让合情推理从“幕后”走向“前台”——从一道高考试题谈起
- 格式:pdf
- 大小:210.98 KB
- 文档页数:3
高考数学复习点拨 高考中的合情推理合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,其主要形式有归纳和类比。
一、归纳推理例1、在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干准“正三棱锥”形的展品,其中第一堆只有一层,就一个乒乓球;第2、3、4、…堆最底层(第一层)分别按图4所示方式固定摆放.从第一层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以)(n f 表示第n 堆的乒乓球总数,则=)3(f ;=)(n f (答案用n 表示)分析:解决本题的关键之一是找出相邻两项的关系,即下一堆的个数是上一堆的个数加上其第一层的个数;其次是求出第一层的通项公式。
解:f (1)=1,观察图象可知f (2)=4,f (3)=10,f (4)=20,下一堆的个数是上一堆的个数加上其第一层的个数,而第一层的个数满足1,3,6,10,……,通项公式是2)1(+n n ,所以f (n )=f (n -1)+2)1(+n n , 所以有:f (2)-f (1)=2)12(2+⨯ f (3)-f (2)=2)13(3+⨯ f (4)-f (3)=2)14(4+⨯ ……………………………………f (n )-f (n -1)=2)1(+n n 以上各式相加得:f (n )=f (1)+24433222222n n ++++++++ =2)4321()4321(22222n n +++++++++++ =22)1(6)12)(1(++++n n n n n =6)2)(1(++n n n 所以应该填:10;6)2)(1(++n n n 点评:求f (n )的通项公式时运用累差法思想求解。
可见高考题多数依据课本知识、思想或方法的设计题目。
解决问题的关键是找到相邻两项的关系。
二、类比推理(类比)例2、半径为r 的圆的面积2)(r r S ⋅=π,周长r r C ⋅=π2)(,若将r 看作),0(+∞上的变量,则r r ⋅=⋅ππ2)'(2, ①,①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数。
高考数学一轮复习考点知识与题型讲解考点49 合情推理与证明一.合情推理(1)归纳推理①定义:从个别事实中推演出一般性的结论,称为归纳推理(简称归纳法).②特点:归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理①定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理(简称类比法).②特点:类比推理是由特殊到特殊的推理.(3)合情推理合情推理是根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳推理和类比推理都是数学活动中常用的合情推理.二.演绎推理(1)演绎推理由一般性的命题推演出特殊性命题的推理方法称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——一般性的原理;②小前提——特殊对象;③结论——揭示了一般原理与特殊对象的内在联系.三.直接证明(1)定义:直接从原命题的条件逐步推得命题成立的证明方法.(2)一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒A ⇒B ⇒C ⇒…⇒本题结论. (3)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法常称为综合法.②推证过程 已知条件⇒…⇒…⇒结论(4)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.②推证过程结论⇐…⇐…⇐已知条件四.间接证明(1)常用的间接证明方法有反证法、同一法等.(2)反证法的基本步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果.③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.考点题型分析考点题型一 推理【例1】(2022·河南)有一个三段论推理:“等比数列中没有等于0的项,数列{}n a 是等比数列,所以0n a ≠”,这个推理( )A .大前提错误B .小前提错误C .推理形式错误D .是正确的【答案】D【解析】由等比数列的定义可知等比数列中没有等于0的项,即0n a ≠,可知推理正确. 故选:D.【举一反三】1.(2022·河南高二月考(文))已知函数()cos sin f x x x =-,()'f x 为() f x 的导函数,定义1()()f x f x '=,[]21()()f x f x '=,…,[]()1()()n n f x f x n *+'=∈N ,经计算,1()sin cos f x x x =--,2()cos sin f x x x =-+,3()sin cos f x x x =+,…,照此规律,则2021()f x =( )A .cos sin x x -+B .cos sin x x -C .sin cos x x +D .sin cos x x -- 【答案】D【解析】根据题意,可得[]43()()cos sin f x f x x x '==-,[]54()()sin cos f x f x x x '==--,[]65()()cos sin f x f x x x '==-+,…,观察知()n f x 呈周期性变化,周期为4,所以2021505411()()()f x f x f x ⨯+==sin cos x x =--.故选:D.2.(2022·全国高三月考(理))某电视综艺节目中,设置了如下游戏环节:工作人员分别在四位嘉宾甲、乙、丙、丁的后背贴上一张数字条,数字是1或2中的一个,每人都能看到别人的号码,但看不到自己后背的号码.丁问:“你们每人看到几个1、几个2?”甲说:“我看到三个1.”乙说:“我看到一个2和两个1.”丙说:“我看到三个2.”三个回答中,只有号码是1的嘉宾说了假话,则号码为2的嘉宾有( )A .乙B .甲、乙C .丁D .乙、丁【答案】D【解析】若甲说真话,则乙、丙说假话,但按甲所说内容看,乙说的又是真话,矛盾,故甲说的是假话,进而可确定丙也说的是假话.若乙说的是假话,要么甲、丙中至少有一个2,要么甲、乙、丁都是1,以上情形相互矛盾,所以乙说的是真话,号码为2的嘉宾只能是乙和丁.故选:D.3.(2022·安徽省泗县第一中学)将正奇数按如图所示规律排列,则第31行从左向右的第3个数为( )351715131191921232527172931A .1915B .1917C .1919D .1921 【答案】B【解析】如题图,第1行1个奇数,第2行3个奇数,第3行5个奇数,归纳可得第31行有312-1=61⨯个奇数,且奇数行按由大到小的顺序排列,偶数行按由小到大的顺序排列.又因为前31行共有1+61136131=9612++⋯+=⨯个奇数, 则第31行第1个数是第961个奇数即是9612-1=1921⨯,则第3个数为1917.故选:考点题型二证明【例2】(2022·全国高三专题练习(理))已知a ,b ∈R ,a >b >e (其中e 是自然对数的底数),用分析法求证:b a >a b .【答案】证明见解析.【解析】因为a >b >e ,b a >0,a b >0,所以要证b a >a b ,只需证alnb >blna ,只需证ln ln b a b a >取函数f (x )=ln x x ,因为f ′(x )=21ln x x-,所以当x >e 时,f ′(x )<0,所以函数f (x )在(e ,+∞)上单调递减.所以当a >b >e 时,有f (b )>f (a ),即ln ln b a b a >得证.【举一反三】1.(2022·全国高三专题练习(文))已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0.【答案】证明见解析【解析】①设0a <,因为0abc >,所以0bc <.又由0a b c ++>,则0b c a +>->,所以()0ab bc ca a b c bc ++=++<,与题设矛盾.②若0a =,则与0abc >矛盾,所以必有0a >.同理可证:0b >,0c >.综上可证,,0a b c >.2.(2022·全国高三专题练习(文))已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a 是f (x )=0的一个根; (2)试比较1a与c 的大小. 【答案】(1)证明见解析;(2)1a >c . 【解析】(1)∵f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,f (x )=0的两个根x 1,x 2满足12c x x a=, 又f (c )=0,不妨设x 1=c ∴21x a=,即1a 是()0f x =的一个根. (2)假设1c a <,又10a > 由0<x <c 时,f (x )>0,得10f a ⎛⎫⎪⎝⎭>,与10f a ⎛⎫= ⎪⎝⎭矛盾 ∴1c a≥ ∵f (x )=0的两个根不相等 ∴1c a≠,只有1c a >;3.(2022·全国高三专题练习(理))已知a >5<【答案】证明见解析.<,只需证)22,只需证2a -5+a -5+<只需证a 2-5a <a 2-5a +6,只需证0<6,∵0<6恒成立,<.。
高考数学试题汇编第二节合情推理与演绎推理理(含解析)合情推理考向聚焦由已知条件归纳出一个结论或运用类比的形式给出某个问题的结论,是高考对合情推理的常规考法,从题型上看,以选择题、填空题为主,所占分值4~5分,属中低档题备考指津合情推理(归纳推理和类比推理)是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想.归纳推理时要做到归纳到位、准确;类比推理时,要从本质上去类比,不要被表面现象所迷惑1.(2012年江西卷,理6,5分)观察下列各式:a+b=1,a2+b 2=3,a 3+b3=4,a 4+b4=7,a5+b5=11,…,则a10+b10=( )(A)28 (B)76 (C)123 (D)199解析:本题考查递推数列知识以及归纳推理的思想方法.记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11;f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123,即a10+b10=123.故选C.答案:C.涉及递推数列的某一项或通项的问题(尤其是小题)常常可借助归纳推理加以解决.2.(2011年江西卷,理7)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为( )(A)3125 (B)5625 (C)0625 (D)8125解析:∵55=3125,56=15625,57=78125,58末四位数字为0625,59末四位数字为3125,510末四位数字为5625,511末四位数字为8125,512末四位数字为0625,…,由上可得末四位数字周期为4,呈规律性交替出现,∴52011=54×501+7末四位数字为8125.答案:D.3.(2012年陕西卷,理11,5分)观察下列不等式1+<,1++<,1+++<,……照此规律,第五个不等式为.解析:不完全归纳:第一个:1+<,第二个:1++<,第三个:1+++<,…归纳猜想:第n个:1+++…+<,故n=5时,1+++…+<.答案:1+++++<4.(2012年湖北卷,理13,5分)回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等,显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999,则(1)4位回文数有个;(2)2n+1(n∈N+)位回文数有个.解析:已知1位回文数有9个,2位回文数有9个,3位回文数有90=9×10个,4位回文数有1001,1111,…,1991,2002,…,9999,共90个,以此类推,猜想2n+1位回文数与2(n+1)位回文数个数相等,均为9×10n个.答案:(1)90 (2)9×10n5.(2011年陕西卷,理13)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式为.解析:照等式规律,第n行的首位数字为n且有2n-1个相邻正整数相加∴n+(n+1)+…+(3n-2)=(2n-1)2答案:n+(n+1)+…+(3n-2)=(2n-1)26.(2011年山东卷,理15)设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n-1(x))= .解析:观察分母的x的系数数列:1,3,7,15,…,a n,…而分母的常数项数列:2,4,8,16,…,b n,…∴b n=2n,a n=2n-1,∴当n≥2时,f n(x)=f(f n-1(x))=答案:7.(2010年陕西卷,理12)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为.解析:观察已知等式13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,归纳可得,13+23+33+43+53+63=(1+2+3+4+5+6)2=212,故应填13+23+33+43+53+63=212.答案:13+23+33+43+53+63=2128.(2010年浙江卷,理14)设n≥2,n∈N,(2x+)n-(3x+)n=a0+a1x+a2x2+…+a n x n,将|a k|(0≤k ≤n)的最小值记为T n,则T2=0,T3=-,T4=0,T5=-,…,T n,…其中T n= .解析:由归纳推理得T n=.答案:此类题目要对所给的已知等式进行观察,分析其结构特征,再进行比较和联想,发现规律,归纳得出结论.演绎推理考向聚焦演绎推理也是高考重点考查的内容,渗透于各种题型的各个问题中,主要以综合题的形式考查演绎推理的基本步骤与严谨性,有时也会出现高难度题,12~14分备考指津在数学研究中,合情推理获得的结论,仅仅是一种猜想,未必可靠,它只能帮助我们猜想和发现结论,由已知条件归纳或类比出的结论,需要再运用演绎推理进行证明.也就是说,合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的.在前提和推理形式都正确的情况下,利用演绎推理证明所得结论是正确的9.(2011年浙江卷,理20)如图,在三棱锥P ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A MC B为直二面角?若存在,求出AM的长;若不存在,请说明理由.(1)证明:由AB=AC,D是BC的中点,得AD⊥BC.又PO⊥平面ABC,所以PO⊥BC.因为PO∩AD=O,所以BC⊥平面PAD,故BC⊥PA.(2)解:存在.如图,在平面PAB内作BM⊥PA于M,连接CM,PD.由(1)知AP⊥BC,得AP⊥平面BMC.又AP⊂平面APC,所以平面BMC⊥平面APC.在Rt△ADB中,AB2=AD2+BD2=(AO+OD)2+(BC)2=41,得AB=.在Rt△POD中,PD2=PO2+OD2,在Rt△PDB中,PB2=PD2+BD2,所以PB2=PO2+OD2+DB2=36,得PB=6.在Rt△POA中,PA2=AO2+OP2=25,得PA=5.又cos∠BPA==,从而PM=PB·cos∠BPA=2,所以AM=PA-PM=3.综上所述,存在点M符合题意,AM=3.演绎推理的主要形式,就是由大前提、小前提推出结论的三段论式推理,在应用三段论来求解问题时,首先应该明确什么是问题中的大前提和小前提.在演绎推理中,只有前提和推理形式是正确的,结论才是正确的.。
诺力:从幕后走向前台的电池“大鳄”
周宏
【期刊名称】《中国自行车》
【年(卷),期】2008(000)005
【摘要】在2008年4月25~28日上海举办中国国际自行车展览会暨2008年中国国际摩托车及零部件交易会上,浙江诺力电源有限公司高调推出以“新诺力”为品牌的电动车用电池。
由此,动力电池业又一个“大鳄”浮出水面。
【总页数】1页(P13)
【作者】周宏
【作者单位】无
【正文语种】中文
【中图分类】U469.72
【相关文献】
1.江青:从幕后走向前台
2.让合情推理从“幕后”走向“前台”——从一道高考试题谈起
3.从“幕后”走向“前台”--基于外训课堂口译译员角色的一项实证研究
4.公路电助力从幕后走向前台
5.存款保险制度:从幕后走向前台
因版权原因,仅展示原文概要,查看原文内容请购买。
第七章 推理与证明第1课时 合情推理与演绎推理第八章 (对应学生用书(文)、(理)93~94页)1. (选修12P 35练习题4改编)“因为指数函数y =a x 是增函数(大前提),而y =⎝⎛⎭⎫13x是指数函数(小前提),所以y =⎝⎛⎫13x是增函数(结论)”,上面推理错误的原因是______________. 答案:大前提错误解析:y =a x 是增函数这个大前提是错误的,从而导致结论错.2. (选修12P 35练习题3改编)用三段论的形式写出“矩形的对角线相等,正方形是矩形,所以正方形的对角线相等.” 的演绎推理过程________________________________________________________________________________________________________________________________________________. 答案:每一个矩形的对角线相等(大前提) 正方形是矩形(小前提) 正方形的对角线相等(结论)3. (选修12P 29练习题3(2) 改编)观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是________.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2 解析:等式右边的底数为左边的项数.4. (选修12P 29练习题3(2)改编)观察下列等式: 21+2=4;21×2=4;32+3=92;32×3=92;43+4=163;43×4=163;…,根据这些等式反映的结果,可以得出一个关于自然数n 的等式,这个等式可以表示为______________________.答案:n +1n +(n +1)=n +1n×(n +1)(n ∈N *)解析:由归纳推理得n +1n +(n +1)=n +1+(n 2+n )n =(n +1)2n , n +1n×(n +1)=(n +1)2n ,所以得出结论n +1n +(n +1)=n +1n×(n +1)(n ∈N *). 5. 已知扇形的弧长为l ,所在圆的半径为r ,类比三角形的面积公式:S =12×底×高,可得扇形的面积公式为________.答案:12rl1. 归纳推理(1) 归纳推理的定义从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理.(2) 归纳推理的思维过程大致如图实验、观察―→概括、推广―→猜测一般性结论(3) 归纳推理的特点①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它不能作为数学证明的工具.③归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.2. 类比推理(1) 根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理.(2) 类比推理的思维过程观察、比较―→联想、类推―→猜测新的结论3. 演绎推理(1) 演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程.(2) 主要形式是三段论式推理.(3) 三段论的常用格式为M —P(M是P)①S-M(S是M)②S —P(S是P)③其中,①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般原理,对特殊情况作出的判断.[备课札记]题型1 归纳推理例1 在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝⎛⎭⎫a n +1a n . (1) 求a 1,a 2,a 3;(2) 由(1)猜想数列{a n }的通项公式; (3) 求S n .解:(1) 当n =1时,S 1=12⎝⎛⎭⎫a 1+1a 1,即a 21-1=0,解得a 1=±1.∵ a 1>0,∴ a 1=1; 当n =2时,S 2=12⎝⎛⎭⎫a 2+1a 2,即a 22+2a 2-1=0. ∵ a 2>0, ∴ a 2=2-1.同理可得,a 3=3- 2. (2) 由(1)猜想a n =n -n -1.(3) S n =1+(2-1)+(3-2)+…+(n -n -1)=n. 变式训练已知数列{a n }满足a 1=2,a n +1=1+a n1-a n(n ∈N *),则a 3=________,a 1·a 2·a 3·…·a 2007=________.答案:-123解析:(解法1)分别求出a 2=-3、a 3=-12、a 4=13、a 5=2,可以发现a 5=a 1,且a 1·a 2·a 3·a 4=1,故a 1·a 2·a 3·…·a 2 007=a 2 005·a 2 006·a 2 007=a 1·a 2·a 3=3.(解法2)由a n +1=1+a n 1-a n,联想到两角和的正切公式,设a 1=2=tan θ,则有a 2=tan ⎝⎛⎭⎫π4+θ,a 3=tan ⎝⎛⎭⎫π2+θ,a 4=tan ⎝⎛⎭⎫3π4+θ,a 5=tan(π+θ)=a 1,….则a 1·a 2·a 3·a 4=1,故a 1·a 2·a 3·…·a 2 007=a 2 005·a 2 006·a 2 007=a 1·a 2·a 3=3. 题型2 类比推理例2 现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.答案:a 38解析:在已知的平面图形中,中心O 到两边的距离相等(如图1),即OM =ON.四边形OPAR 是圆内接四边形,Rt △OPN ≌Rt △ORM ,因此S 四边形OPAR =S 正方形OMAN =14a 2.同样地,类比到空间,如图2.两个棱长均为a 的正方体重叠部分的体积为18a 3.备选变式(教师专享)已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 为椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN ,那么k PM 与k PN 之积是与点P 位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出具有类似特性的性质,并加以证明.解:类似的性质为:若M 、N 是双曲线:x 2a 2-y 2b2=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 位置无关的定值.证明如下:设点M 的坐标为(m ,n),则点N 的坐标为(-m ,-n),其中m 2a 2-n 2b2=1.又设点P 的坐标为(x ,y),由k PM =y -n x -m ,k PN =y +n x +m ,得k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2,将y 2=b 2a 2x 2-b 2,n 2=b 2a 2m 2-b 2代入得k PM ·k PN =b 2a2.题型3 演绎推理例3 设同时满足条件:①b n +b n +22≤b n +1(n ∈N *);②b n ≤M(n ∈N *,M 是与n 无关的常数)的无穷数列{b n }叫“特界” 数列.(1) 若数列{a n }为等差数列,S n 是其前n 项和,a 3=4,S 3=18,求S n ; (2) 判断(1)中的数列{S n }是否为“特界” 数列,并说明理由. 解:(1) 设等差数列{a n }的公差为d ,则a 1+2d =4,3a 1+3d =18,解得a 1=8,d =-2,S n =na 1+n (n -1)2d =-n 2+9n.(2) 由S n +S n +22-S n +1=(S n +2-S n +1)-(S n +1-S n )2=a n +2-a n +12=d 2=-1<0,得S n +S n +22<S n +1,故数列{S n }适合条件①,而S n =-n 2+9n=-⎝⎛⎭⎫n -922+814(n ∈N *),则当n =4或5时,S n 有最大值20.即S n ≤20,故数列{S n }适合条件②.综上,数列{S n }是“特界”数列. 备选变式(教师专享)设数列{}a n 满足a 1=0且11-a n + 1 -11-a n= 1.(1) 求{}a n 的通项公式;(2) 设b n =1-a n +1n,记S n =k =1n b k ,证明:S n <1.(1)解: 由题设11-a n +1-11-a n=1,即⎩⎨⎧⎭⎬⎫11-a n 是公差为1的等差数列. 又11-a 1=1,故11-a n=n.所以a n =1-1n .(2) 证明: 由(1)得b n =1-a n +1n =n +1-n n +1·n =1n -1n +1,S n=1111n nkk k b ====-<邋1. 观察下列不等式:1+122<32;1+122+132<53;1+122+132+142<74;…;照此规律,第五个不等式是________. 答案:1+122+132+142+152+162<1162. 观察下列各式:a +b =1;a 2+b 2=3;a 3+b 3=4;a 4+b 4=7;a 5+b 5=11;…;则a 10+b 10=________.答案:123解析:(解法1)由a +b =1;a 2+b 2=3得ab =-1代入后三个等式中符合,则a 10+b 10=(a 5+b 5)2-2a 5b 5=123.(解法2)令a n =a n +b n ,易得a n +2=a n +a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123.3. 在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.答案:1∶8解析:考查类比的方法,V 1V 2=13S 1h113S 2h 2=S 1S 2·h 1h 2=14×12=18,所以体积比为1∶8.4. (选修12P 31练习题2改编)在平面几何里可以得出正确结论:“正三角形的内切圆半径等于这正三角形的高的13”.拓展到空间,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的________ .答案:14解析:运用分割法思想,设正四面体的高为h ,底面面积为S ,正四面体SABC 的内切球的半径为R ,球心为O ,连结OS 、OA 、OB 、OC ,将四面体分成四个三棱锥,则V S ABC=V O SAC +V O SAB +V O SBC +V O ABC =13SR +13SR +13SR +13SR =43SR =13Sh ,所以R =14h.5. (2013·镇江期末)观察下列等式:31×2×12=1-122,31×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,…,由以上等式推测到一个一般的结论:对于n ∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n =________. 答案:1-1(n +1)·2n1. (2012·江西文)观察下列事实|x|+|y|=1的不同整数解(x ,y)的个数为4 , |x|+|y|=2的不同整数解(x ,y)的个数为8, |x|+|y|=3的不同整数解(x ,y)的个数为12 ….则|x|+|y|=20的不同整数解(x ,y)的个数为________.答案:80解析:由已知条件,得|x|+|y|=n(n ∈N *)的整数解(x ,y)个数为4n ,故|x|+|y|=20的整数解(x ,y)的个数为80.2. 若等差数列{a n }的公差为d ,前n 项的和为S n ,则数列S n n 为等差数列,公差为d2.类似地,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则数列{nT n }为等比数列,公比为________.答案:q解析:T n =b n 1q n (n -1)2,n T n =b 1(q)n -1.3. 若一个n 面体有m 个面是直角三角形,则称这个n 面体的直度为mn,如图,在长方体ABCDA 1B 1C 1D 1中,四面体A 1ABC 的直度为________.答案:1解析:n =4,m =4,m n =44=1.4. 若P 0(x 0,y 0)在椭圆x 2a2+y 2b2=1(a >b >0)外,过P 0作椭圆的两条切线的切点分别为P 1、P 2,则切点弦P 1P 2所在的直线方程是x 0x a2+y 0yb2=1.那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y2b2=1(a >0,b >0)外,过P 0作双曲线的两条切线的切点分别为P 1、P 2,则切点弦P 1P 2所在的直线方程是________.答案:x 0x a 2-y 0y b2=1解析:设P 1(x 1,y 1),P 2(x 2,y 2),P 0(x 0,y 0),则过P 1、P 2的切线方程分别是x 1x a2-y 1yb2=1,x 2x a 2-y 2y b 2=1.因为P 0(x 0,y 0)在这两条切线上,故有x 1x 0a2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1.这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a2-y 0y b 2=1上,故切点弦P 1P 2所在的直线方程是x 0xa2-y 0y b 2=1.1. 合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新的结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路和方法.2. 合情推理的过程概括为:从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想.3. 演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论,数学问题的证明主要通过演绎推理来进行.4. 合情推理仅是符合情理的推理,他得到的结论不一定真,而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).请使用课时训练(A )第1课时(见活页).[备课札记]。