形,侧(左)视图是半圆,俯视图是等腰三角形,则这个几何体的体积是(单位:cm 3)( )A.π2B.π3C.π4D .π解析:依三视图可知,该几何体是半个圆锥,且底面半径为1,高为3,故V =12×⎝ ⎛⎭⎪⎫13×Sh =12×⎝ ⎛⎭⎪⎫13×π×12×3=π2,选A.答案:A4.(2012年杭州质检)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()解析:由几何体的直观图可知,侧视图为一矩形(内有从左下到右上的对角线,因为该对角线看不到轮廓线,故用虚线).故选D.答案:D5.(2012年广州高三调研)在正四棱锥V -ABCD 中,底面正方形ABCD 的边长为1,侧棱长为2,则异面直线VA 与BD 所成角的大小为A.π6B.π4C.π3D.π2解析:取BD 的中点O ,则VO ⊥BD ,AC ⊥BD ,所以BD ⊥平面VAC ,则异面直线VA 与BD 所成角的大小为π2.答案:D6.给定下列四个命题:(1)若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行;(2)若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; (3)垂直于同一直线的两条直线相互平行;(4)若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为真命题的是( )A .(1)和(2)B .(2)和(3)C .(3)和(4)D .(2)和(4)解析:对于(1),两条直线必须相交,否则不能证明面面平行,错误;对于(3),垂直于同一条直线的两条直线还可能异面,错误;(2)(4)正确.所以选D.答案:D7.如图是一个几何体的正视图、侧视图、俯视图,且正视图、侧视图都是矩形,则该几何体的体积是( )A .24B .12C .8D .4解析:依题意知,该几何体是从一个长方体中挖去一个三棱柱后剩下的几何体,因此其体积等于2×3×4-12×(2×3)×4=12,选B.答案:B8.如图是某一几何体的三视图,则这个几何体的侧面积和体积分别是( )A .82+25+6,8B .22+85+6,8C .42+85+12,16D .82+45+12,16解析:几何体的侧面积有四部分,左侧面面积S 1=12×2×25=25,右侧面面积S 2=12×2×42=42,后侧面面积S 3=12×6×4=12,前侧面面积S 4=12×6×25=65,所以侧面积为S =42+85+12,体积为V =13Sh =13×2×6×4=16,故选C.答案:C9.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC 的长.其中正确的是( )A .①②B .①②③C .①D .②③解析:对于①,∵P A ⊥平面ABC ,∴P A ⊥BC ,∵AB 为⊙O 的直径,∴BC ⊥AC ,∴BC ⊥平面P AC ,又PC ⊂平面P AC ,∴BC ⊥PC ;对于②,∵点M 为线段PB 的中点,∴OM ∥P A ,∵P A ⊂平面P AC ,∴OM ∥平面P AC ;对于③,由①知BC ⊥平面P AC ,∴线段BC 的长即是点B 到平面P AC 的距离,故①②③都正确.答案:B10.(2012年沈阳质检)如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H ,则以下命题中,错误的命题是( )A .点H 是△A 1BD 的垂心B .AH 的延长线经过点C 1 C .AH 垂直平面CB 1D 1D .直线AH 和BB 1所成角为45°解析:计算得AH =33,直线AH 和BB 1所成角为arccos 33,故D 项错误,选项A ,B ,C 是正确的.答案:D11.(2012年唐山模拟)把一个皮球放入如图所示的由8根长均为20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为( )A .10 3 cmB .10 cmC .10 2 cmD .30 cm解析:该骨架为一个棱长为20 cm 的正四棱锥,设为G -ABCD ,与各棱均相切的球的球心记为O ,则O 在棱锥的高GT 上,如图示,设球半径为R ,与棱GB ,CD 分别交于点H ,M ,设OT =h ,由正四棱锥性质可知,|TM |=12|BC |=10,|BT |=12|BD |=102,|GT |=|GB |2-|BT |2=102,在△OTM 中,有R 2=h 2+102①,由△GHO ∽△GTB 可得|GO ||GB |=|OH ||BT |,即102-h 20=R 102②,联立①②可得R =10或R =30(舍),故选B.答案:B12.在正方形ABCD 中,AB =4,沿对角线AC 将正方形ABCD 折成一个直二面角B -AC -D ,则点B 到直线CD 的距离为( )A .2 2B .3 2C .2 3D .2+2 2解析:如图,取AC 中点E ,连接DE ,BE ,易知∠DEB 是二面角A -DC -B 的平面角,由于两平面垂直,故∠DEB =π2,即平面BE ⊥平面ADC ,过点E 作EF ⊥DC 于F ,连接BF ,则DC ⊥平面BEF ,所以BF ⊥DC ,故线段BF 即为点B 到DC 的距离,由于EF =12AD =2,BE =22,故BF =22+(22)2=2 3.答案:C二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知正三棱锥的底面边长为2,侧棱长为433,则它的体积为________.解析:如图,在正三棱锥P -ABC 中,由于P A =433,AO =233,在直角三角形P AO 中可得PO =2,故V P -ABC =13×34×22×2=233.答案:23314.如图,已知△ABC 和△BCD 所在平面互相垂直,∠ABC =∠BCD =90°,AB =a ,BC =b ,CD =c ,且a 2+b 2+c 2=1,则三棱锥A -BCD 的外接球的表面积为________.解析:如图所示,可将该三棱锥补体为一个长方体,该长方体的体对角线长即为AD ,由AB =a ,BC =b ,CD =c ,且a 2+b 2+c 2=1,可得该三棱锥外接球即为长方体的外接球的直径为1,其外接球的表面积为S =4π×⎝ ⎛⎭⎪⎫122=π.答案:π15.如果一个几何体的正视图、侧视图、俯视图均为如图所示的面积为2的等腰直角三角形,那么该几何体的表面积等于________.解析:由题可得几何体如图所示,其中AP ⊥PC ,PC ⊥CB ,并且AP =PC =CB =2,PB =AC =22,△PBC ,△P AC 的面积都是2;CB ⊥面P AC ,所以CB ⊥AC ,又AP ⊥面PBC ,所以AP ⊥PB ,进而可求得△P AB ,△ABC 的面积都是22,所以该几何体的表面积等于4+4 2.答案:4+4 216.在三棱锥P -ABC 中,三条侧棱P A ,PB ,PC 两两互相垂直,且P A =PB =PC ,M 为AB 的中点,则PM 与平面ABC 所成角的正弦值为________.解析:如图,将三棱锥补为正方体,由于三棱锥P -ABC 为正三棱锥,故点P 在底面ABC 的射影为其中心N ,连接MN ,则∠PMN 即为直线PM 与平面ABC 所成角,设P A =PB =PC =a ,则PM =22a ,PN =33a ,故sin ∠PMN =PN PM =63.答案:63三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,四边形ABCD 是梯形,AD ∥BC ,AC ⊥CD ,E 是AA 1上的一点.(1)求证:CD ⊥平面ACE ;(2)若平面CBE 交DD 1于点F ,求证:EF ∥AD .证明:(1)因为ABCD -A 1B 1C 1D 1为直四棱柱,所以AA 1⊥平面ABCD . 因为CD ⊂平面ABCD ,所以AA 1⊥CD ,即AE ⊥CD .因为AC ⊥CD ,AE ⊂平面AEC ,AC ⊂平面AEC ,AE ∩AC =A ,所以CD ⊥平面AEC .(2)因为AD ∥BC ,AD ⊂平面ADD 1A 1,BC ⊄平面ADD 1A 1,所以BC ∥平面ADD 1A 1.因为BC ⊂平面BCE ,平面BCE ∩平面ADD 1A 1=EF ,所以EF ∥BC . 因为AD ∥BC ,所以EF ∥AD .18.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 为平行四边形,且AB =1,BC =2,∠ABC =π3,E ,F 分别为AD ,BC 的中点.(1)求证:EF ∥平面PCD ; (2)求证:AC ⊥平面P AB .证明:(1)如图,因为在平行四边形ABCD 中,E ,F 分别为AD ,BC 的中点,所以ED =FC ,ED ∥FC ,可得EFCD 为平行四边形,所以EF ∥CD .又因为EF⊄平面PCD,CD⊂平面PCD,所以EF∥平面PCD.(2)因为P A⊥平面ABCD,AC⊂平面ABCD,故P A⊥AC.在△ABC中,AB=1,BC=2,∠ABC=π3,由余弦定理得AC=AB2+BC2-2AB·BC·cos∠ABC=1+4-2×1×2cos π3= 3.故AB2+AC2=BC2,所以AB⊥AC.而P A∩AB=A,且AB,P A⊂平面P AB,所以AC⊥平面P AB.19.一个多面体的三视图和直观图分别如图(1)(2)所示,其中M、N分别为AB、AC的中点,G是DF上的一动点.(1)求证:GN⊥AC;(2)当FG=GD时,在棱AB上确定一点P,使得GP∥平面FMC,并给出证明.证明:(1)如图,连接DB,可知B,N,D共线,且AC⊥DN.又∵FD⊥AD,FD⊥CD,AD∩CD=D,∴FD⊥平面ABCD.又∵AC⊂平面ABCD,∴FD⊥AC.又∵DN∩FD=D,∴AC⊥平面FDN.又GN⊂平面FDN,∴GN⊥AC.(2)点P与点A重合时,GP∥平面FMC.证明:取FC中点H,连接GH,GA,MH.∵G是DF的中点,∴GH綊12CD.∵M是AB的中点,∴AM綊12CD.∴GH綊AM,∴四边形GHMA是平行四边形.∴GA∥MH.又∵MH⊂平面FMC,GA⊄平面FMC,∴GA∥平面FMC,即GP∥平面FMC.20.(2013年西安质检)如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面P AC;(2)若P A=PB,求PB与AC所成角的余弦值.解:证明:(1)因为四边形ABCD是菱形,所以AC⊥BD.又因为P A⊥平面ABCD,所以P A⊥BD,而P A∩AC=A,所以BD⊥平面P AC.(2)设AC∩BD=O.因为∠BAD=60°,P A=PB=2,所以BO=1,AO=CO= 3.如图,以O为坐标原点,OB为x轴正方向,OC为y轴正方向,与AP平行的方向为z 轴正方向,建立空间直角坐标系O -xyz ,则点P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0).所以PB →=(1,3,-2),AC →=(0,23,0).设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪PB →·AC →|PB →|·|AC →|=622×23=64.21.(2012年长沙联考)如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求二面角D -CB 1-B 的平面角的正切值.解:(1)证明:在直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5.因为AC 2+BC 2=AB 2,所以AC ⊥BC .又AC ⊥C 1C ,且BC ∩C 1C =C ,所以AC ⊥平面BCC 1.又BC 1⊂平面BCC 1,所以AC ⊥BC 1.(2)解法一:取BC 中点E ,过点D 作DF ⊥B 1C 于点F ,连接EF ,ED . 因为D 是AB 中点,所以DE ∥AC ,又AC ⊥平面BB 1C 1C ,所以DE ⊥平面BB 1C 1C .又因为BC 1⊂平面BB 1C 1C ,所以B 1C ⊥DE .而DF ⊥B 1C 且DE ∩DF =D ,所以B 1C ⊥平面DEF ,EF ⊂平面DEF ,所以B 1C ⊥EF ,所以∠EFD 是二面角D -CB 1-B 的平面角.因为AC =3,BC =4,AA 1=4,所以在△DEF 中,DE ⊥EF ,DE =32,EF =2,所以tan ∠EFD =DE EF =322=324. 所以二面角D -CB 1-B 的正切值为324.解法二:以CA ,CB ,CC 1分别为x ,y ,z 轴建立如图所示空间直角坐标系.因为AC =3,BC =4,AA 1=4,所以点A (3,0,0),B (0,4,0),C (0,0,0),D ⎝ ⎛⎭⎪⎫32,2,0,B 1(0,4,4),所以CD →=⎝ ⎛⎭⎪⎫32,2,0,CB 1→=(0,4,4). 平面CBB 1C 1的法向量n 1=(1,0,0),设平面DB 1C 的法向量n 2=(x 0,y 0,z 0),则n 1,n 2的夹角(或其补角)的大小就是二面角D -CB 1-B 的大小.则由⎩⎨⎧ n 2·CD →=0,n 2·CB 1→=0,即⎩⎪⎨⎪⎧ 32x 0+2y 0=0,4y 0+4z 0=0.令x 0=4,则y 0=-3,z 0=3,所以n 2=(4,-3,3).cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=434,则tan 〈n 1,n 2〉=324. 因为二面角D -CB 1-B 是锐二面角,所以二面角D -CB 1-B 的正切值为324.22.将两块全等的三角板的一对直角边拼接在一起,使得一块三角板的直角边与另一块三角板所在平面垂直,如图,AB =BC =CD =2,∠ABC =∠BCD =90°,E ,F ,G 分别为AB ,BC ,AC 的中点,P 为BD 上的点.(1)当点P 为BD 的中点时,求证:BG ⊥PF ;(2)线段BD 上是否存在点P ,使得二面角B -EF -P 的大小为2π3?若存在,求出BP PD 的值;若不存在,说明理由.解:(1)证明:如图,以B 为坐标原点,以BC ,BA 所在直线为y 轴,z 轴,以过B 作DC 的平行线为x 轴,建立空间直角坐标系,则B (0,0,0),E (0,0,1),F (0,1,0),G (0,1,1),C (0,2,0),D (2,2,0),当点P 为BD 的中点时,P (1,1,0),∴BG →=(0,1,1),FP →=(1,0,0),∴BG →·FP →=0,∴BG ⊥PF .(2)假设线段BD 上存在点P (t ,t,0)(0≤t ≤2),使得二面角B -EF -P 的大小为2π3,由(1)得EF →=(0,1,-1),FP →=(t ,t -1,0).设平面EFP 的一个法向量为n =(x ,y,1),则⎩⎨⎧ n ·EF →=0,n ·FP →=0,即⎩⎨⎧0+y -1=0,tx +(t -1)y =0,解方程组得⎩⎪⎨⎪⎧ x =1-t t ,y =1,从而n =⎝ ⎛⎭⎪⎫1-t t ,1,1, 又取平面BEF 的一个法向量为m =(1,0,0),∴cos 〈m ,n 〉=m ·n |m |·|n |=1-t 3t 2-2t +1;又二面角B -EF -P 的大小为2π3,∴〈m ,n 〉=2π3,故-12=1-t 3t 2-2t +1, 解得t =3±6,经检验不符合题意. 故线段BD 上不存在点P ,使得二面角B -EF -P 的大小为2π3.。
2015届高考数学一轮复习单元检测:立体几何(北师大版)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·东莞高一检测)如图1为某几何体的三视图,根据三视图可以判断这个几何体为()图1A.圆锥B.三棱锥C.三棱柱D.三棱台【解析】由三视图易知其图形为所以为三棱柱.【答案】 C2.(2014·湖北省八校联考)已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V1,直径为4的球的体积为V2,则V1∶V2=( )A.1∶2 B.2∶1C.1∶1 D.1∶4【解析】由三视图知,该几何体为圆柱内挖去一个底面相同的圆锥,因此V1=8π-8π3=16π3,V2=4π3×23=32π3,V1∶V2=1∶2.【答案】A3.已知水平放置的△ABC是按“斜二测画法”得到如图2所示的直观图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC的面积是()图2 A. 3 B.2 2C.32D.34【解析】由题图可知原△ABC的高为AO=3,∴S△ABC =12×BC×OA=12×2×3=3,故选A.【答案】 A4.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面【解析】当l1⊥l2,l2⊥l3时,l1也可能与l3相交或异面,故A不正确;l1⊥l2,l2∥l3⇒l1⊥l3,B正确;当l1∥l2∥l3时,l1,l2,l3未必共面,如三棱柱的三条侧棱,故C不正确;l1,l2,l3共点时,l1,l2,l3未必共面,如正方体中从同一顶点出发的三条棱,故D不正确.故选B.【答案】 B5.如图3,在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()图3A.AC B.BDC.A1D D.A1D1【解析】∵BD⊥AC,BD⊥AA1,∴BD⊥平面AA1C1C又CE平面AA1C1C,∴CE⊥BD.【答案】 B6.一个几何体的三视图如图4,该几何体的表面积为()图4A.280 B.292C.360 D.372【解析】由三视图可知该几何体是由下面一个长方体,上面一个长方体组合而成的几何体.下面长方体的表面积为8×10×2+2×8×2+10×2×2=232,上面长方体的表面积为8×6×2+6×2×2+8×2×2=152,又由于两个长方体的表面积重叠一部分,所以该几何体的表面积为232+152-2×6×2=360,应选C.【答案】 C7.(2013·哈师大附中检测)如图5是底面积为3,体积为3的正三棱锥的主视图(等腰三角形)和左视图(等边三角形),此正三棱锥的侧视图的面积为()图5A.332B.3C. 3 D.3 2【解析】由题意知左视图是一个三角形,其底边长就是正三棱锥的底面正三角形的高,高就是正三棱锥的高.根据已知条件可得正三棱锥的底面边长是2,高为3,故侧视图的面积是12×3×3=332.【答案】 A8.(2013·吉林高一检测)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.316B.916C.38D.932【解析】如图所示,设球的半径为R,由题意知OO′=R2,OF=R,∴r=32R.∴S截面=πr2=π(32R)2=3π4R2.又S球=4πR2,∴S截面S球=3π4R24πR2=316.【答案】 A9.如图6是一建筑物的三视图(单位:米),现需将其外壁用油漆刷一遍,若每平方米用漆a千克,则共需油漆的质量为()图6A.(48+36π)a千克B.(39+24π)a千克C.(36+36π)a千克D.(36+30π)a千克【解析】此建筑物是直四棱柱与圆锥的组合体,其外壁的面积S=π×32-3×3+π×3×5+3×4×4=39+24π(平方米),因此共需油漆的质量为(39+24π)a千克.【答案】 B10.如图7(1)所示,已知正方体面对角线长为a,沿阴影面将它切割成两块,拼成如图7(2)所示的几何体,那么此几何体的表面积为()图7A.(1+22)a2B.(2+2)a2C.(3-22)a2D.(4+2)a2【解析】由题意知新的几何体为平行六面体且共顶点的三条棱长分别为22a,22a和a,表面积为2×(22a)2+2×(22a)2+2×22a·a=(2+2)a2.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)11.如图8是一个四边形的直观图,则原图的面积为______.图8【解析】由四边形的直观图可知,原四边形是一个直角梯形,其上、下底边长分别为2、3,高为6,∴面积为2+32×6=15.【答案】1512.(2013·常熟高一检测)若圆锥的母线长为2 cm,底面圆的周长为2π cm,则圆锥的表面积为________.【解析】设圆锥的底面半径为r,则2πr=2π,∴r=1,∴圆锥的表面积S=12×2π×2+πr2=3π.【答案】3π13.如图9,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是______cm.图9【解析】侧面展开,可得最短路程为(2+2)2+12=17.【答案】1714.在直四棱柱ABCD—A1B1C1D1中,当底面四边形A1B1C1D1满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可) 【解析】由直四棱柱可知CC1⊥面A1B1C1D1,所以CC1⊥B1D1,要使B1D1⊥A1C,只要B1D1⊥平面A1CC1,所以只要B1D1⊥A1C1,还可以填写四边形A1B1C1D1是菱形,正方形等条件.【答案】B1D1⊥A1C1(答案不唯一)三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤)15.(本小题12分)如图10是一个几何体的主视图和俯视图,(1)试判断这个几何体是什么几何体;图10(2)请画出它的左视图,并求该左视图的面积.【解】(1)由题图中的主视图和俯视图知该几何体是正六棱锥.(2)该几何体的左视图如图所示.其中两腰为斜高,底边长为3a,三角形的高即为正六棱锥的高,且长为3 a,所以该左视图的面积为123a·3a=32a2.16.(本小题12分)如图11,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE=EF=1.求证:图11(1)AF∥平面BDE;(2)CF⊥平面BDE.【证明】(1)设AC与BD交于点G.因为EF∥AG,且EF=1,AG=12AC=1.所以四边形AGEF为平行四边形.所以AF∥EG.因为EG平面BDE.AF平面BDE,所以AF∥平面BDE.(2)连接FG,EG.因为EF∥CG,EF=CG=1,且CE=1,所以四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC.所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.17.(本小题12分)如图12所示是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.图12【解】此几何体是一个组合体(如图),下半部分是直四棱柱,上半部分是半圆柱,其轴截面的大小与四棱柱的上底面大小一致.表面积S=8×6×2+6×4×2+8×4+π×22+π×2×8=176+20π(cm2)则体积V=8×6×4+12×π×22×8=192+16π(cm3).所以几何体的表面积为(176+20π)cm2,体积为(192+16π)cm3.18.(本小题14分)如图13,四棱锥S—ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD.图13(1)求证:SO⊥平面ABCD;(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A—PCD的体积.【解】(1)证明:∵底面ABCD是菱形,∴AC⊥BD.又∵BD⊥SA,SA∩AC=A,∴BD⊥平面SAC.又∵SO平面SAC.∴BD⊥SO.∵SA =SC ,AO =OC ,∴SO ⊥AC . 又∵AC ∩BD =O , ∴SO ⊥平面ABCD . (2)连接OP ,∵SB ∥平面APC ,SB 平面SBD , 平面SBD ∩平面APC =OP ,∴SB ∥OP . 又∵O 是BD 的中点,∴P 是SD 的中点. 由题意知△ABD 为正三角形.∴OD =1. 由(1)知SO ⊥平面ABCD ,∴SO ⊥OD . 又∵SD =2,∴在Rt △SOD 中,SO = 3. ∴P 到面ABCD 的距离为32,∴V A —PCD =V P —ACD =13×(12×2×2sin 120°)×32=12.。
2015届鄂州二中高三一轮复习立体几何测试题(文) 一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下图是一个几何体的三视图,其中正(主)视图和侧(左)视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是(B)A.6πB.12πC.18π D.24π2.设x,y,z是空间的不同直线或不同平面,下列条件中能保证“若x⊥z,且y⊥z,则x∥y”为真命题的是(C)A.x,y,z为直线B.x,y,z为平面C.x,y为直线,z为平面D.x为直线,y,z为平面3.已知a、b为两条不同的直线,α、β为两个不同的平面,且a⊥α,b⊥β,则下列命题中为假命题的是(D)A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a,b相交,则α,β相交D.若α,β相交,则a,b相交4.如右图,正三棱柱ABC-A1B1C1的各棱长都为2,则EF的长是(C)A.2 B. 3C. 5D.75.如图,正方体ABCD-A1B1C1D1中,E、F分别为棱AB、CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线(A)A.有无数条B.有2条C.有1条D.不存在6.如右图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是(B)A.直线B.抛物线C.双曲线D.圆7.已知长方体ABCD-A′B′C′D′,对角线AC′与平面A′BD相交于点G,则G是△A′BD的(D)A.垂心B.外心C.内心D.重心8.如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是(D )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC9.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( B )A.13B.23C.33D.2310.如图,在透明塑料制成的长方体ABCD -A 1B 1C 1D 1容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱A 1D 1始终与水面EFGH 平行;④当E ∈AA 1时,AE +BF 是定值.其中正确说法是( D )A .①②③B .①②④C .②③④D .①③④二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上.) 11.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 的表面积等于4π12.若某几何体的三视图(单位:cm )如右上图所示,则此几何体的体积是144________3cm .此几何体的表面积是________2cm13.一空间几何体的三视图如图所示,该几何体的体积为16π则图中x 的值为 3 .14. 如图是某几何体的三视图,其中正视图是腰长为2a 的等腰三角形,俯视图是半径为a 的半圆,则该几何体的表面积是_32πa 2+3a 2_______. 15.如图①,一个圆锥形容器的高为a ,内装有一定量的水, 水面的高为2a.如果将容器倒置,这时容器里的水所形成 的圆锥(如图②)的高为.2a 16. 如图,在三棱柱'''ABC A B C 中,若E 、F 分别为AB 、AC 的中点,平面''EB C F 将三棱柱分成体积为1V 、2V 的两部分,那么12:V V 为. 7:517.如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、M 分别是棱AD 、DD 1、D 1A 1、A 1A 、AB 的中点,点N 在四边形EFGH 的四边及其内部运动,则当N 只需满足条件__点N 在EG 上______时,就有MN ⊥A 1C 1;当N 只需满足条件_点N 在EH 上_______时,就有MN ∥平面B 1D 1C .三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤.)18.(本小题满分12分)如图1-5,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,DD 1,BB 1,A 1B 1,A 1D 1的中点.求证:(1)直线BC 1∥平面EFPQ ;(2)直线AC⊥平面PQMN .18.证明:(1)连接AD 1,由ABCD - A 1B 1C 1D 1是正方体,知AD 1∥BC 1.因为F ,P 分别是AD ,DD 1的中点,所以FP ∥AD 1.从而BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)如图,连接AC ,BD ,A 1C 1,则AC ⊥BD .由CC 1⊥平面ABCD ,BD ⊂平面ABCD ,可得CC 1⊥BD . 又AC ∩CC 1=C ,所以BD ⊥平面ACC 1A 1. 而AC 1⊂平面ACC 1A 1,所以BD ⊥AC 1.因为M ,N 分别是A 1B 1,A 1D 1的中点,所以MN ∥BD ,从而MN ⊥AC 1. 同理可证PN ⊥AC 1.又PN ∩MN =N ,所以直线AC 1⊥平面PQMN . 19. (本小题满分12分) 如图1-5所示,四棱锥P - ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面AEBC F A'B'C'V V 12第12题GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.19.解:(1)证明:因为BC∥平面GEFH,BC⊂PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.(2)连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为PA=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在平面ABCD内,所以PO⊥平面ABCD.又因为平面GEFH⊥平面ABCD,且PO⊄平面GEFH,所以PO∥平面GEFH.因为平面PBD∩平面GEFH=GK,所以PO∥GK,所以GK⊥平面ABCD.又EF⊂平面ABCD,所以GK⊥EF,所以GK是梯形GEFH的高.由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,从而KB=14DB=12OB,即K是OB的中点.再由PO∥GK得GK=12PO,所以G是PB的中点,且GH=12BC=4.由已知可得OB=42,PO=PB2-OB2=68-32=6,所以GK=3,故四边形GEFH的面积S=GH+EF2·GK=4+82×3=18.20. (本小题满分13分)如图,在三棱柱ABCA1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥EABC的体积.20.解:(1)证明:在三棱柱ABC -A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,所以AB⊥平面B1BCC1.所以平面ABE⊥平面B1BCC1.(2)证明:取AB的中点G,连接EG,FG.因为E ,F ,G 分别是A 1C 1,所以FG ∥AC ,且FG =12AC ,EC 1=12A 1C 1.因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E - ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.21.(本小题满分14分)如图所示,四棱锥P - ABCD 的底面ABCD 是平行四边形,BA =BD =2,AD =2,PA=PD =5,E ,F 分别是棱AD ,PC 的中点.(1)证明:EF ∥平面PAB ; (2)若二面角P -AD -B 为60°.(i)证明:平面PBC ⊥平面ABCD ;(ii)求直线EF 与平面PBC 所成角的正弦值.21.解:(1)证明:如图所示,取PB 中点M ,连接MF ,AM .因为PC 中点,所以MF ∥BC ,且MF =12BC .由已知有BC ∥AD ,BC =AD ,又由于E 为AD 中点,因而MF ∥AE 且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面PAB ,而EF ⊄平面PAB EF ∥平面PAB .(2)(i)证明:连接PE ,BE .因为PA =PD ,BA =BD ,而E 为AD 中点,所以PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P - AD -B 的平面角.在△PAD 中,由PA =PD =5,AD=2,可解得PE =2.在△ABD 中,由BA =BD =2,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60˚,由余弦定理,可解得PB =3,从而∠PBE =90˚,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以平面PBC ⊥平面ABCD .(ii)连接BF ,由(i)知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由PB =3及已知,得∠ABP 为直角,而MB =12PB =32,可得AM =112,故EF =112.又BE=1,故在直角三角形EBF 中,sin ∠EFB =BE EF =21111.所以直线EF 与平面PBC 所成角的正弦值为21111.22.(本小题满分14分)已知某几何体的三视图如下图所示,其中俯视图为正三角形,设D 为AA 1的中点.(1)作出该几何体的直观图并求其体积.(2)求证:平面BB 1C 1C ⊥平面BDC 1.(3)BC 边上是否存在点P ,使AP ∥平面BDC 1?若不存在,说明理由;若存在,证明你的结论.[解析] 由题意可知该几何体为直三棱柱,且它的直观图如图所示.由图知底面正三角形边长为2,棱柱高为3,∴S △ABC =3,∴V =3 3.(2)证明:连结B 1C 交BC 1于E 点,则E 为B 1C 、BC 1的中点,连结DE .∵AD =A 1D ,AB =A 1C 1,∠BAD =∠DA 1C 1=90°, ∴△ABD ≌△A 1C 1D .∴BD =C 1D .∴DE ⊥BC 1. 同理,DE ⊥B 1C ,又∵B 1C ∩BC 1=E .∴DE ⊥平面BB 1C 1C .又∵DE ⊂平面BDC 1,∴平面BB 1C 1C ⊥平面BDC 1. (3)解:取BC 的中点P ,连结AP ,则AP ∥平面BDC 1, 证明:连结PE ,则PE ∥AD ,且PE =AD , ∴四边形APED 为平行四边形.∴AP ∥DE .又DE ⊂平面BDC 1,AP ⊄平面BDC 1, ∴AP ∥平面BDC 1.。
江西省2015届高三数学一轮复习备考试题立体几何一、选择题 1、(2014年江西高考)一几何体的直观图如右图,下列给出的四个俯视图中正确的是2、(2013年江西高考)如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为,m n ,那么m n +=A.8B.9C.10D.11 3、(2012年江西高考)如图,已知正四棱锥S-ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分。
记SE=x (0<x <1),截面下面部分的体积为V (x ),则函数y=V (x )的图像大致为4、(红色六校2015届高三第一次联考)已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )5、(2014届江西省高三4月模拟)已知某几何体的三视图如图所示,则该几何体的体积为A.233B.223C.203D.1436、(吉安一中2014届高三下学期第一次模拟)如图,正四面体ABCD 的顶点A ,B ,C 分别在两两垂直的三条射线,,Ox Oy Oz 上,则在下列命题中,错误..的为( )A. O-ABC 是正三棱B. 直线OB ∥平面ACDC. 直线AD 与OB 所成的角是45°D. 二面角D-OB-A 为45°7、(南昌三中2014届高三第七次考试)M 是正方体1111ABCD A B C D -的棱1DD 的中点,给出下列命题:①过M 点有且只有一条直线与直线AB 、11B C 都相交; ②过M 点有且只有一条直线与直线AB 、11B C 都垂直; ③过M 点有且只有一个平面与直线AB 、11B C 都相交;④过M 点有且只有一个平面与直线AB 、11B C 都平行.其中真命题是( ) A .②③④ B .①③④ C .①②④ D .①②③ 8、设a ,b 是不同的直线,α,β是不同的平面,则下列命题:①若a ⊥b ,a ⊥α,则b ∥α; ②若a ∥α,α⊥β则a ⊥β; ③若a ⊥β,α⊥β,则a ∥α;④若a ⊥b ,a ⊥α,b ⊥β则a ⊥β. 其中正确命题的个数是A .0B .1C .2D .39、将正方体(如图(a)所示)截去两个三棱锥,得到图(b)所示的 几何体,则该几何体的侧视图为10、设m 、n 是两条不同的直线,α、β是两个不同的平面,考查下列命题,其中正确的命题是A 、n n αβαβ⊥,⇒⊥∥,m ∥mB 、,,m n m n αβαβ⊥⊂⊥⇒⊥C 、,,m n m n αβαββ⊥=⊥⇒⊥ D 、,,m n n αβαβ⊥⊥⇒⊥∥m11、平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD 折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为( )A.π23 B. π3 C. π32 D. π2 12、如右图所示是一个几何体的三视图,则该几何体的体积为( )A .1B .12C .34D .32二、解答题1、(2014年江西高考)如图,四棱锥ABCD P -中,ABCD 为矩形,平面⊥PAD 平面ABCD .(1)求证:;PD AB ⊥ (2)若,2,2,90===∠PC PB BPC 问AB 为何值时,四棱锥ABCD P -的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值.2、(2013年江西高考)如图,四棱锥P ABCD -中,PA ,ABCD E BD ⊥平面为的中点,G PD 为的中点,3,12DAB DCB EA EB AB PA ∆≅∆====,,连接CE 并延长交AD 于F .(1) 求证:AD CFG ⊥平面;(2)求平面BCP 与平面DCP 的夹角的余弦值.3、(2012年江西高考)在三棱柱ABC-A 1B 1C 1中,已知AB=AC=AA 1BC=4,在A 1在底面ABC 的投影是线段BC 的中点O 。
解答题规范专练(四)立体几何1.如图,四边形ABCD是梯形,AB∥CD,∠BAD=90°,P A⊥平面ABCD,且AB=1,AD=1,CD=2,P A=3,E为PD的中点.(1)求证:AE∥平面PBC;(2)求直线AC与PB所成角的余弦值.2.(2014·太原模拟)如图,在四棱锥P-ABCD中,P A⊥底面ABCD,底面ABCD为梯形,AB∥DC,AB⊥BC,AB=BC=P A=1,CD=2,点E在棱PB上,且PE=2EB.(1)求证:PD∥平面EAC;(2)求二面角A-EC-B的余弦值.3.一个多面体的三视图和直观图如图所示,其中M,N分别是AB,SA的中点.(1)求证:NB⊥MC;(2)求平面SAD 与平面SMC 所成角的余弦值.答 案1.解:(1)证明:取PC 的中点为F ,连接EF ,BF ,又E 为PD 的中点,所以EF ∥DC 且EF =12DC , 所以EF ∥AB ,且EF =AB ,所以四边形ABFE 为平行四边形,所以AE ∥BF ,因为AE ⊄平面PBC ,BF ⊂平面PBC ,所以AE ∥平面PBC .(2)建立如图所示的空间直角坐标系,则A ,B ,C ,P 的坐标分别为A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,3).从而AC =(2,1,0), PB =(1,0,-3),设AC 与PB 的夹角为θ,则cos θ=AC ·PB | AC ||PB |=25.2.解:(1)证明:连接BD 交AC 于点O ,则OB ∶OD =AB ∶DC=1∶2,即OD =2OB .又PE =2EB , ∴OB OD =BE PE , 连接OE ,则OE ∥PD .又OE ⊂平面EAC ,PD ⊄平面EAC ,∴PD ∥平面EAC .(2)设CD 的中点为F ,连接AF ,则AB =CF ,∴四边形ABCF 是正方形,如图,分别以AF ,AB ,AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则点A (0,0,0),B (0,1,0),C (1,1,0),P (0,0,1),设点E (x ,y ,z ),则PE =(x ,y ,z -1),EB =(-x,1-y ,-z ).由PE =2EB ,得⎩⎪⎨⎪⎧ x =-2x ,y =2(1-y ),z -1=-2z ,解得⎩⎪⎨⎪⎧ x =0,y =23,z =13.∴E ⎝⎛⎭⎫0,23,13, ∴AE =⎝⎛⎭⎫0,23,13,AC =(1,1,0). 设n =(a ,b ,c )是平面AEC 的一个法向量,则⎩⎪⎨⎪⎧ n ·AE =23b +13c =0,n ·AC =a +b =0,令a =1,得b =-1,c =2,n =(1,-1,2),同理可得平面BEC 的一个法向量m =(0,1,1),cos 〈m ,n 〉=-1+26×2=36,图像可判断二面角A -EC -B 是钝角, ∴二面角A -EC -B的余弦值是-36. 3.解:(1)证明:如图,建立空间直角坐标系,则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),S (0,0,2),M ⎝⎛⎭⎫1,12,0,N ⎝⎛⎭⎫12,0,1, ∴CM =⎝⎛⎭⎫1,-12,0, BN =⎝⎛⎭⎫-12,-1,1, ∴CM ·BN =1×⎝⎛⎭⎫-12+⎝⎛⎭⎫-12×(-1)+0×1=0,∴CM ⊥BN ,即NB ⊥MC . (2)易知平面SAD 的一个法向量是DC =(0,1,0),设平面SMC 的法向量为n =(a ,b ,c ), 又SM =⎝⎛⎭⎫1,12,-2,SC =(0,1,-2),即⎩⎪⎨⎪⎧a +12b -2c =0,b -2c =0,令c =1,则b =2,a =1,故n =(1,2,1),于是cos 〈DC ,n 〉=DC ·n|DC ||n |=26=63.故平面SAD 与平面SMC 所成角的余弦值为63.。
阶段性测试题九(立体几何)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014·抚顺二中期中)已知a,b,c是三条不同的直线,α,β,γ是三个不同的平面,下述命题中真命题的是()A.若a⊥c,b⊥c,则a∥b或a⊥bB.若α⊥β,β⊥γ,则α∥βC.若a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则α⊥βD.若a⊥α,b⊂β,a∥b,则α⊥β[答案] D[解析]由a⊥c,b⊥c知,a与b可平行可相交,也可异面,故A错;由直棱柱相邻两个侧面与底面都垂直知B错;当α∩β=l,a⊥l,b∥c∥l时,可满足C的条件,故C错;∵a∥b,a⊥α,∴b⊥α,又b⊂β,∴α⊥β,∴D正确.2.(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)已知不重合的两条直线l,m和不重合的两个平面α,β,下列命题正确的是()A.l∥m,l∥β,则m∥βB.α∩β=m,l⊂α,则l∥βC.α⊥β,l⊥α,则l∥βD.l⊥m,m⊥β,l⊥α,则α⊥β[答案] D[解析]l⊄β,l∥m,m⊂β时,l∥β,故A错;α∩β=m,当l⊂α且l∥m时,l∥β,当l与m 相交时,l与β相交,故B错;α⊥β,当l⊂β,l与α和β的交线垂直,l⊥α时,但l∥β不成立,故C错;∵l⊥m,l⊥α,∴m⊂α或m∥α,又m⊥β,∴α⊥β,故D正确.3.(2014·山东省博兴二中质检)某四面体的三视图如图所示,该四面体四个面的面积值最大的是()A.8B.6 2C.8 2 D.10[答案] D[解析]由三视图知,该几何体直观图如图,其中△ABC为以B为直角的直角三角形,AB=4,BC=3,高P A=4,∴S△ABC=12×4×3=6,S△P AB=12×4×4=8,S△PBC=12PB·BC=12×42×3=62,S△P AC=12AC·P A=12×5×4=10,故选D.4.(2014·河南淇县一中模拟)将正方体(如图(a)所示)截去两个三棱锥,得到图(b)所示的几何体,则该几何体的侧视图为()[答案] B[解析]在侧视图中,D1的射影为C1,A的射影为B,D的射影为C,AD1的射影BC1为实线(右下到左上),B1C为虚线,故选B.5.(文)(2014·浙北名校联盟联考)一个几何体的三视图如图所示,则该几何体的体积为()A .4B .8C .4 3D .8 3[答案] B[解析] 作出几何体的直观图如图,这是一个三棱锥P -ABC ,其中P 在底面射影为D 点,PD =23,AD =3,CD =1,E 为AC 的中点,BE ⊥AC ,BE =23,故几何体的体积V =13S △ABC ·PD =13×(12·AC ·BE )·PD =8,故选B.(理)(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)一个几何体的三视图如图所示,则该几何体的体积为( )A .1B .2C .3D .4 [答案] A[解析] 由三视图知,该几何体是一个三棱锥P -ABC ,其中底面△ABC 为直角三角形,∠A 为直角,顶点P 到A ,C 的距离相等,P 点在底面的射影D ,满足AC ∥BD ,且BD =12AC =1,PD =3,画出其直观图如图所示,其体积V =13S △ABC ·PD =13×(12×2×1)×3=1.6.(2014·辽宁师大附中期中)已知一个几何体的三视图如图所示,则该几何体的表面积为( )A .24+6πB .24+4πC .28+6πD .28+4π [答案] A[解析] 由三视图知,该几何体为组合体,其上部为半球,半球的直径为22,下部为长方体,长、宽、高为2,2,3,其表面积为2×4×3 +12×4π·(222)2+π·(222)2=24+6π,故选A.7.(2014·高州四中质量监测)已知某几何体的三视图如图所示,其中正视图中半圆的直径为2,则该几何体的体积为( )A .24-π3B .24-π2C .24-32πD .24-π[答案] C[解析] 由三视图知,该几何体是由长、宽、高分别为3、4、2的长方体内挖去一个底半径为1,高为3的半圆柱后剩余部分,其体积V =3×4×2-12(π×12×3)=24-32π.8.(2014·山西曲沃中学期中)已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2.∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为( )A.33B.233C.433D.533[答案] C[解析] 设球心为O ,△ABO 所在平面截球O 得截面如图,∵OA =OB =AB =OS =OC =2,∠ASC =∠BSC =45°,∴SC ⊥平面ABO ,V S -ABC =V S -ABO +V C -ABO =2V S -ABO =2×13×(34×22)×2=433,故选C.9.(文)(2014·陕西工大附中四模)如下图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )[答案] C[解析] 若俯视图为A ,则该几何体是棱长为1的正方体,体积V =1;若俯视图为B ,则该几何体是底半径为12,高为1的圆柱,其体积V =π·(12)2·1=π4;若俯视图为D ,则该几何体是底半径为1,高为1的圆柱的14,其体积V =14·π·12·1=π4;若俯视图为C ,则该几何体是直三棱柱,底面直角三角形两直角边长为1,棱柱高为1,体积为V =(12×1×1)×1=12,因此选C.(理)(2014·开滦二中期中)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =2,BC =3,D 、E 分别是AC 1和BB 1的中点,则直线DE 与平面BB 1C 1C 所成的角为( )A.π6B.π4C.π3D.π2[答案] A[解析] 取AC 中点F ,则DF 綊BE ,∴DE ∥BF , ∴BF 与平面BB 1C 1C 所成的角为所求, ∵AB =1,BC =3,AC =2,∴AB ⊥BC ,又AB ⊥BB 1,∴AB ⊥平面BCC 1B 1,作GF ∥AB 交BC 于G ,则GF ⊥平面BCC 1B 1,∴∠FBG 为直线BF 与平面BCC 1B 1所成的角,由条件知BG =12BC =32,GF =12AB =12,∴tan ∠FBG =GF BG =33,∴∠FBG =π6.10.(2014·绵阳市南山中学检测)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:①若m ⊂β,α⊥β,则m ⊥α; ②若α∥β,m ⊂α,则m ∥β; ③若n ⊥α,n ⊥β,m ⊥α,则m ⊥β; ④若α⊥γ,β⊥γ,m ⊥α,则m ⊥β. 其中正确命题的序号是( ) A .①③ B .①② C .③④ D .②③[答案] D[解析] 由两个平面平行的性质知②正确;∵n ⊥α,n ⊥β,∴α∥β,又m ⊥α,∴m ⊥β,∴③正确,故选D.11.(文)(2014·云南景洪市一中期末)一个几何体的三视图如图所示,其中俯视图与左视图均为半径是1的圆,则这个几何体的体积是( )A.4π3 B .π C.2π3 D.π3[答案] B[解析] 由三视图知,这是一个半径为1的球,截去14,故其体积为V =34·(4π3·13)=π.(理)(2014·吉林延边州质检)正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点(如图),用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的左视图为( )[答案] C[解析] 由条件知AE ∥平面DD 1C 1C ,平面AEC 1与平面DD 1C 1C 相交,故交线与AE 平行,∵E 为BB 1的中点,故取DD 1的中点F ,∴AE 綊C 1F ,故截面为AEC 1F (如图1),截去正方体的上半部分后,剩余部分几何体直观图如图2,故其左视图形状与直角梯形FD 1A 1A 相同,且C 1E 的射影为虚线,由于B 1E =12AA 1,故E 点射影在直角梯形下底的中点,故选C.12.(文)(2014·吉林省实验中学一模)已知正三棱锥P -ABC ,点P 、A 、B 、C 都在半径为3的球面上,若P A 、PB 、PC 两两互相垂直,则球心到截面ABC 的距离为( )A. 2B. 3C.33D.233[答案] C[解析] 由条件知,以P A 、PB 、PC 为三棱作长方体P ADB -CA 1D 1B 1,则该长方体内接于球,体对角线PD 1为球的直径,由于三棱锥P -ABC 为正三棱锥,∴AB =AC =BC ,∴P A =PB =PC ,设P A =a ,则3a =23,∴a =2.设球心到截面的距离为h ,则由V A -PBC =V P -ABC 得, 13(12×2×2)×2=13×34×(22)2×(3-h ), ∴h =33. (理)(2014·成都七中模拟)平面四边形ABCD 中,AD =AB =2,CD =CB =5,且AD ⊥AB ,现将△ABD 沿着对角线BD 翻折成△A ′BD ,则在△A ′BD 折起至转到平面BCD 内的过程中,直线A ′C 与平面BCD 所成的最大角的正切值为( )A .1 B.12 C.33D. 3[答案] C[解析] 如下图,OA =1,OC =2,在△ABD 绕直线BD 旋转过程中,OA 绕点O 旋转形成半圆,显然当A ′C 与圆相切时,直线A ′C 与平面BCD 所成角最大,最大角为30°,其正切值为33,选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(2014·山西省太原五中月考)如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +P A 1的最小值为________.[答案]8+2 6[解析] 由题意可知,△BCC 1为等腰直角三角形,∵AC =6,BC =CC 1=2,∠ACB =90°,∴∠A 1B =10,BC 1=2,∵A 1B 2=A 1C 21+BC 21,∴∠AC 1B 为直角,将△BCC 1与△A 1BC 1所在平面铺平如图,设A 1C 交BC 1于Q ,则当点P 与Q 重合时,CP +P A 1取到最小值,最小值为A 1C .A 1C =A 1C 21+C 1C 2-2A 1C 1·C 1C cos135° =6+2-2×6×2×(-22)=8+2 6.14.(文)(2014·抚顺市六校联合体期中)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.[答案] 12π[解析] 由V =13Sh =13×(3)2·h =322知,h =322,设正方形ABCD 的中心为M ,则MA =62,∴OA 2=OM 2+MA 2=(322)2+(62)2=3,∴S 球=4π·OA 2=12π.(理)(2014·抚顺二中期中)右图是一个空间几何体的三视图,如果主视图和左视图都是边长为2的正三角形,俯视图为正方形,那么该几何体的体积为________.[答案]433[解析] 由三视图知,几何体是正四棱锥,底面正方形边长为2,棱锥的斜高为2,故高h =22-12=3,∴体积V =13×4×3=433.15.(文)(2014·西安市长安中学期中)一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为________.[答案]3(8-π)6[解析] 根据三视图,该几何体是一个组合体,其中左侧是半个圆锥,右侧是底面为正方形的四棱锥,由于侧视图是一个边长为2的等边三角形,所以高为 3.所以其体积为V =13·(12π·12+22)·3=3(8+π)6.(理)(2014·浙江台州中学期中)把边长为1的正方形ABCD 沿对角线BD 折起,形成三棱锥C -ABD ,它的主视图与俯视图如图所示,则二面角C -AB -D 的正切值为________.[答案] 2[解析] 三棱锥C -ABD 直观图如图,由主视图与俯视图知,平面CBD ⊥平面ABD ,CO ⊥平面ABD ,作OE ∥AD ,∵AD ⊥AB ,∴OE ⊥AB ,连结CE ,则CE ⊥AB ,∴∠CEO 为二面角C -AB -D 的平面角,在Rt △COE 中,OE =12AD =12,CO =22,∴tan ∠CEO =COOE= 2.16.(文)(2014·华安、连城、永安、漳平、泉港一中,龙海二中六校联考)点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则下列四个命题:①三棱锥A -D 1PC 的体积不变; ②A 1P ∥平面ACD 1; ③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1. 其中正确的命题序号是________. [答案] ①②④[解析] ①VA -D 1PC =VP -AD 1C ,∵BC 1∥AD 1,AD 1⊂平面AD 1C ,∴BC 1∥平面AD 1C ,∴无论P 在BC 1上任何位置,P 到平面AD 1C 的距离为定值,∴三棱锥A -D 1PC 的体积不变,∴①正确;②∵A 1C 1∥AC ,BC 1∥AD 1,A 1C 1∩BC 1=C 1,AC ∩AD 1=A ,∴平面A 1BC 1∥平面AD 1C ,∵A 1P ⊂平面A 1BC 1,∴A 1P ∥平面ACD 1,∴②正确;③假设DP ⊥BC 1,∵DC ⊥平面BCC 1B 1,∴DC ⊥BC 1, ∴BC 1⊥平面ABCD ,与正方体ABCD -A 1B 1C 1D 1矛盾, ∴③错误;④∵B 1B ⊥AC ,BD ⊥AC ,∴AC ⊥平面B 1BD ,∴AC ⊥B 1D ,同理可证AD 1⊥B 1D ,∴B 1D ⊥平面ACD 1,∵B 1D ⊂平面PDB 1,∴平面PDB 1⊥平面ACD 1,∴④正确.(理)(2014·成都七中模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 是BC 1的中点,P 是BB 1一动点,则(AP +MP )2的最小值为________.[答案] 52[解析] 将平面ABB 1A 1展开到与平面CBB 1C 1共面,如下图,易知当A 、P 、M 三点共线时(AP +MP )2最小.AM 2=AB 2+BM 2-2AB ×BM cos135°=12+(22)2-2×1×22×(-22)=52. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(2014·天津市六校联考)在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,已知BC =1,∠BCC 1=π3,AB =CC 1=2.(1)求证:BC 1⊥平面ABC ;(2)试在棱CC 1(不包含端点C ,C 1)上确定一点E 的位置,使得EA ⊥EB 1; (3)(理)在(2)的条件下,求AE 和平面ABC 1所成角正弦值的大小. [解析] (1)∵BC =1,∠BCC 1=π3,CC 1=2,∴BC 1=3,∴BC 2+BC 21=CC 21,∴BC 1⊥BC ,∵AB ⊥侧面BB 1C 1C ,BC 1⊂平面BB 1C 1C , ∴BC 1⊥AB 且BC ∩AB =B , ∴BC 1⊥平面ABC .(2)E 为C 1C 的中点.连接BE ,∵BC =CE =1,∠BCC 1=π3,等边△BEC 中,∠BEC =π3,同理:B 1C 1=C 1E =1,∠B 1C 1E =2π3,∴∠B 1EC 1=π6,∴∠BEB 1=π2,∴EB 1⊥EB ,∵AB ⊥侧面BB 1C 1C ,EB 1⊂平面BB 1C 1C , ∴EB 1⊥AB 且EB ∩AB =B ,∴B 1E ⊥平面ABE ,EA ⊂平面ABE ,∴EA ⊥EB 1. (3)∵AB ⊥侧面BB 1C 1C ,AB ⊂平面ABC 1, ∵平面BCC 1B 1⊥平面ABC 1,过E 作BC 1的垂线交BC 1于F ,则EF ⊥平面ABC 1, 连接AF ,则∠EAF 为所求, ∵BC ⊥BC 1,EF ⊥BC 1,∴BC ∥EF , ∵E 为C 1C 的中点,∴F 为C 1B 的中点,∴EF =12,由(2)知AE =5,∴sin ∠EAF =125=510.18.(本小题满分12分)(文)(2014·长沙市重点中学月考)如图所示,圆柱的高为2,底面半径为7,AE 、DF是圆柱的两条母线,过AD 作圆柱的截面交下底面于BC ,四边形ABCD 是正方形.(1)求证BC ⊥BE ;(2)求四棱锥E -ABCD 的体积. [解析] (1)∵AE 是圆柱的母线,∴AE ⊥底面EBC ,又BC ⊂底面EBC ,∴AE ⊥BC , 又∵截面ABCD 是正方形,所以BC ⊥AB , 又AB ∩AE =A ,∴BC ⊥平面ABE , 又BE ⊂平面ABE ,∴BC ⊥BE .(2)∵母线AE ⊥底面EBC ,∴AE 是三棱锥A -BCE 的高, 由(1)知BC ⊥平面ABE ,BC ⊂平面ABCD , ∴平面ABCD ⊥平面ABE , 过E 作EO ⊥AB ,交AB 于O ,又∵平面ABCD ∩平面ABE =AB ,EO ⊂平面ABE , ∴EO ⊥平面ABCD ,即EO 就是四棱锥E -ABCD 的高, 设正方形ABCD 的边长为x ,则AB =BC =x , BE =AB 2-AE 2=x 2-4,又∵BC ⊥BE ,∴EC 为直径,即EC =27, 在Rt △BEC 中,EC 2=BE 2+BC 2, 即(27)2=x 2+x 2-4,∴x =4, ∴S 四边形ABCD =4×4=16,OE =AE ·BE AB =2×42-44=3,∴V E -ABCD =13·OE ·S 四边形ABCD =13×3×16=1633.(理)(2014·湖南长沙实验中学、沙城一中联考)在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1,ACC 1A 1均为正方形,∠BAC =90°,点D 是棱B 1C 1的中点.(1)求证:A 1D ⊥平面BB 1C 1C ; (2)求证:AB 1∥平面A 1DC ; (3)求二面角D -A 1C -A 的余弦值.[解析] (1)证明:因为侧面ABB 1A 1,ACC 1A 1均为正方形, 所以AA 1⊥AC ,AA 1⊥AB ,所以AA 1⊥平面ABC , 所以AA 1⊥平面A 1B 1C 1.因为A 1D ⊂平面A 1B 1C 1,所以AA 1⊥A 1D , 又因为CC 1∥AA 1,所以CC 1⊥A 1D , 又因为A 1B 1=A 1C 1,D 为B 1C 1中点, 所以A 1D ⊥B 1C 1. 因为CC 1∩B 1C 1=C 1, 所以A 1D ⊥平面BB 1C 1C .(2)证明:连结AC 1,交A 1C 于点O ,连结OD , 因为ACC 1A 1为正方形,所以O 为AC 1中点, 又D 为B 1C 1中点,所以OD 为△AB 1C 1中位线, 所以AB 1∥OD ,因为OD ⊂平面A 1DC ,AB 1⊄平面A 1DC , 所以AB 1∥平面A 1DC .(3)因为侧面ABB 1A 1,ACC 1A 1均为正方形,∠BAC =90°,所以AB ,AC ,AA 1两两互相垂直,如图所示建立直角坐标系A -xyz . 设AB =1,则C (0,1,0),B (1,0,0),A 1(0,0,1),D (12,12,1).A 1D →=(12,12,0),A 1C →=(0,1,-1),设平面A 1DC 的法向量为n =(x ,y ,z ),则有 ⎩⎪⎨⎪⎧n ·A 1D →=0,n ·A 1C →=0,∴⎩⎪⎨⎪⎧x +y =0,y -z =0,取x =1,得n =(1,-1,-1).又因为AB ⊥平面ACC 1A 1,所以平面ACC 1A 1的法向量为AB →=(1,0,0), 设二面角D -A 1C -A 的平面角为θ,则θ=π-〈n ,AB →〉, ∴cos θ=cos(π-〈n ,AB →〉) =-n ·AB →|n |·|AB →|=-13=-33,所以,二面角D -A 1C -A 的余弦值为-33. 19.(本小题满分12分)(文)(2014·黄石二中检测)如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =2AB =2,且BC 1⊥A 1C .(1)求证:平面ABC 1⊥平面A 1ACC 1;(2)设D 是A 1C 1的中点,判断并证明在线段BB 1上是否存在点E ,使DE ∥平面ABC 1;若存在,求三棱锥E -ABC 1的体积.[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,有A 1A ⊥平面ABC .∴A 1A ⊥AC ,又A 1A =AC ,∴A 1C ⊥AC 1.又BC 1⊥A 1C ,∴A 1C ⊥平面ABC 1,∵A 1C ⊂平面A 1ACC 1,∴平面ABC 1⊥平面A 1ACC 1.(2)存在,E 为BB 1的中点.取A 1A 的中点F ,连EF ,FD ,当E 为B 1B 的中点时,EF ∥AB ,DF ∥AC 1, ∴平面EFD ∥平面ABC 1,则有ED ∥平面ABC 1. 当E 为BB 1的中点时,V E -ABC 1=V C1-ABE=13×2×12×1×1=13. (理)(2014·保定市八校联考)如图,在底面是直角梯形的四棱锥P -ABCD 中,∠DAB =90°,P A ⊥平面ABCD ,P A =AB =BC =3,梯形上底AD =1.(1)求证:BC ⊥平面P AB ;(2)在PC 上是否存在一点E ,使得DE ∥平面P AB ?若存在,请找出;若不存在,说明理由; (3)求平面PCD 与平面P AB 所成锐二面角的正切值. [解析] (1)证明:∵BC ∥AD 且∠DAB =90°,∴BC ⊥AB ,又P A ⊥平面ABCD ,∴BC ⊥P A , 而P A ∩AB =A ,∴BC ⊥平面P AB .(2)延长BA 、CD 相交于Q 点,假若在PC 上存在点E ,满足DE ∥平面P AB ,则由平面PCQ 经过DE 与平面P AB 相交于PQ 知DE ∥PQ ,∵AD ∥BC 且AD =1,BC =3, ∴PE CP =QD CQ =AD BC =13, 故E 为CP 的三等分点,PE =12CE .(3)过A 作AH ⊥PQ ,垂足为H ,连DH , 由(1)及AD ∥BC 知:AD ⊥平面P AQ , ∴AD ⊥PQ ,又AH ⊥PQ , ∴PQ ⊥平面HAD ,∴PQ ⊥HD .∴∠AHD 是平面PCD 与平面PBA 所成的二面角的平面角. 易知AQ =32,PQ =352,∴AH =AQ ·P A PQ =355,∴tan ∠AHD =AD AH =53,所以平面PCD 与平面P AB 所成二面角的正切值为53. 20.(本小题满分12分)(文)(2014·北京朝阳区期末)如图,在三棱锥P -ABC 中,平面P AC ⊥平面ABC ,P A ⊥AC ,AB ⊥BC .设D 、E 分别为P A 、AC 中点.(1)求证:DE∥平面PBC;(2)求证:BC⊥平面P AB;(3)试问在线段AB上是否存在点F,使得过三点D,E,F的平面内的任一条直线都与平面PBC 平行?若存在,指出点F的位置并证明;若不存在,请说明理由.[解析](1)证明:因为点E是AC中点,点D为P A的中点,所以DE∥PC.又因为DE⊄平面PBC,PC⊂平面PBC,所以DE∥平面PBC.(2)证明:因为平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,又P A⊂平面P AC,P A⊥AC,所以P A⊥平面ABC.所以P A⊥BC.又因为AB⊥BC,且P A∩AB=A,所以BC⊥平面P AB.(3)当点F是线段AB中点时,过点D,E,F的平面内的任一条直线都与平面PBC平行.取AB中点F,连EF,DF.由(1)可知DE∥平面PBC.因为点E是AC中点,点F为AB的中点,所以EF∥BC.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC.又因为DE∩EF=E,所以平面DEF∥平面PBC,所以平面DEF内的任一条直线都与平面PBC平行.故当点F是线段AB中点时,过点D,E,F所在平面内的任一条直线都与平面PBC平行.(理)(2014·山东省博兴二中质检)如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q 为AD 的中点.(1)若P A =PD ,求证:平面PQB ⊥平面P AD ;(2)设点M 在线段PC 上,PM MC =12,求证:P A ∥平面MQB ;(3)在(2)的条件下,若平面P AD ⊥平面ABCD ,且P A =PD =AD =2,求二面角M -BQ -C 的大小.[解析] (1)连接BD ,∵四边形ABCD 为菱形,∠BAD =60°,∴△ABD 为正三角形, 又Q 为AD 中点,∴AD ⊥BQ .∵P A =PD ,Q 为AD 的中点,AD ⊥PQ , 又BQ ∩PQ =Q ,∴AD ⊥平面PQB ,∵AD ⊂平面P AD , ∴平面PQB ⊥平面P AD . (2)连接AC 交BQ 于点N ,由AQ ∥BC 可得,△ANQ ∽△CNB ,∴AQ BC =AN NC =12.又PM MC =12,∴PM MC =ANNC.∴P A ∥MN . ∵MN ⊂平面MQB ,P A ⊄平面MQB ,∴P A ∥平面MQB . (3)∵P A =PD =AD =2,Q 为AD 的中点,∴PQ ⊥AD . 又平面P AD ⊥平面ABCD ,∴PQ ⊥平面ABCD .以Q 为坐标原点,分别以QA 、QB 、QP 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则各点坐标为A (1,0,0),B (0,3,0),P (0,0,3).设平面MQB 的法向量n =(x ,y ,z ),可得⎩⎪⎨⎪⎧ n ·QB →=0,n ·MN →=0.∵P A ∥MN ,∴⎩⎪⎨⎪⎧n ·QB →=0,n ·P A →=0.∴⎩⎨⎧3y =0,x -3z =0,取z =1,得n =(3,0,1). 取平面ABCD 的法向量m =(0,0,1). cos 〈m ,n 〉=m ·n |m ||n |=12.故二面角M -BQ -C 的大小为60°.21.(本小题满分12分)(文)如图,E 是以AB 为直径的半圆弧上异于A ,B 的点,矩形ABCD 所在平面垂直于该半圆所在的平面,且AB =2AD =2.(1)求证:EA ⊥EC ;(2)设平面ECD 与半圆弧的另一个交点为F . ①求证:EF ∥AB ;②若EF =1,求三棱锥E -ADF 的体积.[解析] (1)∵E 是半圆上异于A ,B 的点,∴AE ⊥EB , 又∵平面ABCD ⊥平面ABE ,且CB ⊥AB , 由面面垂直性质定理得CB ⊥平面ABE , 又AE ⊂平面ABE ,∴CB ⊥AE , ∵BC ∩BE =B ,∴AE ⊥平面CBE , 又EC ⊂平面CBE ,∴AE ⊥EC .(2)①由CD ∥AB ,得CD ∥平面ABE , 又∵平面CDE ∩平面ABE =EF , ∴根据线面平行的性质定理得CD ∥EF , 又CD ∥AB ,∴EF ∥AB .②V E -ADF =V D -AEF =13×12×1×32×1=312.(理)(2014·浙江台州中学期中)如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上,过点E作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(折起后的点A 记作点P ),使得∠PEB =60°.(1)求证:EF ⊥PB .(2)试问:当点E 在线段AB 上移动时,二面角P -FC -B 的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.[解析] (1)在Rt △ABC 中,∵EF ∥BC ,∴EF ⊥AB , ∴EF ⊥EB ,EF ⊥EP ,又∵EB ∩EP =E ,∴EF ⊥平面PEB . 又∵PB ⊂平面PEB ,∴EF ⊥PB .(2)解法一:∵EF ⊥平面PEB ,EF ⊂平面BCFE ,∴平面PEB ⊥平面BCFE ,过P 作PQ ⊥BE 于点Q ,垂足为Q ,则PQ ⊥平面BCFE ,过Q 作QH ⊥FC ,垂足为H .则∠PHQ 即为所求二面角的平面角.设PE =x ,则EQ =12x ,PQ =32x ,QH =(PE +EQ )sin π4=324x ,故tan ∠PHQ =PQ QH =63,cos ∠PHQ =155,即二面角P -FC -B 的平面角的余弦值为定值155. 解法二:在平面PEB 内,经P 点作PD ⊥BE 于D , 由(1)知EF ⊥平面PEB ,∴EF ⊥PD .∴PD ⊥平面BCFE .在平面PEB 内过点B 作直线BH ∥PD ,则BH ⊥平面BCFE .以B 点为坐标原点,BC →,BE →,BH →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.设PE =x (0<x <4)又∵AB =BC =4,∴BE =4-x ,EF =x , 在Rt △PED 中,∠PED =60°,∴PD =32x ,DE =12x , ∴BD =4-x -12x =4-32x ,∴C (4,0,0),F (x,4-x,0),P (0,4-32x ,32x ).从而CF →=(x -4,4-x,0),CP →=(-4,4-32x ,32x ).设n 1=(x 0,y 0,z 0)是平面PCF 的一个法向量,则 n 1·CF →=0,n 1·CP →=0,∴⎩⎪⎨⎪⎧x 0(x -4)+y 0(4-x )=0,-4x 0+(4-32x )y 0+32xz 0=0,∴⎩⎨⎧x 0-y 0=0,3x 0-z 0=0, 取y 0=1,得,n 1=(1,1,3).又平面BCF 的一个法向量为n 2=(0,0,1). 设二面角P -FC -B 的平面角为α,则 cos α=|cos 〈n 1,n 2〉|=155. 因此当点E 在线段AB 上移动时,二面角P -FC -B 的平面角的余弦值为定值155. 22.(本小题满分14分)(文)(2014·广东执信中学期中)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A 1B 1C 1D 1-ABCD ,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD -A 2B 2C 2D 2.(1)证明:直线B 1D 1⊥平面ACC 2A 2;(2)现需要对该零部件表面进行防腐处理.已知AB =10,A 1B 1=20,AA 2=30,AA 1=13(单位:cm),每平方厘米的加工处理费为0.20元,需加工处理费多少元?[解析] (1)∵四棱柱ABCD -A 2B 2C 2D 2的侧面是全等的矩形, ∴AA 2⊥AB ,AA 2⊥AD ,又∵AB ∩AD =A , ∴AA 2⊥平面ABCD .连接BD ,∵BD ⊂平面ABCD ,∴AA 2⊥BD . ∵底面ABCD 是正方形,∴AC ⊥BD . ∵AA 2∩AC =A ,∴BD ⊥平面ACC 2A 2, 根据棱台的定义可知,BD 与B 1D 1共面.又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥BD . ∴B 1D 1⊥平面ACC 2A 2.(2)∵四棱柱ABCD -A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形, ∴S 1=S 四棱柱上底面+S 四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1300(cm 2). 又∵四棱台A 1B 1C 1D 1-ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形, 等腰梯形的高h ′=132-(20-102)2=12.所以S 2=S 四棱台下底面+S 四棱台侧面 =(A 1B 1)2+4×12(AB +A 1B 1)h ′=202+4×12(10+20)×12=1120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1300+1120=2420(cm 2), 故所需加工处理费为0.2S =0.2×2420=484(元).(理)(2014·西安市长安中学期中)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,平面P AD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,P A =PD =2,BC =12AD =1,CD = 3.(1)求证:平面PQB ⊥平面P AD ;(2)若M 为棱PC 的中点,求异面直线AP 与BM 所成角的余弦值. [解析] (1)∵BC =12AD ,Q 为AD 的中点,∴BC =DQ ,又∵AD ∥BC ,∴BC ∥DQ ,∴四边形BCDQ 为平行四边形,∴CD ∥BQ , ∵∠ADC =90°,∴∠AQB =90°,即QB ⊥AD ,又∵平面P AD ⊥平面ABCD ,且平面P AD ∩平面ABCD =AD ,∴BQ ⊥平面P AD ,又BQ ⊂平面PQB ,∴平面PQB ⊥平面P AD . (2)解法1:∵P A =PD ,Q 为AD 的中点,∴PQ ⊥AD .∵平面P AD ⊥平面ABCD ,且平面P AD ∩平面ABCD =AD ,∴PQ ⊥平面ABCD . 如图,以Q 为原点建立空间直角坐标系.则Q (0,0,0),A (1,0,0),P (0,0,3),B (0,3,0),C (-1,3,0), ∵M 是PC 中点,∴M (-12,32,32),∴AP →=(-1,0,3),BM →=(-12,-32,32),设异面直线AP 与BM 所成角为θ,则cos θ=|cos 〈AP →,BM →〉|=AP →·BM →|AP →|·|BM →|=277,∴异面直线AP 与BM 所成角的余弦值为277.解法2:连接AC 交BQ 于点O ,连接OM ,则OM ∥P A , 所以∠BMO 就是异面直线AP 与BM 所成的角.OM =12P A =1,BO =12BQ =32,由(1)知BQ ⊥平面P AD ,所以BQ ⊥P A ,∴BQ ⊥OM , ∴BM =BO 2+OM 2=(32)2+12=72, ∴cos ∠BMO =OM BM =172=277.。
[课堂练通考点]1.对两条不相交的空间直线a 与b ,必存在平面α,使得( )A .a ⊂α,b ⊂αB .a ⊂α,b ∥αC .a ⊥α,b ⊥αD .a ⊂α,b ⊥α解析:选B 不相交的直线a ,b 的位置有两种:平行或异面.当a ,b 异面时,不存在平面α满足A ,C ;又只有当a ⊥b 时,D 才可能成立.2.如图,ABCD -A 1B 1C 1D 1是长方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则下列结论正确的是( )A .A ,M ,O 三点共线B .A ,M ,O ,A 1不共面C .A ,M ,C ,O 不共面D .B ,B 1,O ,M 共面解析:选A 连接A1C 1,AC ,则A 1C 1∥AC ,所以A 1,C 1,C ,A四点共面,所以A 1C ⊂平面ACC 1A 1,因为M ∈A 1C ,所以M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,所以M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理O 在平面ACC 1A 1与平面AB 1D 1的交线上,所以A ,M ,O 三点共线.故选A.3.如图是某个正方体的侧面展开图,l 1,l 2是两条侧面对角线,则在正方体中,l 1与l 2( )A .互相平行B .异面且互相垂直C .异面且夹角为π3D .相交且夹角为π3解析:选D 将侧面展开图还原成正方体如图所示,则B ,C 两点重合.故l 1与l 2相交,连接AD ,则△ABD 为正三角形,所以l 1与l 2的夹角为π3.故选D. 4.设a ,b ,c 是空间的三条直线,下面给出四个命题:①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ,b 是异面直线,b ,c 是异面直线,则a ,c 也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是________.解析:∵a⊥b,b⊥c,∴a与c可以相交、平行、异面,故①错.∵a,b异面,b,c异面,则a,c可能异面、相交、平行,故②错.由a,b相交,b,c相交,则a,c可以异面、相交、平行,故③错.同理④错,故真命题的个数为0.答案:05.(2013·银川模拟)如图所示,在正方体ABCD-A1B1C1D1中,(1)求A1C1与B1C所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.解析:(1)如图,连接AC,AB1,由ABCD-A1B1C1D1是正方体,知AA1C1C为平行四边形,所以AC∥A1C1,从而B1C与AC所成的角就是A1C1与B1C所成的角.由AB1=AC=B1C可知∠B1CA=60°,即A1C1与B1C所成角为60°.(2)如图,连接BD,由AA1∥CC1,且AA1=CC1可知A1ACC1是平行四边形,所以AC ∥A1C1.即AC与EF所成的角就是A1C1与EF所成的角.因为EF是△ABD的中位线,所以EF∥BD.又因为AC⊥BD,所以EF⊥AC,即所求角为90°.[课下提升考能]第Ⅰ组:全员必做题1.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.一定垂直解析:选D∵a⊥b,b∥c,∴a⊥c.2.(2014·聊城模拟)对于任意的直线l与平面α,在平面α内必有直线m,使m与l() A.平行B.相交C.垂直D.互为异面直线解析:选C不论l∥α,l⊂α还是l与α相交,α内都有直线m使得m⊥l.3.(2013·广州模拟)若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的()A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若两直线为异面直线,则两直线无公共点,反之不一定成立.4.(2013·新乡月考)已知异面直线a ,b 分别在平面α,β内,且α∩β=c ,那么直线c 一定( )A .与a ,b 都相交B .只能与a ,b 中的一条相交C .至少与a ,b 中的一条相交D .与a ,b 都平行解析:选C 若c 与a ,b 都不相交,则c 与a ,b 都平行,根据公理4,则a ∥b ,与a ,b 异面矛盾.5.若P 是两条异面直线l ,m 外的任意一点,则( )A .过点P 有且仅有一条直线与l ,m 都平行B .过点P 有且仅有一条直线与l ,m 都垂直C .过点P 有且仅有一条直线与l ,m 都相交D .过点P 有且仅有一条直线与l ,m 都异面解析:选B 对于A ,若正确,则l ∥m ,这与已知矛盾,由此排除A ;对于B ,由于l 和m 有且只有一条公垂线a ,而过P 有且只有一条直线与直线a 平行,故B 正确;易知C 、D 不正确.6.(2014·三亚模拟)如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =2,∠ACB =90°,F ,G 分别是线段AE ,BC的中点,则AD 与GF 所成的角的余弦值为( ) A.36 B .-36 C.33 D .-33解析:选A 延长CD 至H .使DH =1,连接HG 、HF 、则HF ∥AD .HF =DA =8, GF =6,HG =10.∴cos ∠HFG =8+6-102×6×8=36. 7.(2013·沧州模拟)如图所示,在三棱柱ABC -A1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°解析:选B 连接AB 1,易知AB 1∥EF ,连接B 1C ,B 1C 与BC 1交于点G ,取AC 的中点H ,连接GH ,则GH ∥AB 1∥EF .设AB =BC =AA 1=a ,连接HB ,在三角形GHB 中,易知GH =HB =GB =22a ,故所求的两直线所成的角即为∠HGB =60°.8.(2013·临沂模拟)过正方体ABCD -A 1B 1C 1D 1的顶点A 作直线l ,使l 与棱AB ,AD ,AA 1所成的角都相等,这样的直线l 可以作( )A .1条B .2条C .3条D .4条 解析:选D 如图,连接体对角线AC1,显然AC 1与棱AB ,AD ,AA 1所成的角都相等,所成角的正切值都为 2.联想正方体的其他体对角线,如连接BD 1,则BD 1与棱BC ,BA ,BB 1所成的角都相等,∵BB 1∥AA 1,BC ∥AD ,∴体对角线BD 1与棱AB ,AD ,AA 1所成的角都相等,同理,体对角线A 1C ,DB 1也与棱AB ,AD ,AA 1所成的角都相等,过A 点分别作BD 1,A 1C ,DB 1的平行线都满足题意,故这样的直线l 可以作4条.9.如图,平行六面体ABCD -A 1B 1C 1D 1中既与AB 共面又与CC 1共面的棱有________条.解析:依题意,与AB 和CC 1都相交的棱有BC ;与AB 相交且与CC 1平行有棱AA 1,BB 1;与AB 平行且与CC 1相交的棱有CD ,C 1D 1.故符合条件的有5条.答案:510.如图是正四面体的平面展开图,G ,H ,M ,N 分别为DE ,BE ,EF ,EC 的中点,在这个正四面体中,①GH 与EF 平行;②BD 与MN 为异面直线;③GH 与MN 成60°角;④DE 与MN 垂直.以上四个命题中,正确命题的序号是________.解析:还原成正四面体知GH 与EF 为异面直线,BD 与MN 为异面直线,GH 与MN 成60°角,DE ⊥MN . 答案:②③④11.如图为正方体表面的一种展开图,则图中的四条线段AB ,CD ,EF ,GH 在原正方体中互为异面的对数为________对.解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB ,CD ,EF 和GH 在原正方体中,显然AB 与CD ,EF 与GH ,AB 与GH 都是异面直线,而AB 与EF 相交,CD 与GH 相交,CD与EF 平行.故互为异面的直线有且只有3对.答案:312.如图所示,正方体的棱长为1,B ′C ∩BC ′=O ,则AO 与A ′C ′所成角的度数为________.解析:∵A ′C ′∥AC ,∴AO 与A ′C ′所成的角就是∠OAC .∵OC ⊥OB ,AB ⊥平面BB ′CC ′,∴OC ⊥AB .又AB ∩BO =B ,∴OC ⊥平面ABO .又OA ⊂平面ABO ,∴OC ⊥OA .在Rt △AOC 中,OC =22,AC =2, sin ∠OAC =OC AC =12, ∴∠OAC =30°.即AO 与A ′C ′所成角的度数为30°.答案:30°第Ⅱ组:重点选做题1.A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.解:(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG ,FG ,则EG ∥BD ,所以相交直线EF与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.2.(2013·许昌调研)如图,平面ABEF ⊥平面ABCD ,四边形ABEF与四边形ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC 綊12AD ,BE 綊12F A ,G ,H 分别为F A ,FD 的中点.(1)求证:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?解:(1)证明:由题设知,FG =GA ,FH =HD ,所以GH 綊12AD .又BC 綊12AD , 故GH 綊BC .所以四边形BCHG 是平行四边形.(2)C ,D ,F ,E 四点共面.理由如下:由BE 綊12AF ,G 是F A 的中点知,BE 綊GF , 所以EF 綊BG .由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面.又点D 在直线FH 上,所以C ,D ,F ,E 四点共面.。
2015届高考数学一轮复习质量检测:立体几何时间:90分钟 分值:120分一、选择题(本大题共10小题,每小题5分,共50分) 1.在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →等于( )A.12a +12b +14cB.14a +14b +12cC.14a +12b +14cD.12a +14b +14c解析:OE →=OA →+AE →=OA →+12AD →=OA →+12×12(AB →+AC →) =OA →+14AB →+14AC →=OA →+14(OB →-OA →)+14(OC →-OA →)=12OA →+14OB →+14OC →=12a +14b +14c ,故选D. 答案:D2.已知水平放置的△ABC 的直观图△A ′B ′C ′(斜二测画法)是边长为2a 的正三角形,则原△ABC 的面积为( )A.2a 2B.32a 2C.62a 2D.6a 2解析:斜二测画法中原图面积与直观图面积之比为1∶24,则易知24S =34(2a )2,∴S =6a 2.故选D.答案:D3.正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AA 1,AB 的中点,则EF 与对角面BDD 1B 1所成角的度数是( )A .30°B .45°C .60°D .150°解析:如图,∵EF ∥A 1B ,∴EF ,A 1B 与对角面BDD 1B 1所成的角相等,设正方体的棱长为1,则A 1B = 2.连接A 1C 1,交D 1B 1于点M ,连接BM ,则有A 1M ⊥面BDD 1B 1,∠A 1BM 为A 1B 与面BDD 1B 1所成的角.Rt △A 1BM 中,A 1B =2,A 1M =22,故∠A 1BM =30°.∴EF 与对角面BDD 1B 1所成角的度数是30°.答案:A4.(2013·湖南卷)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于() A.1 B. 2C.2-12 D.2+12解析:由题可知正方体的底面与水平面平行,先把正方体正放,然后将正方体按某一侧棱逆时针旋转,易知当正方体正放时,其正视图的面积最小,为1×1=1;当正方体逆时针旋转45°时,其正视图的面积最大,为1×2= 2.而2-12<1,所以正方体的正视图的面积不可能等于2-1 2.答案:C5.(2014·陕西五校一模)已知直线a和平面α,那么a∥α的一个充分条件是().A.存在一条直线b,a∥b且b⊂αB.存在一条直线b,a⊥b且b⊥αC.存在一个平面β,a⊂β且α∥βD.存在一个平面β,a∥β且α∥β解析:在A,B,D中,均有可能a⊂α,错误;在C中,两平面平行,则其中一个平面内的任一条直线都平行于另一平面,故C正确.答案:C6.(2013·河南开封第二次模拟)若某几何体的三视图如图所示,则这个几何体的体积是()A .5B .6C .7D .8 解析:该几何体为棱长为2的正方体截去一个三棱柱,如图,截去部分为ABC -A 1B 1C 1,几何体的体积为V =2×2×2-12×1×2×1=7,选C.答案:C7.(2013·广西卷)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23D.13解析:建立如图所示的空间直角坐标系,设AA 1=2AB =2,则B (1,1,0),C (0,1,0),D (0,0,0),C 1(0,1,2),故DB →=(1,1,0),DC 1→=(0,1,2),DC →=(0,1,0).设平面BDC 1的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·DB →=0,n ·DC 1→=0,即⎩⎨⎧x +y =0,y +2z =0,令z =1,则y =-2,x =2,所以平面BDC 1的一个法向量为n =(2,-2,1).设直线CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC →|n |·|DC →|=23.故选A.答案:A8.(2013·荆州质检(Ⅱ))在半径为R 的球内有一内接圆柱,设该圆柱底面半径为r ,当圆柱的侧面积最大时,rR 为( )A.14B.12C.22D.32解析:圆柱的底面半径为r ,则有h =2R 2-r 2,侧面积S =2πr ·h=4πrR 2-r 2=4πr 2(R 2-r 2)≤4π⎝ ⎛⎭⎪⎪⎫r 2+R 2-r 222=2πR 2,当且仅当r 2=R 2-r 2即r R =22时,圆柱的侧面积取得最大值,所以选C.答案:C9.(2013·山东潍坊模拟)已知m ,n 是两条不同直线,α,β是两个不同平面,给出四个命题:①若α∩β=m ,n ⊂α,n ⊥m ,则α⊥β;②若m ⊥α,m ⊥β,则α∥β;③若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;④若m ∥α,n ∥β,m ∥n ,则α∥β.其中正确的命题是( )A .①②B .②③C .①④D .②④解析:由面面平行、垂直的定义可知②③正确,故选B. 答案:B10.(2013·新课标全国卷Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3 cm 3 B.866π3 cm 3 C.1 372π3 cm 3 D.2 048π3 cm 3解析:设球半径为R cm ,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4 cm ,球心到截面的距离为(R -2)cm ,所以由42+(R -2)2=R 2,得R =5,所以球的体积为V =43πR 3=43π×53=500π3cm 3,选择A.答案:A二、填空题(本大题共4小题,每小题5分,共20分)11.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x =________.解析:由题可知c -a =(0,0,1-x ),所以(c -a )·(2b )=(0,0,1-x )·2(1,2,1)=2(1-x )=-2,从而解得x =2.答案:212.(2013·辽宁卷)某几何体的三视图如图所示,则该几何体的体积是________.解析:由三视图可知该几何体是一个底面半径为2,高为4的圆柱中间挖去一个底面边长为2,高为4的正四棱柱后剩下的部分,所以其体积为π×22×4-22×4=16π-16.答案:16π-1613.(2013·广西卷)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.解析:设点A 为圆O 和圆K 公共弦的中点,则在Rt △OAK 中,∠OAK 为圆O 和圆K 所在的平面所成的二面角的一个平面角,即∠OAK=60°.由OK =32,可得OA =3,设球的半径为R ,则(3)2+⎝ ⎛⎭⎪⎫R 22=R 2,解得R =2,因此球的表面积为4π·R 2=16π.答案:16π14.(2013·北京卷)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上.点P 到直线CC 1的距离的最小值为________.解析:点P 到直线CC 1的距离等于点P 在平面ABCD 上的射影到点C 的距离,设点P 在平面ABCD 上的射影为P ′,显然点P 到直线CC 1的距离的最小值为P ′C 的长度的最小值.当P ′C ⊥DE 时,P ′C 的长度最小,此时P ′C =2×122+1=255. 答案:255三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤.)15.(满分12分)(2013·江苏卷)如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA .证明:(1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF ∥AB .因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC,因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.16.(满分12分)(2013·山东潍坊模拟)已知正三棱柱ABC-A1B1C1中,AB=2,AA1=3,点D为AC的中点,点E在线段AA1上.(1)当AE∶EA1=1∶2时,求证:DE⊥BC1;(2)是否存在点E,使二面角D-BE-A等于60°?若存在,求AE 的长;若不存在,请说明理由.解:(1)证明:连接DC1,因为ABC-A1B1C1为正三棱柱,所以△ABC为正三角形,又因为D为AC的中点,所以BD⊥AC,又平面ABC⊥平面ACC1A1,所以BD⊥平面ACC1A1,所以BD⊥DE.因为AE∶EA1=1∶2,AB=2,AA1=3,所以AE=33,AD=1,所以在Rt△ADE中,∠ADE=30°,在Rt△DCC1中,∠C1DC=60°,所以∠EDC1=90°,即ED⊥DC1,所以ED⊥平面BDC1,BC1⊂面BDC1,所以ED⊥BC1.(2)假设存在点E满足条件,设AE=h.取A1C1的中点D1,连接DD1,则DD1⊥平面ABC,所以DD1⊥AD,DD 1⊥BD ,分别以DA 、DB 、DD 1所在直线为x ,y ,z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (0,3,0),E (1,0,h ),所以DB →=(0,3,0),DE →=(1,0,h ),AB →=(-1,3,0),AE →=(0,0,h ),设平面DBE 的一个法向量为n 1=(x 1,y 1,z 1),则⎩⎨⎧n 1·DB →=0n 1·DE →=0,⎩⎨⎧3y 1=0x 1+hz 1=0,令z 1=1,得n 1=(-h,0,1),同理,平面ABE 的一个法向量为n 2=(x 2,y 2,z 2),则⎩⎨⎧n 2·AB →=0n 2·AE →=0,⎩⎨⎧-x 2+3y 2=0,hz 2=0.∴n 2=(3,1,0). ∴cos 〈n 1,n 2〉=|-3h |h 2+1·2=cos 60°=12.解得h =22<3, 故存在点E ,当AE =22时,二面角D -BE -A 等于60°.17.(满分13分)(2013·重庆卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB .(1)求P A 的长;(2)求二面角B -AF -D 的正弦值.解:(1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3,又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,F ⎝ ⎛⎭⎪⎫0,-1,z 2. 又AF →=⎝⎛⎭⎪⎫0,2,z 2,PB →=(3,3,-z ),因AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23),所以|P A →|=2 3.(2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2),由n 1·AD →=0,n 1·AF →=0,得⎩⎨⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB →=0,n 2·AF →=0,得⎩⎨⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.18.(满分13分)(2013·石家庄第二次模拟)在四边形ABCD 中,BC ∥AD ,CD ⊥AD ,AD =4,BC =CD =2,E 、P 分别为AD 、CD 的中点(如图1),将△ABE 沿BE 折起,使二面角A -BE -C 为直二面角(如图2).(1)如图2,在线段AE 上,是否存在一点M ,使得PM ∥平面ABC ?若存在,请指出点M 的位置,并证明你的结论,若不存在,请说明理由.(2)如图2,若H 为线段AB 上的动点,当PH 与平面ABE 所成的角最大时,求二面角H -PC -E 的余弦值.解:(1)存在点M ,当M 为线段AE 的中点时,PM ∥平面BCA ,建立如图所示空间直角坐标系,则A (0,0,2),M (0,0,1),P (2,1,0),B (0,2,0),C (2,2,0),AB 中点F (0,1,1),所以PM →=(-2,-1,1),BC →=(2,0,0),AB →=(0,2,-2),EF →=(0,1,1) 可知EF →·BC →=0,EF →·AB →=0,∴EF →⊥平面ABC , 又EF →·PM →=0, ∴PM ∥平面ABC .(2)可知P (2,1,0),A (0,0,2),E (0,0,0),B (0,2,0), 设H (x ,y ,z ),则BA →=(0,-2,2),BH →=(x ,y -2,z ),设BH →=λBA →,则得H (0,2-2λ,2λ),所以PH →=(-2,1-2λ,2λ),因为点P 到平面ABE 的距离为定值2,所以当PH 最小时PH 与平面ABE 所成角最大, 此时PH →⊥BA →,即PH →·BA →=0,得λ=14,所以H ⎝⎛⎭⎪⎫0,32,12,所以BH →=⎝⎛⎭⎪⎫0,-12,12,设平面PCH 的一个法向量为n =(x 0,y 0,z 0), PC →=(0,1,0),PH →=⎝⎛⎭⎪⎫-2,12,12则由n ·PC →=0,n ·PH →=0,可得⎩⎪⎨⎪⎧y 0=0;-2x 0+12y 0+12z 0=0,则n =⎝ ⎛⎭⎪⎫12,0,2,平面PBE 的一个法向量为EA →=(0,0,2), 设二面角H -PC -E 的大小为θ, 则cos θ=n EA →n ·|EA →|=41717.。