高能球磨与普通球磨的区别
- 格式:docx
- 大小:222.29 KB
- 文档页数:2
粉体的制备方法-------机械法和化学合成法一、粉体的定义:粉体是大量颗粒的集合体,即颗粒群,又称为粉末;颗粒是小尺寸物资的通称,其几何尺寸相对于所测的空间尺度而言比较小,从厘米级到纳米级不等,又称为粒子;颗粒是粉体的组成单元,是研究粉体的出发点。
粉体是由诸多颗粒组成,是大量颗粒的宏观表现,其性质取决于各颗粒,并受颗粒堆积情况、颗粒之间的介质、外界作用力的影响。
二、机械法制备粉体用机械力进行粉碎,可以将各种金属矿物、非金属矿物、煤炭等制成粉体,适用于大规模工业生产。
在粉碎过程中,大块物料在机械力作用下发生破坏而开裂,经破碎成为许多小块、小颗粒,进一步经粉磨成为细粉体。
在出现破坏之前,固体受外力作用,先发生可恢复原形的弹性变形,当外力达到弹性极限时,固体县发生永久变形而进入塑性变形阶段;当塑性变形达到极限时,固体开裂,被破坏。
作用在固体上的应力按作用方向可分为压应力和剪应力。
观察固体破坏时的断面的形状可知,固体在压应力的作用下被压裂,或是在剪应力的作用下产生滑移,或是在两者的共同作用下开裂。
粉碎是在外力作用下使大物块料克服内聚力碎裂成若干小颗粒的加工过程,所使用的外力可以是各能量产生的机械力;粉碎是以单个颗粒的破坏为基础的,是大颗粒破坏的总和。
根据所得产物的粒度不同,可将粉碎分为破碎与粉磨;破碎是使大块物料碎裂成小块物料的加工过程,粉磨是使小块物料碎裂成细粉体的加工过程。
粉碎机械:按照主要作用力的类型(压应力、剪应力)和排料粒度,可以将粉碎机械大致分为破碎机械、粉磨机械、超细粉碎机械。
粉碎作用力以压应力为主、排料中以粒径大于3mm颗粒为主的称为破碎机械;粉碎作用力以压应为主、排粒中以粒径小于3mm颗粒为主的称为粉磨机械;排料中以粒径小于10微米颗粒为主的称为超细粉碎机械。
常用的破碎机械有锤式破碎机、鄂式破碎机、圆锥破碎机、反击式破碎机、锤式破碎机等;粉磨机械有雷蒙磨、轮碾机、筒磨机、振动磨、高压锟式机等。
纳米材料的制备方法与技巧纳米材料是一种具有纳米级尺寸(1纳米=10^-9米)的材料,在材料科学和纳米技术领域有着广泛的应用。
制备纳米材料的方法有很多种,下面将介绍几种常用且重要的纳米材料制备方法与技巧。
1. 物理法物理法是通过物理手段实现纳米材料的制备,其中包括热蒸发法、磁控溅射法和高能球磨法等。
热蒸发法是将材料在高温条件下蒸发,并通过凝结形成纳米材料。
磁控溅射法是将材料置于惰性气体环境下,利用高能离子撞击材料表面产生离子化原子或离子,并通过表面扩散形成纳米材料。
高能球磨法是通过球磨机将原料粉末进行机械剪切和冲击,使其粒度减小到纳米级别。
2. 化学合成法化学合成法是通过化学反应合成纳米材料,其中包括溶液法、气相法和电化学法等。
溶液法是将金属盐或金属有机化合物溶解在溶剂中,通过控制反应条件和添加适当的保护剂或模板剂制备纳米材料。
气相法是在控制的气氛和温度下通过气相反应合成纳米材料,例如化学气相沉积法。
电化学法是通过利用电化学原理,在电解质溶液中施加电压或电流,使材料在电极表面形成纳米颗粒。
3. 生物法生物法是利用生物体或其代谢物合成纳米材料,其中包括生物模板法、生物还原法和植物提取法等。
生物模板法是使用生物体或其组织的特殊形态或功能作为模板,在其表面合成纳米材料。
生物还原法是利用生物体或其细胞酶的还原活性将金属离子还原为金属纳米团簇。
植物提取法是通过植物提取物作为还原剂和模板,在其作用下合成纳米材料。
4. 加工法加工法是通过物理或化学加工手段制备纳米材料,其中包括机械法、电化学法和光电化学法等。
机械法是通过机械加工方式如研磨、切割等将材料分解成纳米颗粒。
电化学法是通过在电解质中施加电压或电流,使材料在电极表面形成纳米结构。
光电化学法是通过光催化反应,在光照条件下制备纳米材料。
在纳米材料的制备过程中,还需要注意一些技巧和注意事项。
首先,要精确控制反应条件,包括温度、压力和pH值等。
不同条件对于纳米材料的形成过程和性能具有重要影响。
纳米材料制备技术许路(上海交通大学 材料科学与工程学院 F9905103班)摘 要:纳米材料作为材料科学中的重要一元,近年来受到科学界的广泛重视。
本文将从纳米材料的概况,制备工艺,及其部分应用等方面作出综合评价关键词:纳米材料,制备方法§1 概述§1.1 纳米的基本概念及内涵纳米是一种长度单位,一纳米相当于十亿分之一米,大约相当于几十个原子的长度。
纳米科学技术(Nano-ST)是20世纪80年代末刚刚诞生并正在崛起的新科技,它的基本涵义是在纳米尺寸(10-9—10-7m)范围内认识及改造自然,通过直接操作及安排原子、分子来创造新的物质。
早在1959年美国著名物理学家,诺贝尔奖金获得者费曼就设想:“如果有朝一日,人们能把百科全书存储在一个针尖大小的空间内,并能移动原子,那将给科学带来什么?”这正是对于纳米科技的预言,也就是人们常说的小尺寸大世界。
纳米科技是研究由尺寸在0.1至100nm之间的物质组成体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。
纳米科技主要包括:(1).纳米体系物理学(2).纳米化学(3).纳米材料学;(4).纳米生物学;(5).纳米电子学;(6).纳米加工学;(7).纳米力学;这七个部分相对独立。
隧道显微镜在纳米科技之中占有重要地位,它贯穿到七个领域中,以扫描隧道显微镜为分析和加工的手段占有一半以上。
扫描隧道显微镜(STM)工作原理简图[14]§1.2 纳米材料概述及其分类:纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。
如果按维数,纳米材料的基本单元可分为三类:1.零维,指在空间三维尺度均在纳米尺度,如纳米尺度颗粒、原子团簇等。
2.一维,指在空间中有两维处于纳米尺度,如纳米四、纳米管、纳米棒等。
3.二维,指在三维空间中有一维在纳米尺度,如超薄膜、多层膜、超晶格等。
因为这些单元往往具有量子性质,所以对零维、一维、二维的基本单元又分别有量子点,量子线,量子阱之称。
纳米材料制备工艺详解纳米材料是指在纳米尺度下具有特殊物理、化学和生物性能的材料。
纳米材料制备工艺是指通过特定的方法和工艺将原材料转变为纳米级别的材料。
本文将详细介绍纳米材料制备工艺的几种常见方法和工艺。
一、化学合成法化学合成法是一种常见的纳米材料制备工艺,它通过控制反应条件和添加特定的试剂来控制纳米颗粒的尺寸和形态。
其中最常见的方法是溶胶-凝胶法、气相合成法和水热合成法。
溶胶-凝胶法是利用溶胶在适当的温度下形成凝胶,并通过热处理和其他后续工艺步骤得到纳米颗粒。
这种方法适用于制备氧化物、金属和半导体纳米材料。
气相合成法是通过控制气相反应条件和反应物浓度来制备纳米颗粒。
常见的气相合成方法包括化学气相沉积和气相凝胶法。
这种方法适用于制备纳米粉体、纳米线和纳米薄膜等。
水热合成法利用高温高压的水环境下进行合成反应,通过溶液中的离子交换和沉淀来制备纳米颗粒。
这种方法适用于制备金属氧化物、碳化物和磷化物等纳米材料。
二、物理制备法物理制备法主要是利用物理性能的改变从宏观材料中得到纳米尺度的材料。
常见的物理制备法包括磁控溅射法、高能球磨法和激光烧结法。
磁控溅射法是通过在真空环境下,利用磁场控制离子轰击靶材溅射出材料颗粒来制备纳米材料。
这种方法适用于制备金属、合金和氧化物等纳米材料。
高能球磨法是通过使用高能的机械能,在球磨罐中将原料粉末进行碰撞、摩擦和剧烈混合,使材料粉末粒径不断减小到纳米尺度。
这种方法适用于制备金属和合金纳米材料。
激光烧结法是通过使用高功率激光束将材料粉末快速加热熔结,然后迅速冷却形成纳米颗粒。
这种方法适用于制备高熔点金属和陶瓷纳米材料。
三、生物制备法生物制备法是利用生物体内的特定酶或微生物来制备纳米材料。
这种方法具有环境友好、低成本和高度可控性的优点。
目前最常用的方法是利用微生物和植物来制备纳米材料。
微生物制备法通过利用微生物的代谢活性来合成纳米颗粒。
其中最常见的是利用细菌、酵母菌和藻类来制备金属和半导体纳米颗粒。
第三章纳米材料的制备方法纳米材料的制备方法可以分为物理方法、化学方法和生物方法三类。
物理方法包括机械法、气相法和溶液法等;化学方法包括沉淀法、溶胶-凝胶法、化学气相沉积法等;而生物方法主要是利用生物体或生物分子在生物环境下合成纳米材料。
机械法是指通过力的作用将宏观材料制备成纳米尺寸的材料,常见的方法有高能球磨法和挤压法。
高能球磨法是通过高能球磨机将粗颗粒材料和球磨介质一起置于球磨罐中进行强烈碰撞实现的。
挤压法则是将粗颗粒材料置于特定的装置中,通过外力作用使材料变形而制备纳米材料。
气相法是通过气相反应将气态物质制备成纳米材料,常见的方法有气相沉积法和气溶胶法两种。
气相沉积法是将气态前体输送到反应器中,在特定温度和压力条件下发生化学反应,生成纳米颗粒。
气溶胶法则是将气态前体生产成准稳态悬浮液,再经过控制条件使气溶胶中的颗粒在特定条件下成长。
溶液法是通过将溶液中溶解的化合物沉淀出来形成纳米颗粒的方法,常见的方法有沉淀法和溶胶-凝胶法。
沉淀法是将两种反应物溶解在溶液中,然后通过添加沉淀剂使沉淀物形成纳米颗粒。
溶胶-凝胶法则是将溶胶转变成凝胶,在适当条件下控制凝胶的形成和热处理过程,最终制备成纳米材料。
化学气相沉积法是通过在可控的气相条件下,将气态前体沉积在衬底上生成纳米颗粒的方法,主要应用于金属和半导体纳米材料的制备。
该方法需要控制反应气体的成分和温度,以及反应时间和衬底的性质。
生物方法是指利用生物体或生物分子在生物环境下合成纳米材料,包括微生物法和生物模板法两种。
微生物法是利用微生物在代谢过程中产生的酶或其他生物分子对金属离子进行还原或沉淀,形成金属纳米材料。
生物模板法则是利用生物体的分子结构作为模板,在其表面沉积纳米材料,通过控制反应条件可以得到不同形状和尺寸的纳米材料。
总结而言,纳米材料的制备方法多种多样,从物理方法到化学方法再到生物方法,每种方法都有其独特的优势和适用范围。
在制备纳米材料时,需要考虑材料性质、制备条件以及后续应用等因素,以选择最适合的制备方法。
纳米储氢合金制备方法一、化学气相沉积法化学气相沉积是一种常用的制备纳米材料的方法,通过控制反应条件,如温度、压力、气体流量等,可以在较低的温度下制备出高纯度的纳米材料。
该方法可用于制备纳米储氢合金,通常将合金材料放置在高温炉中,通入氢气等反应气体,通过化学反应生成储氢合金纳米颗粒。
二、物理气相沉积法物理气相沉积法是一种制备纳米材料的方法,通过将材料加热到熔融状态后迅速冷却,再通过物理方法将固态颗粒分散到气体中,形成纳米颗粒。
该方法可用于制备纳米储氢合金,通常将储氢合金材料加热到熔融状态,再通过物理方法将熔融状态的合金分散到气体中,形成纳米颗粒。
三、溶胶凝胶法溶胶凝胶法是一种制备纳米材料的方法,通过将前驱体溶液在恒温下进行水解和聚合反应,形成溶胶,再将溶胶干燥、烧结后得到纳米材料。
该方法可用于制备纳米储氢合金,通常将前驱体溶液混合储氢合金元素,通过水解和聚合反应形成溶胶,再将溶胶干燥、烧结后得到纳米储氢合金。
四、微乳液法微乳液法是一种制备纳米材料的方法,通过将两种互不相溶的溶剂混合在一起,形成微乳液,再通过控制反应条件制备出纳米颗粒。
该方法可用于制备纳米储氢合金,通常将储氢合金元素溶解在油性溶剂中,再与水性溶剂混合形成微乳液,通过控制反应条件制备出纳米储氢合金。
五、机械合金化法机械合金化法是一种制备纳米材料的方法,通过将金属粉末在高能球磨机中球磨一定时间,使粉末颗粒细化并发生固态反应形成合金粉末。
该方法可用于制备纳米储氢合金,通常将储氢合金元素粉末放入球磨机中球磨一定时间,使粉末颗粒细化并发生固态反应形成纳米储氢合金粉末。
六、高能球磨法高能球磨法是一种制备纳米材料的方法,通过将金属粉末和研磨球在高能球磨机中球磨一定时间,使粉末颗粒细化并发生固态反应形成合金粉末。
该方法可用于制备纳米储氢合金,通常将储氢合金元素粉末放入球磨机中球磨一定时间,使粉末颗粒细化并发生固态反应形成纳米储氢合金粉末。
七、电解还原法电解还原法是一种制备纳米材料的方法,通过电解熔融盐中的金属离子并在阴极上还原生成金属或合金。
机械球磨法制备纳米颗粒的主要机制下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!机械球磨法制备纳米颗粒的主要机制引言纳米颗粒作为一种特殊的材料,在材料科学和工程领域具有广泛的应用前景。
高能球磨电气石红外辐射特性孙健鑫;廖建彬;戴乐阳【摘要】对天然电气石的红外辐射特性进行分析,通过扫描电子显微镜、X射线衍射、傅里叶红外光谱等工具研究球磨时间对电气石红外辐射率的影响,通过分析燃油的表面张力及运动黏度的变化研究复合陶粒对船用燃油的活化效果.结果表明,不同球磨时间下的电气石粉,其红外吸收光谱均较为稳定,在室温下的吸收谱形特征基本相似,其中,3h球磨时间的电气石粉红外辐射率较高;电气石复合材料具有明显的活化效果,其中球磨3h的电气石陶粒活化后的燃油远红外辐射活化效果最好,其表面张力降幅为2.10%,运动黏度降幅为1.36%.【期刊名称】《造船技术》【年(卷),期】2017(000)004【总页数】6页(P18-23)【关键词】红外辐射;电气石;XRD;傅里叶红外光谱;船舶燃油活化;表面张力【作者】孙健鑫;廖建彬;戴乐阳【作者单位】集美大学轮机工程学院,福建厦门361021;福建省船舶与海洋工程重点实验室,福建厦门361021;船机检测与再制造福建省高校工程研究中心,福建厦门361021;集美大学轮机工程学院,福建厦门361021;福建省船舶与海洋工程重点实验室,福建厦门361021;船机检测与再制造福建省高校工程研究中心,福建厦门361021;集美大学轮机工程学院,福建厦门361021;福建省船舶与海洋工程重点实验室,福建厦门361021;船机检测与再制造福建省高校工程研究中心,福建厦门361021【正文语种】中文【中图分类】U664目前,船舶运输所带来的环境污染问题日益突出,国内外学者都致力于寻找可行的办法来降低船舶柴油机有害物质排放量。
研究发现,远红外线辐射活化燃油,可改善船舶燃油的理化性质,提高船舶燃油的燃烧效率[1],达到节能减排的目的。
电气石存在自发电极,是自身具有电磁场的天然矿物体[2]。
当环境温度变化时,电气石晶体会在沿其3次对称轴的两端产生数量相等而符号相反的表面电荷,并随着温度的变化,矿物结晶体两端产生电压,释放远红外线[3]。
目录摘要 (1)关键词 (1)Abstract (1)Key words (1)前言 (1)制备方法 (2)1 固相法 (2)1.1 球磨法 (2)1.2 热分解法 (2)1.3 直流电弧等离子体法 (3)2 液相法 (3)2.1 沉淀法 (4)2.1.1 共沉淀法 (4)2.1.2 氧化沉淀法 (5)2.1.3 还原沉淀法 (5)2.1.4 超声沉淀法 (6)2.2 微乳液法 (6)2.3 水热法/溶剂热法 (7)2.4 水解法 (8)2.5 溶胶-凝胶法 (8)应用 (9)(一)生物医药 (9)(二)磁性液体 (9)(三)催化剂载体 (10)(四)微波吸附材料 (10)(五)磁记录材料 (10)(六)磁性密封 (10)(七)磁保健 (11)展望 (11)致谢 (11)参考文献 (12)纳米四氧化三铁的制备及应用的研究进展应用化学专业学生xxx指导教师xxx摘要:纳米Fe3O4粒子因其特殊的理化性质而在多个领域得到广泛的应用。
本文综述了纳米四氧化三铁的制备方法和应用领域,其中的制备方法主要有球磨法、沉淀法、微乳液法、水热法/溶剂热、水解法、氧化法、高温分解法和溶胶-凝胶法等,并讨论了纳米四氧化三铁的主要制备方法的优缺点,最后展望了纳米四氧化三铁的应用前景。
关键词:纳米四氧化三铁;制备方法;应用;进展Progress in Preparation and Application of Nano-iron tetroxide Student majoring in Applied chemistry Name XXXTutor XXXAbstract: Nano-Fe3O4 particles because of their special physical and chemical properties and is widely used in many fields. In this paper, the preparation methods and applications of nano-iron oxide, one of the main methods for preparing milling, precipitation, microemulsion, hydrothermal method / solvent heat, hydrolysis, oxidation, pyrolysis and sol - gel method and discusses the advantages and disadvantages of the main method for preparing iron oxide nanoparticles, and finally the application prospect of nano-iron oxide.Key words: nano-iron oxide; preparation methods; application; progress前言纳米材料是指颗粒尺寸小于100nm的单晶体或多晶体,纳米微粒具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特性[1-2]。
铁粉活化的原理铁粉活化是指通过特定方法使铁粉表面活化,增加其表面活性,从而改善其化学性质和物理性质的过程。
铁粉一般是指细粒度的金属铁粉,其表面一般被氧化层所覆盖,使其表面活性较低。
活化铁粉能够增强其反应活性和可用性,应用于多个领域,如催化剂、电池材料、磁性材料等。
铁粉活化的原理和方法主要有以下几种。
1.酸处理活化:酸处理是一种常用的铁粉活化方法,通常以稀硫酸或稀盐酸为处理液进行处理。
酸可以溶解氧化层,同时在酸介质中铁离子会溶解,与酸反应,生成气体,剥离表面的氧化层。
酸处理条件如浓度、温度和处理时间等会影响铁粉的活化效果。
2.热处理活化:热处理是一种通过加热铁粉,使其表面活化的方法。
高温下铁粉会发生氧化反应,部分氧化物会溶解并释放出气体,从而清除表面的氧化层。
热处理的活化效果与温度和处理时间密切相关。
3.机械活化:机械活化是指通过机械方法对铁粉进行处理,以活化其表面。
常用的机械活化方法有球磨法和超声波处理法。
球磨法通过高能球磨,使铁粉表面发生塑性变形和摩擦,从而清除表面的氧化层。
超声波处理法则是通过超声波的机械作用,产生微小的气泡爆裂和冲击波,清除表面的氧化层。
4.还原活化:还原活化是指用还原剂还原含氧化物的铁粉,将其还原为金属铁,从而活化其表面。
常用的还原剂有氢气、甲烷、氨气等。
还原活化方法可以有效清除铁粉表面的氧化层,并在还原过程中生成较活泼的金属铁表面。
5.物理活化:物理活化是指利用物理方法改变铁粉的表面形貌和性质,从而活化其表面。
常用的物理活化方法有等离子体处理、离子束辐照等。
等离子体处理通过等离子体的高能粒子轰击,清除表面氧化层并增加其表面活性。
离子束辐照则是通过离子束轰击的作用,改变铁粉的表面形貌和性质。
综上所述,铁粉活化的原理有酸处理活化、热处理活化、机械活化、还原活化和物理活化等。
不同的活化方法可以根据需要选择和组合使用,以达到最佳的活化效果。
铁粉活化的目的是提高铁粉的表面活性,扩大其应用领域和提高效率。
纳米不锈钢国家推荐性标准隨着不锈钢的应用领域越来越广泛,更优的强度和耐蚀性等性能要求,促进了不锈钢的高端发展。
根据Hall-Petch relationship,金属材料的强度提高可通过晶粒细化实现,因此纳米化是提高不锈钢力学性能的有效方法之一[1],还可改善不锈钢的耐蚀性[2]。
1、制备工艺对纳米晶不锈钢耐蚀性能的影响制备纳米晶结构的加工技术和方法通过改变不锈钢的晶粒尺寸影响其腐蚀性能,下面通过不同纳米化制备方法分析,研究不同的纳米化方法对纳米晶不锈钢耐蚀性能的影响。
1.1溅射法溅射法是利用高速气体离子轰击溅射靶的表面,靶材料的原子被喷射到基底上,形成极其紧密的纳米层。
此法可生产过饱和固溶体、非晶材料和纳米晶材料,不过工艺较复杂,成本较高,仅能制备表层纳米膜,且存在择优取向强和内应力大等不良问题。
实验证明,溶液pH值变化会影响纳米晶Fe-10Cr合金的腐蚀性能。
当溶液的pH<=4时,纳米晶Fe-10Cr合金的耐点蚀性能更优,可能是合金中的Fe选择性溶解利于钝化膜中Cr的富集。
一方面,纳米晶合金中的晶粒尺寸更小,减少了MnS的形成,微观结构变得更均匀,腐蚀行为的优化被体现出来;另一方面,纳米晶合金具有较多的晶界界面、更多的形核质点、更多的扩散通道、更快的扩散速率,极大地缩短了氧化成膜的瞬态过程。
1.2表面机械研磨处理(SMAT)表面机械研磨处理(SMAT)是通过高速球反复冲击金属表面而引发大塑形变形,使粗晶粒细化至纳米级的表面处理技术。
此法已被成功应用于铜、锆和不锈钢等金属材料的表面纳米化处理。
SMAT制备的纳米晶316不锈钢在0.1M NaCl中的耐点蚀性显著降低,原因是SMAT不可避免形成大量的裂纹,带来的缺陷会造成应力腐蚀开裂敏感性更高,但后期通过退火处理还是可提高纳米不锈钢的耐腐蚀性。
对于304不锈钢来说,纳米化后不锈钢的均匀腐蚀性能和点蚀性能是弱化了;其表面缺陷也可通过表面退火处理消除,退火后钝化膜的Cr较快扩散和粘附性增加,改进后的纳米晶不锈钢的钝化能力变优。
常用细化晶粒的方法
常用的细化晶粒的方法主要有以下几种:
1. 冶金细晶化:通过热处理等方式,利用相变、重结晶等机制使晶粒尺寸减小。
常用的方法有等温加工、等温退火、持续退火等。
2. 变形细晶化:通过机械变形(如冷变形、弯曲、滚轧等)使晶粒尺寸减小,即通过变形应变能储存和释放来使晶界迁移,从而形成更细小的晶粒。
3. 化学细晶化:通过化学处理,在合适的条件下改变晶体的生长速率以及晶界的能量,促使晶粒细化。
常用的方法包括溶质扩散、溶质吸附等。
4. 梯度晶粒细化:通过控制梯度温度、应变梯度等条件,使晶粒尺寸变化,逐渐达到细化晶粒的目的。
常用的方法有梯度退火、梯度拉伸等。
5. 高能球磨细晶化:利用高能球磨机械合金化的方法,通过球磨机对粉末进行高能密封球磨,使晶粒尺寸迅速减小,并形成细小晶粒的合金粉末。
这些方法可以根据具体的材料和应用需求选择合适的细晶化方法。
同时,细晶化过程中也需要考虑晶界稳定性、位错等因素对材料性能的影响。
本文摘自再生资源回收-变宝网()
高能球磨与普通球磨的区别
随着实验室球磨机的种类越来越多,如何选择合适的球磨机成了一个难题。
如行星式球磨机、实验滚筒球磨机、实验搅拌球磨机……一系列实验室球磨机,了解其区别,成了快速选择合适机型的一种方法。
实验室球磨机的区别从研磨方式分有行星式、滚筒式、搅拌式等等,研磨方法有干法研磨和湿法研磨,而普通球磨和高能球磨是以磨球研磨时对物料作用所蕴含的能量高低来区分的。
目前,普通球磨与高能球磨并没有一个相关的标准。
如果只以球磨时的转速来鉴定又很不准确。
我们不能说同一台设备,在10r/min时是普通球磨,到100r/min时就变成了高能球磨。
用实验室球磨机中的普通球磨机和高能球磨机来进行对比一下或许更加清楚。
滚筒球磨机是十分经典的普通球磨机,而行星式球磨机广泛运用于机械合金化等高能球磨法,是十分热门的高能球磨机。
同一大小机型,行星式球磨机的较高转速在1000r/min以上,而滚筒球磨机转速约在100-200r/min之间,球磨时产生的能量高下立见。
你可能要问这不就是转速的区别吗?当然不是,滚筒球磨机要做到1000r/min很简单,但市场上的机型多在100-200r/min 之间,是因为滚筒球磨机受到临界转速的限制根本用不上这么高的转速,一旦转速产生的离心力超过磨球所受重力,磨球就会与球磨罐同时运动,相对静止,研磨完全失效。
行星式球磨机则是多种离心力相互作用,行星式结构使得多种力得到平衡,始终能够有效研磨,将大部分能量用于球磨作用之中。
本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站;
变宝网官网:/?cj
买卖废品废料,再生料就上变宝网,什么废料都有!。