大型压裂技术的推广应用
- 格式:ppt
- 大小:7.57 MB
- 文档页数:37
压裂裂缝监测技术及应用【摘要】目前国内外油气田普遍采用裂缝监测技术了解水力裂缝扩展情况及其复杂性,将裂缝与油藏、地质相结合以评价增产效果,并制定针对性的措施。
目前形成的技术主要分为间接诊断、直接近井诊断、直接远场诊断等三类十多种方法,在B660、F142等区块开展了多口直井现场应用,并在F154-P1井采用多种监测方法对水平井多级分段压裂裂缝进行了监测试验。
通过裂缝监测技术的应用,大大提高了对裂缝复杂形态的认识。
【关键词】水力压裂;裂缝监测;微破裂成像;示踪陶粒;井下微地震裂缝监测技术是指通过一定的仪器和技术手段对压裂全过程进行实时监测和测试评价,通过数据处理,得到裂缝的方向、长、宽、高、导流能力、压裂液的滤失系数、预测产量、计算压裂效益等,从而评价压裂效果。
使用评价的结果可以验证或修正压裂中使用的模型、选择压裂液、确定加砂量、加砂程序、采用的工艺等,保证压裂施工按设计顺利进行并且取得最好的改造效果。
1、压裂裂缝监测技术裂缝监测的主要目的在于了解裂缝真实形态,并利用监测结果评价改造效果、储层产能、指导压裂设计。
目前国内外采用的裂缝监测技术可以分为地震学方法和非地震学方法,主要采用地面微地震、井下微地震、阵列式地面微地震和测斜仪阵列水准观测等技术。
1.1地面微地震技术1.1.1简易地面微地震简易地面微地震技术是采用最多的裂缝监测技术,该技术采用地震学中的震源定位技术,通过3-6个观察点接受的信号来定位震源。
该技术具有原理简单,费用低的特点,但对于埋藏的深油藏,井下微地震信号需要穿越多个性质不同的地层,因此只有震级高的脆性破裂信号可以被从噪音中区分出来,信号采集方面的缺陷降低了该技术的精确度。
目前在使用中多采用贴套管的微地震监测技术,通过在相邻井的套管上放置检波器来收受信号,可以在一定程度上避免这一问题,但是要求井距要小。
1.1.2微破裂成像技术微破裂成像裂缝监测技术采用埋在地表下30cm的20-30台三分量检波器,利用向量扫描技术分析目的层位发生的破裂能量分布,用能量叠加原理,解释出裂缝方位、裂缝动态缝长、裂缝动态缝高。
压裂技术压裂技术是一种为提高油气开采效率而发展起来的技术手段,通过注入高压液体进入油井中,对油层进行压裂,以增加储层的渗透性和产能。
随着石油资源的日益枯竭和对能源需求的不断增长,压裂技术在油气勘探开发中扮演着至关重要的角色,并逐渐成为石油工业的重要组成部分。
压裂技术的出现,为传统的油气开采方式带来了革命性的变革。
传统的油气开采多依赖于自然渗流,即油气通过地层自然渗透的压力和浸润作用到井中采集。
但大部分油气在地层储层中存在并不稳定,导致油井生产压力逐渐下降,产能缩减。
而通过压裂技术,可以通过人工增加井底的压力,迫使油气从储层中流出,大幅度提高产能和产出效率。
压裂技术的原理是通过高压泵将水或其他流体从井口注入油井,使其压力超过油层的破裂强度,形成裂缝。
然后,在压裂液的作用下,油层裂缝扩大,并与井身连接,形成一条通道,使固体颗粒得以进入油层储集空间,增加渗透性。
经过压裂处理后,油火可以更加顺利地从油层中流出,并被采集到地面上。
压裂技术的应用不仅能提高油井的产能,还能提高储层的利用率。
在一些低渗透性油气藏中,压裂技术可以扩大油层的渗透性,提高储层的采收率。
同时,压裂技术也被广泛应用于页岩气和致密油开发中。
这些资源属于非常低渗透性的储层,传统的采收方式往往效果不佳。
而通过压裂技术,可以将油气从储层中释放出来,大幅度提高采收率。
不过,压裂技术也面临着一些技术和环境挑战。
首先,压裂参数的选择非常关键,需要根据油层的特性和实际需求来确定合适的注入压力和液体组成。
其次,压裂过程对水资源的需求较大,并产生大量的废水。
处理和回收这些废水不仅成本高昂,而且需要应对水资源短缺和环境污染的问题。
此外,压裂技术也有一定的地质风险,可能导致地层破坏、井眼塌陷等问题。
因此,在使用压裂技术时,需加强油气勘探开采的科学监管和技术研究,以减少环境和社会风险。
总的来说,压裂技术作为油气勘探开采领域的一项重要技术,为提高油气产能和储层利用效率发挥了重要作用。
41长庆油田采油三厂靖安油田D油藏位于鄂尔多斯盆地陕北斜坡中部,无断层发育,属于典型的超低渗的油藏。
随着油田持续开采,油藏开发进入开发中期,开发面临的问题矛盾日益突出,油井长期低产低效问题难以解决[1]。
采用常规压裂措施后产量稳产期短,含水升幅高[2],无法满足当前阶段的油田生产开发需要,因此,亟需研究新的工艺方法解决当前油井低产低效的现状。
近年来,为了改善井网的水驱效果,长庆油田开始试验了宽带压裂技术,先后在多个油田取得了较好的应用效果[3-5]。
宽带压裂技术是在初次常规压裂的基础上对油藏进行二次重复压裂改造的过程,通过缝端暂堵及缝内多级暂堵技术提高侧向压力梯度,增大了裂缝的侧向波及范围,改变了优势水驱方向,并且通过对堵剂的不断优化,实现了提液控含水、提高单井产量,有效的降低油藏递减速度,为采油三厂中高含水阶段油藏高效开发具有深远的指导意义。
1 宽带压裂技术实施背景1.1 储层物性差,低产低效井占比高靖安油田D油藏北部、东部、西北部物性相对较好,单井产量相对较高,油藏南部、西南部物性较差,单井产量低。
经过统计发现,油藏物性较差部位油井低产低效占比高,为30%。
分析认为,由于储层物性差,导致注采系统主、向侧向井无法形成有效驱替是造成油井低产低效的主要原因。
而宽带压裂技术通过“控制缝长、增加带宽”的思路对储层进行大规模改造,主向裂缝半长控制在110~120m,侧向裂缝带宽控制在50~60m,可以建立超低渗透D油藏井组的有效驱替,实现油藏高效开发。
1.2 常规压裂效果差,侧向剩余油动用少通过对靖安油田D油藏2018—2021年常规压裂实施效果进行统计。
结果表明:四年内实施常规压裂后油井平均单井日增油0.76t,措施增油水平较低,难以充分动用侧向剩余油;措施后油井含水达60%,含水增幅超过20%,达到21.1%,这对中含水期油藏开发非常不利。
因此需要对常规压裂的工艺参数进行优化,在提高单井增油的基础上控制含水上升幅度,见表1。
煤矿井下水力压裂技术及在围岩控制中的应用摘要:煤矿井下水力压裂技术是非常重要的,该技术主要是坚硬顶板弱化和高应力巷道围岩卸压。
针对煤矿水力压裂理论,结合国内的真三轴水力压裂试验,对压裂技术进行数据分析和研究。
另外,根据水力压裂技术的过程及在围岩控制过程中的数据探讨和分析。
关键词:煤矿水力压裂技术围岩控制水力压裂技术一直是煤矿井下的重要施工技术,尤其是在围岩控制方面起到非常重要的作用。
根据下面对水力压裂技术的分析以及相关应用的探索,同时涉及水力压裂技术的设备进行着重分析强调,可以让相关人员更能抓住该技术的使用重点。
除了围岩压裂的原理、参数,还需要对机具与施工工艺及压裂进行效果检测,还要根据岩体物理力学性质和岩体结构对施工方向和应力范围进行数据分析。
一、水力压裂技术及其理论研究水力压裂技术是从1950年研发出来的,直到现在,该技术已经逐渐发展和成熟,作为常规低渗油气增透技术,在很多领域深受欢迎,例如非常规油气开采、页岩油气开发、煤层气开发、地应力测量、地热资源开发、核废料处理、CO2封存等领域,具有广泛的工业价值。
本文也是针对煤矿井下领域的研究,水力压裂技术的应用效果主要体现在围岩控制和低渗透煤层的增透这两个领域。
主要是针对回采工作面坚硬难垮顶板控制、高应力巷道围岩卸压及冲击地压防治。
这种技术的实质是在钻孔中注高压水,在坚硬顶板中形成裂缝而弱化顶板,使其能及时垮落。
但在试验初期,由于对水力压裂技术缺乏深入的认识,施工机具也存在较大问题,致使该项技术在很长一段时间内没有得到推广应用。
水力压裂技术理论国内外的学者都曾在油气系统地面钻井压裂、煤炭行业中应用过程中进行深入的分析,但在该技术上仍有很大的分歧,在水力压裂效果上不尽如人意。
随着我国煤炭技术的发展以及煤炭行业的技术设施的配备,水力压裂技术也得到了大范围推广应用,促进了水力压裂技术理论的进一步研究。
二、水力压裂技术设备及压裂效果分析下面分析压裂机具与设备,我们以煤炭科学研究总院开采研究分院开发的水力压裂机具为例进行介绍。
水力压裂技术在页岩气开发中的应用近年来,页岩气开发一直备受关注。
作为一种非常重要的天然气资源,它可以很好地满足我们的能源需求。
然而,页岩气的开采并不是一件简单的事情。
它的开发需要依靠一些高端技术,其中最重要的就是水力压裂技术。
本文将从这一技术的应用角度,来探讨水力压裂在页岩气开发中的应用。
一、水力压裂技术简介水力压裂技术是一种通过高压水将岩石裂开的技术。
它是一种用于提高天然气、石油或其他矿物质开采率的方法。
该技术利用高压液体对岩石施加压力,从而形成裂缝,并将油气释放出来。
这些油气沿着裂缝移动,最终被收集起来。
二、水力压裂在页岩气开发中的应用1. 提高采收率页岩气的开采过程比较困难,因为天然气储存在岩石裂缝中,而且岩石的质地也很硬。
水力压裂技术可以帮助解决这个问题。
它可以通过高压水的作用,裂开岩石,形成裂缝,从而释放出页岩气,提高开采率。
2. 减少环境污染水力压裂技术可以比较好地减少环境污染。
它是一种非常干净的技术,不需要使用化学药品。
相比于常规开采方法,它可以极大地减少地面的废弃物和水污染。
3. 提高经济效益水力压裂技术可以大大提高页岩气的开采效率。
这将对经济效益产生积极的影响。
通过减少投入,提高产出,水力压裂技术可以带来可观的利润。
4. 实现能源安全随着全球化的发展,能源安全越来越受到关注。
水力压裂技术可以帮助实现能源安全。
它可以大大提高我们对国内矿产资源的依赖,减少对进口矿物质的需求。
三、水力压裂技术面临的挑战尽管水力压裂技术在页岩气开发中有很多好处,但它也面临着一些挑战。
这些挑战包括:1. 高成本水力压裂技术的成本非常高。
要使用这种技术,必须购买昂贵的压裂设备和材料。
对于一些没有足够预算和技术支持的企业来说,这可能会限制它们的发展。
2. 水资源紧缺水力压裂技术需要大量的水资源。
岩石裂隙需要用水冲洗,以便释放天然气。
考虑到一些地方水资源极为紧缺,使用水力压裂技术可能会让当地面临水资源短缺的风险。
水平井分段压裂工艺技术现状及展望1. 引言水平井分段压裂工艺技术是一种常用的石油勘探和开发技术,对提高油气勘探和开发的效率和效益具有重要意义。
本文将对水平井分段压裂工艺技术的现状及未来发展进行探讨。
2. 水平井分段压裂工艺技术现状水平井分段压裂工艺技术是利用高压泵将水泥、砂等混合物注入井眼,以增强孔隙岩石的固结状态,增加天然气开采效率的有效技术。
目前,该技术已经在中国石油、中海油等国内外大型石油公司得到广泛应用。
同时,随着技术的不断推进和优化,水平井分段压裂工艺技术在效率和可靠性方面也不断得到提升。
具体来说,当前水平井分段压裂工艺技术的主要特点包括以下几个方面:一是针对油气藏地质条件和井眼特征,开展针对性的工艺设计,力求最大限度地提高井眼处理效果。
二是采用先进的井下测量技术,能够快速准确地获取井眼的地层信息和控制井眼的贯穿能力,进一步提高压裂工作效率和成功率。
三是通过合理的措施,减少剩余油气的开采难度和成本,以有效保障勘探开发的可持续性发展。
3. 水平井分段压裂工艺技术展望未来,水平井分段压裂工艺技术将继续得到引进、推广和应用。
随着科技不断发展,水平井分段压裂工艺技术也将实现创新,包括以下几个方面:首先,将建立更加强大的软硬件基础设施,包括井下测量、设备监控等技术,借助系统化的数据采集和处理来实现更高效的地质勘探和油气开采。
其次,低碳经济、清洁能源的需求将推动水平井分段压裂工艺技术的不断优化和改进。
作为一项核心技术,水平井分段压裂工艺技术将不断拓展应用范围,支持更广泛的油气勘探和开发。
4. 结论总的来说,水平井分段压裂工艺技术作为一种发展日益成熟的油气勘探与开采技术,具有极其重要的应用前景。
近年来,在新技术、新工艺的推动下,水平井分段压裂工艺技术得到了迅速发展,同时面临前所未有的机遇与挑战。
因此,我们需要加强研究和开发,不断提高技术水平,探索解决当前发展过程中的难点与问题,以推动水平井分段压裂工艺技术健康快速发展。
定向限流法射孔压裂技术及发展方向摘要:研究了射孔方位角、地应力和岩石力学性质与射孔方位相关关系,为射孔方位确定和压裂施工效果提供坚实基础和可靠保障。
应用表明,定向射孔压裂可以有效减小近井摩阻,增加地层中流体的渗流能力,提高低渗油田的产能,并提出了低孔低渗储层射孔工艺发展方向及改进的建议。
关键词:定向射孔;井筒崩落;横波异性水力压裂技术是某油田绝大多数油层进行良好改造措施的有效方法。
但是有些井在压裂施工过程中由于近井筒处高摩阻,造成油层改造失败。
针对这一问题,结合地应力方向的研究,探索出了定向射孔压裂技术,这项技术解决了由于螺旋射孔形成的复杂近井筒裂缝几何形状导致高摩阻造成施工失败的问题。
定向射孔是解决近井筒处较高的摩阻一种有效途经,施工安全,针对性强。
1 理论研究定向射孔压裂技术是在与水平最小主应力方向成某一角度定向射孔,通过水力压裂造缝,使裂缝沿射孔孔眼方向起裂,然后重新定向到垂直于最小主应力方向,在同一压裂层内形成二条裂缝。
研究表明,射孔方位角对裂缝起裂方位有重要影响,裂缝的起裂位置与射孔方向一致。
地应力是压裂工程中的重要参数,其方向解释有井筒崩落地应力方向分析方法和横波各向异性地应力方向分析方法。
1.1 井筒崩落地应力1.1.1 基本原理油井钻井过程是在地应力作用下进行的。
钻井井孔的形成导致地应力在钻孔井壁上产生应力集中,当应力集中超过井孔周围岩石的破坏强度时,岩石便出现破坏而产生井孔崩落现象。
因此,井孔崩落与地应力状态即地应力大小和方向)存在内在的必然联系。
分析表明,水平最小主应力方向出现最大的应力集中,因此最容易发生井孔崩落。
也就是说,井孔崩落方向代表着水平最小主应力方向。
当考虑井孔中流体压力和岩石中孔隙流体压力时,水平最小主应力方向上最容易发生井孔崩落,即井孔崩落方向反映水平最小主应力方向。
1.1.2 基本方法井孔崩落导致崩落处的的井径增大,利用四臂、六臂地层倾角井径测井仪或FMI成像测井可以直接测定井孔井径变化特征,便可确定井径增大方向,即最小主应力方向。
压裂技术详解压裂技术又称为水力压裂技术,是一种利用高压水进行地下岩石层破裂的技术。
在油气开采中,压裂技术被广泛应用,可以刺激原油和天然气井的产量,提高资源回收率。
本文将对压裂技术的原理、优劣性和应用范围进行详细的介绍。
1. 压裂技术的原理压裂技术是一种利用高压水强制进入地下岩石层,形成高压水力作用,使岩石产生破裂和裂缝的技术。
具体而言,压裂技术可以分为两种类型:垂向压裂和水平压裂。
垂向压裂是将高压水垂直注入岩石层,形成一系列垂向的裂缝和破裂,加快油气运移速度,促进油气在储层内的聚集。
水平压裂则是将高压水以水平方向注入岩石层,增加破裂面积,形成连通的立方体形状的裂缝,从而实现储层中原油和天然气的释放和采集。
1)改善油藏渗透性:压裂技术通过制造一系列地下岩石支架破裂和裂缝,增加原油和天然气的采集率,能够将原本不可采取的储量变成可开采的储量。
2)提高油气产量:压裂技术可以在原油和天然气井中形成一系列裂缝,加速原油和天然气从储层中运动到井筒内,提高井筒的产量。
3)可重复使用:压裂技术是可重复使用的技术,可实现多次压裂,提高原油和天然气生产效率。
与此同时,压裂技术也存在以下缺点:1)环境污染:压裂技术需要大量的水和化学添加剂,通过高压水注入地下岩石层,将混合物压入地下。
这些添加剂中可能会含有有毒物质,从而对环境造成污染。
2)地震风险:压裂技术可能会导致地震,特别是在地震活跃区进行压裂活动更容易引起地震。
3)资金投入高:压裂技术需要大量的资金投入,对于早期开采的小油田来说,压裂技术可能投入不够经济。
压裂技术最初是在美国被广泛使用的。
目前,在美国和加拿大,压裂技术已成为油气开采的主流技术,占据了大部分市场。
除此之外,压裂技术还被应用于中国、俄罗斯、澳大利亚等国家和地区。
压裂技术的应用范围主要有以下几个方向:1)钻井工作:在油气勘探、钻井等领域,压裂技术可以使深部地层中的原油和天然气排入井口,方便开采。
2)页岩气勘探和开发:在成功开采美国页岩气后,压裂技术被广泛应用于页岩气勘探和开发工作中,可以将原本积存在深部页岩层中的天然气释放出来,大幅提高天然气资源的利用。
非常规储层压裂改造技术进展及应用一、本文概述随着全球能源需求的持续增长,非常规储层资源的开发利用越来越受到重视。
非常规储层,如页岩、致密砂岩等,由于其低孔低渗特性,压裂改造技术成为了提高其开采效率的关键。
本文旨在综述非常规储层压裂改造技术的最新进展,包括压裂液体系、压裂工艺、裂缝监测与控制等方面,并探讨这些技术在国内外油气田的实际应用情况。
通过对相关文献的梳理和案例分析,本文旨在为非常规储层压裂改造技术的发展提供理论支持和实践指导,推动该领域的技术创新和产业升级。
二、非常规储层压裂改造技术的发展历程非常规储层压裂改造技术的发展,经历了从传统水力压裂到现代复杂储层压裂技术的转变。
在过去的几十年里,随着全球能源需求的不断增长,以及对传统油气资源的日益开采,非常规储层如页岩、致密砂岩等逐渐成为油气勘探开发的重要领域。
这些储层具有低孔、低渗、非均质性强等特点,使得常规的压裂技术难以满足开发需求,推动了非常规储层压裂改造技术的不断创新与发展。
初期,非常规储层压裂主要依赖于传统的水力压裂技术,通过高压泵注大量液体来形成裂缝,从而提高储层的渗透性。
然而,这种方法在非常规储层中往往效果不佳,因为这些储层的岩石性质复杂,裂缝扩展困难。
随着技术的进步,科研人员开始尝试使用多种压裂液体系,如泡沫压裂液、稠化压裂液等,以提高压裂效果和降低对储层的伤害。
同时,为了更精确地控制裂缝的扩展方向和长度,研究人员开始引入地质导向、数值模拟等先进技术,为压裂施工提供更为准确的指导。
近年来,随着水平井技术的广泛应用,非常规储层压裂改造技术迎来了新的突破。
水平井技术能够使得井筒与储层接触面积更大,有利于裂缝的扩展和油气的流动。
在此基础上,研究人员又进一步开发出了分段压裂、多级压裂等复杂压裂技术,以适应不同储层条件和开发需求。
随着环保要求的日益严格,非常规储层压裂改造技术也在不断探索环保型压裂液和减少水资源消耗的新方法。
例如,利用二氧化碳等环保介质作为压裂液,既能够满足压裂需求,又能减少对环境的影响。
石油开发中体积压裂技术的应用
石油开发中,体积压裂技术是一种常用的增产技术。
体积压裂技术是通过将压裂液送
入地层,增加地层裂缝的面积和长度,从而增加油井产能的一种方法。
下面将详细介绍体
积压裂技术的应用。
1.改善裂缝系统:体积压裂技术可以改善地层的裂缝系统,增加裂缝的面积和长度,
从而增加地层的渗透性和储层的有效厚度,提高油井的产能。
通过体积压裂技术,可以将
原来孤立的裂缝扩大并连接起来,形成一个更为复杂的裂缝系统,从而提高油井的采收
率。
2.增加油井产能:通过体积压裂技术,可以将压裂液注入地层,产生高压力,撕裂地层,从而增加地层的渗透性,提高油井的产能。
体积压裂技术可以将高压压裂液注入地层,使地层产生水力裂缝,增大地层的裂缝面积,从而增加地层的渗透性,提高油井的产能。
3.改善油藏压力:在石油开发中,常常会遇到油田的压力下降的问题。
通过体积压裂
技术,可以将压裂液注入地层,增加地层的有效厚度,改善油藏的透水性,从而增加油藏
的有效压力,提高油井的产能。
体积压裂技术在石油开发中的应用非常广泛。
通过改善地层的裂缝系统,增加地层的
渗透性和压力,提高油井的产能和产量,从而提高油田的开发效果。
随着石油开发技术的
不断发展,体积压裂技术将会得到进一步的改进和完善,为石油开发提供更大的帮助。