第三委托代理(纽约大学艾伦和盖尔金融经济学讲义)
- 格式:pdf
- 大小:180.54 KB
- 文档页数:16
融资结构理论(1)委托代理理论上世纪30年代,美国经济学家伯利和米恩斯开始对企业所有权和经营权问题展开探讨,由此提出了委托代理理论,倡导企业所有者仅保留剩余索取权而将经营权进行让渡。
委托代理理论作为现代公司治理的原则,其理论基础是非对称信息博弈论。
该理论认为,由于生产力的发展让分工更加细化,使得企业所有者在知识、能力和精力上出现匮乏而无法更好管理公司,同时,专业化的分工出现了一大批职业经理人,他们有足够的精力和能力来帮助企业所有者管理公司,职业经理人成为了代理人,企业所有者成为了委托人,委托人最求财富最大化而代理人最求个人效用最大化,这必然导致两者的利益冲突。
由此产生了道德风险和逆向选择问题。
委托代理理论包括两个方面。
一是企业所有者和企业经营者的委托代理理论,二是债权人和企业经营者的委托代理理论。
前者是指在当代企业中,企业所有权与经营权分离使得职业经理人实际负责企业的生产经营,而非企业所有者负责,但由于二者所最求的目标不一致,所有者更注重企业的长期利益,职业经理人更注重个人任职期间的利益,便形成了企业所有者作为委托人,企业实际经营者作为代理人的委托代理问题,产生了股权代理成本。
后者是指企业的债权人借贷给企业,却无法参与企业的经营管理,债权人缺乏监控投入资金流向的能力,由于信息不对称,职业经理人可能会将筹集的资金用于更高风险的项目上,使得债权人承担了更高的风险却只能获得固定的报酬,这便形成了企业债权人与企业经营者的委托代理问题,产生了债务代理成本。
而股权代理成本和债务代理成本共同决定了企业的所有权结构,当股权融资和债务融资的边际代理成本相等时,企业便达到最优资本结构,此时企业的总成本达到最小值。
(2)信息不对称理论信息不对称理论认为,在市场经济活动中,不同行为主体掌握的信息是有差异的,即使是针对相同事件,各类主体对该事件的了解也是不完全对称的。
掌握更多信息的主体在市场中往往处于有利地位,相应的,对信息缺乏的主体在市场中往往处于不利地位。
第六章委托——代理理论委托-代理理论起源于20世纪40年代,在20世纪70年代获得迅速发展,并日益受到社会各界尤其是经济学界的重视,逐渐发展成信息经济学的主要研究领域之一。
社会契约论认为,社会是一个由众多不同的个体组成的集合,个体与个体之间时刻发生着不同形式的联系,他们之间的行为靠社会契约来协调。
经济社会中的任何有组织的或需要进行组织的行动都是根据某种契约来协调组织内部人与人的行为。
当这些社会契约在经济活动中存在并发挥效用时,它们就成为经济制度的一个基本内容。
然而,这些契约如何达到,其效率如何,它们的经济效用如何得以改进和受到了怎样的限制等,这些都是委托-代理理论关心和需要探讨的问题。
6.1 委托——代理的基本概念1.委托-代理关系的概念委托-代理(principal-agent relation)的概念最先源自于法律。
在法律关系中,当A授权B代表A从事某项活动时,委托-代理关系就发生了。
A称为委托人,B即为代理人。
简单地说,就是一个人(代理人)以另一个人(委托人)的名义来承担和完成一些事情,更通俗地说,就是委托人出钱或付出相应的代价请代理人按照自己的意愿办事。
现代意义上的委托-代理关系的概念最早是由罗斯(Ross,1973)提出的:“如果当事人双方,其中代理人一方代表委托人一方的利益行使某些决策权,则委托-代理关系就随之产生了。
”如今,委托-代理被广泛应用于经济活动中,它泛指任何一种涉及不对称信息的交易,交易前后,市场参与者之间所掌握的信息是不对称的,掌握信息多,具有相对信息优势的一方称为代理人;掌握信息少,具有相对信息劣势的一方称为委托人。
经济学中的委托-代理关系就是处于信息优势与处于信息劣势的市场参与者之间的经济关系。
也可以这样说,委托-代理是起源于“专业化”的存在。
当存在专业化时,就可能出现这样一种关系:代理人(具有专业化知识的一方)因为相对信息优势而代表委托人行动(Hart and Holmstrom,1987)。
美国著名经济学家埃德温·曼斯菲尔德领衔宾夕法尼亚州大学沃顿商学院三位顶级经济学教授联袂写作哈佛大学、斯坦福大学、麻省理工大学和沃顿商学院等世界一流大学采用中山大学管理学院毛韵诗教授亲自翻译最畅销的管理经济学领域教科书书名:阿伦&曼斯菲尔德管理经济学(Managerial Economics)书系:湛庐教材—BE0302-1书号:978-7-300-11173-5著译者:[美]布鲁斯·阿伦(W.Bruce Allen)尼尔·多赫提(Neil Doherty )基思·韦格尔特(Keith Weigelt) 埃德温·曼斯菲尔德(Edwin Mansfield) 著毛蕴诗译责任编辑:李季开本:大16开页数:450页纸张:轻型纸预计出版时间:2008年11月定价:69.00出版社:中国人民大学出版社◎作者简介埃德温·曼斯菲尔德(Edwin Mansfield)埃德温·曼斯菲尔德是宾夕法尼亚大学的经济学教授,他参与出版了几百本有关管理经济学、经济学等书籍,同时他的书籍也被翻译成多种语言,在世界各地出版发行。
他也是第一位受邀来到中国访问的美国管理领域的学者。
◎内容简介本书是有关管理经济学领域的领军教材,书中运用了丰富的真实事件与案例,从国际视野的角度阐述了管理经济学理论,并向读者展示了如何将所学到的基本概念运用到现实管理工作中去。
通过借助决策科学、数理统计学等学科的各种方法和工具,本书可以指导企业决策者高效率地配置稀缺资源,以及制定和实施能使企业目标得以实现的经济决策。
◎本书特点本书的作者团队都是在沃顿商学院教管理经济学。
大多数MBA学生在第一个学期都必须学习这门课。
开设这门课的目的就是为了帮助学生们把经济学原理用到商业实践中。
为此,作者设定了四个目标以帮助学生达成学习目标:第一个目标是使经济学成为决策模型。
因此,要让学生理解书中的等式和图形,并且明白作为管理者的他们为什么需要遵循经济学的一般规律,如边际分析或逆向归纳规律。
金融学必读书籍1、曼昆《经济学原理》北京大学出版社点评:很多人真正读懂西方经济学都是从曼昆的《经济学原理》开始的,因为有趣、易懂,“十大经济学原理”令人印象深刻,当年学萨缪尔森的经济学时感觉经济学像个严谨的老学究,读曼昆的就不一样了,像个会讲故事的朋友,即使不从事金融行业,相信你也会喜欢上她的。
这绝对是一本让人拿得起,放不下的枕边图书。
2、弗雷德里克S.米什金《货币金融学》(原书第2版) 机械工业出版社点评:但凡从事金融行业的专业人士对这本书都不会感到陌生,这是金融专业第一本专业基础课教材。
过去我国大学课程里叫“货币银行学”,后来随着金融业的发展,货币逐渐成为金融产品里的一部分而非全部,银行也是金融机构的一个分支,于是和国际接轨改成“金融学”或者“货币金融学”,其实是同一类书。
弗雷德里克S.米什金是这个领域绝对的权威。
中国人民大学出版社出版了这本书的另一个版本,但是最新版删去了非银行金融机构、衍生金融工具和金融行业内的利益冲突等章节,感觉不爽!3、弗兰克J. 法博齐《金融市场与金融机构基础》(原书第4版)机械工业出版社点评:米什金也写过《金融市场与金融机构》,但我个人更倾向于这本由耶鲁大学弗兰克J. 法博齐编写的《金融市场与金融机构基础》,因为米什金的长项在于货币理论研究方面,对于金融机构方面略逊,而且法博齐这本书也是耶鲁大学公开课的指定教材,本人很喜欢主讲教师罗伯特.席勒的谦逊、严谨与博学,还有他上课时不时的害羞模样,哈哈。
况且公开课网上视频随处可以下载,对照视频看书,会有在耶鲁大学上课的感觉呢!4、滋维.博迪《投资学》(原书第7版) 机械工业出版社点评:还能找到比这本书更权威的吗?答案是否定的。
如果说以前威廉.夏普版《投资学》还可以与之掰掰手腕的话,如今夏普版《投资学》第5版已经被定格在2002年的现实再一步证实:博迪版《投资学》已经是投资学领域绝对的NUMBER 1,当之无愧的集大成者。
但是第7版的翻译确实有些问题,英语好的朋友们可以找找对应的英文版。
金融经济学-教学大纲《金融经济学》教学大纲课程编号:150023B课程类型:□通识教育必修课□通识教育选修课□专业必修课?公共选修课□学科基础课总学时:48 讲课学时:48 实验(上机)学时:0学分:3适用对象:金融学(数据与计量分析)专业本科生先修课程:微积分,线性代数,概率论,微观经济学,投资学一、教学目标金融经济学旨在用经济学的一般原理和方法来分析金融问题。
作为金融研究的入门,它主要侧重于提出金融所涉及的基本经济问题、建立对这些问题进行分析的理论框架、基本概念和一般原理以及在此框架下应用相关原理解决各个基本问题所建立的简单理论模型。
金融经济学是应用微观经济学的思想分析金融决策问题,通过均衡分析和(无)套利分析进行金融资产定价,实现了金融学的公理化。
因此,它属于金融学框架体系中的基础课程,亦是金融各专业的重要课程。
修读对象为已掌握线性代数、概率论等数学基础知识和经济学、金融学等经济理论知识的三、四年级学生。
课程的主要教学目标如下:1、使学生掌握基本的金融经济学概念,能够利用微观经济学的思想对金融市场进行分析,深刻理解金融决策优化;2、掌握均衡定价和(无)套利定价的基本思路和方法,对资产定价的思想有较为清晰系统的认识;3、掌握一定的以金融量化技术处理金融问题的基本思路与方法,为进一步学习、研究现代金融理论打好基础。
二、教学内容及其与毕业要求的对应关系本课程主要介绍现代金融学的理论基础。
然后作为进一步的延伸和应用,分为资本市场和公司金融两个方面。
主要内容是各经济主体如何在不确定的环境下,通过资本市场,对资源进行跨期最优配置的问题,利用均衡分析和(无)套利原理实现资产定价。
首先介绍金融经济学的基本含义、要素和所用原理等,其中细讲金融经济学的基本概念、分析框架,加深学生对金融经济学的理解;其次介绍Arrow-Debreu证券市场,(无)套利原理和资产定价模型,如何在完全市场中进行期权定价;如何理解偏好、期望效用函数和风险厌恶;在此基础上介绍最优投资组合,随机占优,组合分离,完全市场和不完全市场中的资源配置与资产定价以及在均值-方差偏好下的投资组合选择,详细介绍了CAPM和APT模型;最后介绍金融市场中的公司财务问题,其中包含生产活动的Arrow-Debreu经济的基本含义,经济建模及均衡的求解分析,MM定理,市场效率问题。
第四章第一节委托代理理论1、委托-代理关系假设一般而言,只要在建立或签定合同前后,市场参与者双方掌握的信息不对称,这种经济关系都可以被认为属于委托-代理关系。
——掌握信息多(拥有私人信息)的市场参加者称为代理人。
——掌握信息少(没有私人信息)的市场参加者称为委托人。
委托-代理的均衡合同是处于信息优势与处于信息劣势的市场参加者之间展开对策的结果。
2、构成委托-代理关系的基本条件:第一:市场中存在两个相互独立的个体,且双方都是在约束条件下的效用最大化者。
双方通过合同的方式确立彼此的关系和利益;第二:代理人与委托人都面临市场的不确定性和风险,且他们二者之间掌握的信息处于非对称状态。
首先,委托人不能直接观察代理人的具体操作行为;其次,代理人不能完全控制选择行为后的最终结果;第三:代理人的非对称信息会对委托人带来不利影响。
3、委托—代理关系的基本模式:一、单个委托人与单个代理人的对策模型,如医生与病人;二、单个委托人与多个代理人的对策模型,如中央政府与大量的国营企业;三、多个委托人与单个代理人的对策模型,如数千个计算机个人用户与网络服务商;四、多个委托人与多个代理人的对策模型,如保险市场上多家保险公司争夺投保人的竞争;五、单个或多个委托人与代理人之间彼此均为委托人和代理人的对策模型,如瞎子背瘸子、经理与员工、生产厂商和经销商等,彼此均为委托人和代理人。
4、委托代理的信息结构委托人—代理人对策的信息结构为不完全、非对称信息环境。
私人信息是使第三类对策与其他两类对策有所区别的原因,这类私人信息在经济活动中普遍存在,并且导致人们为了追求各种利益而采取隐瞒、欺诈等手段。
在某个战略组合环境中,如果任何一个局中人在其他局中人不改变战略的情况下,不能通过单独改变自身战略而提高其效用,那么,这个战略组合就称为纳什均衡。
纳什均衡构成委托—代理对策中最基本的均衡形式。
5、委托代理的均衡合同假定市场上某个资本家A希望聘请一个企业管理者B为其管理企业,B对生产成本、市场需求和劳动力供给等市场信息的掌握要比A详尽和全面,A与B之间构成委托-代理关系,A为委托人,B为代理人。
一、委托代理理论概述(一委托代理关系的产生1933年,美国学者伯利(Berle和米恩斯(Means在《现代公司与私有财产》一书中,对美国200家大公司进行了分析,发现其中占公司总数量44%、财产的58%的企业是由并未握有公司股权的经理人员控制的,由此他们得出,现代公司的发展,已经发生了“所有与控制”的分离,公司实际上已经为由职业经理组成的“控制者集团”所控制。
后来人们把这种现象称为“经理革命”。
委托代理关系是随着企业所有权和控制权(经营权的逐步分离而产生的。
所谓委托代理关系,就是指委托人把自己的事务交给其代理人代为处理而形成的委托人与代理人之间的责、权、利关系。
(二委托代理理论产生的历史背景关于资本所有者与企业经营者之间的代理关系,亚当斯密早就有对这一问题的论述,他说:“在钱财的处理上,股份公司的董事为他人尽力,而私人合伙公司的伙员,则纯为自己打算。
所以,要想股份公司的董事们监视钱财用途,像私人合伙公司伙员那样用意周到,那是很难做到的。
疏忽和浪费,常为股份公司业务经营上多少难免的弊窦。
”委托代理理论是过去30多年里契约理论最重要的发展之一。
19世纪60年代末70年代初一些经济学家不满阿罗—德布鲁体系中的企业“黑箱理论”而深入研究企业内部信息不对称和激励问题发展起来的。
目前,被大家所公认的委托代理理论的主要创始人包括:1996年的诺贝尔经济学奖得主英国经济学家莫里斯(Mirrless和2001年的诺贝尔经济学奖三个得主美国经济学家阿克尔洛夫(Akerlof、史宾斯(Spence、斯蒂格利茨(Stiglitz。
他们的研究使经济学家们对实际市场经济运行机制的理解有了根本的改进。
委托代理理论的中心任务是研究在利益相冲突和信息不对称的环境下,委托人如何设计最优契约激励代理人。
(三委托代理理论的假设前提委托代理理论遵循的是以“经济人”假设为核心的新古典经济学研究范式,并以下面两个基本假设为前提。
1、委托人和代理人之间利益相互冲突。
Chapter3The principal-agent problemThe principal-agent problem describes a class of interactions between two parties to a contract,an agent and a principal.The legal origin of these terms suggests that the principal engages the agent to act on his(the principal’s) behalf.In economic applications,the agent is not necessarily an employe of the principal.In fact,which of two individuals is regarded as the agent and which as the principal depends on the nature of the incentive problem. Typically,the agent is the one who is in a position to gain some advantage by reneging on the agreement.The principal then has to provide the agent with incentives to abide by the terms of the contract.We divide principal-agent problems into two classes:problems of hidden action and problems of hidden information.In hidden-action problems,the agent takes an action on behalf of the principal.The principal cannot observe the action directly,however,so he has to provide incentives for the agent to choose the action that is best for the principal.In hidden-information prob-lems,the agent has some private information that is needed for some decision to be made by principal.Again,since the principal cannot observe the agent’s information,he has to provide incentives for the agent to reveal the infor-mation truthfully.We begin by looking at the hidden-action problem,also known as a moral hazard problem.3.1The modelFor concreteness,imagine that the principal and the agent undertake a risky venture together and agree to share the revenue.The agent takes some12CHAPTER3.THE PRINCIPAL-AGENT PROBLEM action that affects the outcome of the project.The revenue from the venture is assumed to be a random function of the agent’s action.Let A denote the set of actions available to the agent with generic element a.Typically,A is either afinite set or an interval of real numbers.Let S denote a set of states with generic element s.For simplicity,we assume that the set S isfinite.The probability of the state s conditional on the action a is denoted by p(a,s).The revenue in state s is denoted by R(s)≥0.The agent’s utility depends on both the action chosen and the consump-tion he derives from his share of the revenue.The principal’s utility depends only on his consumption.We maintain the following assumptions about preferences:•The agent’s utility function u:A×R+→R is additively separable:u(a,c)=U(c)−ψ(a).Further,the function U:R+→R is C2and satisfies U0(c)>0and U00(c)≤0.•The principal’s utility function V:R→R is C2and satisfies V0(c)>0 and V00(c)≤0.Notice that the agent’s consumption is assumed to be non-negative.This is interpreted as a liquidity constraint or limited liability.The principal’s consumption is not bounded below;in some contexts this is equivalent to assuming that the principal has large butfinite wealth and non-negative consumption.3.2Pareto efficiencyThe principal and the agent jointly choose a contract that specifies an action and a division of the revenue.A contract is an ordered pair(a,w(·))∈A×W, where W={w:S→R+}is the set of incentive schemes and w(s)≥0is the payment to the agent in state s.Suppose that all variables are observable and verifiable.The principal and the agent will presumably choose a contract that is Pareto-efficient. This leads us to consider the following decision problem(DP1):max(a,w(·))X s∈S p(a,s)V(R(s)−w(s))3.3.INCENTIVE EFFICIENCY3 subject to X s∈S p(a,s)U(w(s))−ψ(a)≥¯u,for some constant¯u.Proposition1Under the maintained assumptions,a contract(a,w(·))is Pareto-efficient if and only if it is a solution to the decision problem DP1for some¯u.Suppose that(a,w(·))is Pareto-efficient.Put¯u equal to the agent’s pay-off.By definition,the contract must maximize the principal’s payoffsubject to the constraint that the agent receive at least¯u.Conversely,suppose that the contract(a,w(·))is a solution to DP1for some value of¯u.If the contract is not Pareto-efficient,then there must be another contract that yields the same payoffto the principal and more to the agent.But then it must be possible to transfer wealth to the principal in some state,contradicting the optimality of(a,w(·)).Suppose that the sharing rule satisfies w(s)>0for all s.Then optimal risk sharing requires:V0(R(s)−w(s))=λ,∀s.These are sometimes referred to as the Borch conditions.If the action a belongs to the interior of A and if the functions p(a,s)andψ(a)are differ-entiable at a,thenX s∈S p a(a,s)[V(R(s)−w(s))−λU(w(s)]+λψ0(a)=0.3.3Incentive efficiencyNow suppose that the agent’s action is neither observable nor verifiable.In that case,the action specified by the contract must be consistent with the agent’s incentives.A contract(a,w(·))is incentive-compatible if it satisfies the constraintX s∈S p(a,s)U(w(s))−ψ(a)≥X s∈S p(b,s)U(w(s))−ψ(b),∀b.4CHAPTER3.THE PRINCIPAL-AGENT PROBLEM A contract is incentive-efficient if it is incentive-compatible and there does not exist another incentive-compatible contract that makes one party bet-ter offwithout making the other party worse off.We can characterize the incentive-efficient contracts using the following decision problem(DP2):max(a,w(·))X s∈S p(a,s)V(R(s)−w(s))subject toX s∈S p(a,s)U(w(s))−ψ(a)≥X s∈S p(b,s)U(w(s))−ψ(b),∀b, and X s∈S p(a,s)U(w(s))−ψ(a)≥¯u.Proposition2Under the maintained assumptions,a contract(a,w(·))is incentive-efficient only if it is a solution of DP2for some constant¯u.A contract that solves DP2is incentive-efficient if the participation constraint is binding for every solution.The proof of the“only if”part is similar to the Pareto efficiency argument. If(a,w(·))is a solution to DP2and is not incentive-efficient,there exists an incentive-efficient contract that gives the principal the same payoffand the agent a higher payoff.But this contract must be a solution to DP2that strictly satisfies the participation constraint.The assumption of a uniformly binding participation constraint is restric-tive:see Section3.7.1for a counter-example.This DP can be solved in two stages.First,for any action a,compute the payoffV∗(a)from choosing a and providing optimal incentives to the agent to choose a.Call this DP3V∗(a)=maxw(·)X s∈S p(a,s)V(R(s)−w(s))subject toX s∈S p(a,s)U(w(s))−ψ(a)≥X s∈S p(b,s)U(w(s))−ψ(b),∀b, X s∈S p(a,s)U(w(s))−ψ(a)≥¯u.3.4.THE IMPACT OF INCENTIVE CONSTRAINTS5 Note that U(·)and V(·)are concave functions.A suitable transformation of this problem(see Section3.10)is a convex programming problem for which the Kuhn-Tucker conditions are necessary and sufficient.Once the function V∗is determined,the optimal action is chosen to max-imize the principal’s payoff:a∗∈arg max V∗(a).The advantage of the two-stage procedure is that it allows us to focus on the problem of implementing a particular action.As we have seen,DP3is (equivalent to)a convex programming problem and hence easier to“solve”and it turns out that many interesting properties can be derived from a study of DP3without worrying about the optimal choice of action.3.3.1Risk neutralityAn interesting special case arises if the principal is risk neutral.In that case,maximization of the principal’s expected utility,taking a as given,is equivalent to minimizing the cost of the payments to the agent.Thus,DP3 can be re-written asminw(·)X s∈S p(a,s)w(s))subject toX s∈S p(a,s)U(w(s))−ψ(a)≥X s∈S p(b,s)U(w(s))−ψ(b),∀b, X s∈S p(a,s)U(w(s))−ψ(a)≥¯u.3.4The impact of incentive constraintsWhat is the impact of hidden actions?When does the imposition of incentive constraints affect the choice of contract?If one of the parties to the contract is risk neutral,it is particularly easy to check whether thefirst best can be achieved,that is,whether an incentive-efficient contract is also Pareto-efficient.Risk neutral principal6CHAPTER3.THE PRINCIPAL-AGENT PROBLEM Suppose,for example,that the principal is risk neutral and the agent is (strictly)risk averse,i.e.,U00(c)<0.The Borch conditions for an interior solution imply that w(s)is a constant for all s.In that case,the agent’s income is independent of his action,so in the hidden action case he would choose the cost-minimizing action.Thus,thefirst best can be achieved with hidden actions only if the optimal action is cost-minimizing.Risk neutral agentSuppose that the agent is risk neutral and the principal is(strictly)risk averse,i.e.,V00(c)<0.Then the Borch conditions for thefirst best imply that the principal’s income R(s)−w(s)is constant,as long as the solution is interior.This corresponds to the solution of“selling thefirm to the agent”, but it works only as long as the agent’s non-negative consumption constraint is not binding.In general,there is some constant¯y such thatR(s)−w(s)=min{¯y,R(s)}andw(s)=max{R(s)−¯y,0}.Both parties risk averseMore generally,if we assume thefirst best is an interior solution and maintain the differentiability assumptions discussed above,thefirst-order condition for thefirst best isX s∈S p a(a,s)[V(R(s)−w(s))−λU(w(s)]+λψ0(a)=0.and thefirst-order(necessary)condition for the incentive-compatibility con-straint is X s∈S p a(a,s)[U(w(s)]−ψ0(a)=0.So the incentive-efficient andfirst-best contracts coincide only ifX s∈S p a(a,s)V(R(s)−w(s))=0.3.5.THE OPTIMAL INCENTIVE SCHEME7 Example:Suppose that there are two states s=1,2and R(1)<R(2)and let p(a)denote the probability of success(s=2).At an interior solution, the necessary condition derived above is equivalent top0(a)[V(R(2)−w(2))−V(R(1)−w(1))]=0orR(2)−R(1)=w(2)−w(1),assuming p0(a)>0.This allocation will not satisfy the Borch conditions unless the agent is risk neutral on the interval[w(1),w(2)].Note that there may be no interior solution of the problem DP3even under the usual Inada conditions.See Section3.7.2for a counter-example.3.5The optimal incentive schemeIn order to characterize the optimal incentive scheme more completely,we impose the following rstrictions:•The principal is risk neutral,which means that if two actions are equally costly to implement,he will always prefer the one that yields higher expected revenue.•There is afinite number of states s=1,...,S and the revenue function R(s)is increasing in s.•Monitone likelihood ratio property:There is afinite number of actions a=1,...,A and for any actions a<b,the ratio p(b,s)/p(a,s)is non-decreasing in s.We also assume that the vectors p(b,·)and p(a,·) are distinct,so for some states the ratio is increasing.The expected revenue P s∈S p a(a,s)R(s)is increasing in a.Now consider the modified DP4of implementing afixed value of a:V∗∗(a)=maxw(·)X s∈S p(a,s)V(R(s)−w(s))subject toX s∈S p(a,s)U(w(s))−ψ(a)≥X s∈S p(b,s)U(w(s))−ψ(b),∀b<a, X s∈S p(a,s)U(w(s))−ψ(a)≥¯u.8CHAPTER3.THE PRINCIPAL-AGENT PROBLEM The difference between DP4and the original DP3is that only the downward incentive constraints are included.Obviously,V∗∗(a)≥V∗(a).Suppose that V∗∗(a)>V∗(a).This means that the agent wants to choose a higher action than a in the modified problem. But this is good for the principal,who will never choose a if he can get a better action for the same price.Thus,maxa V∗(a)=maxaV∗∗(a).Thus,we can use the solution to the modified problem DP4to characterize the optimal incentive scheme.Theorem3Suppose that a∈arg max V∗(a).The incentive scheme w(·)is a solution of DP4if and only if it is a solution of DP3.3.6MonotonicityMany incentive schemes observed in practice reward the agent with higher rewards for higher outcomes,i.e.,w(s)is increasing(or non-decreasing)in s. It is interesting to see when this is a property of the theoretical optimal in-centive scheme.Assuming an interior solution,the Kuhn-Tucker(necessary) conditions are:p(a,s)V0(R(s)−w(s))−λp(a,s)U0(w(s))−X b<aµb{p(a,s)−p(b,s)}U0(w(s))=0orV0(R(s)−w(s))U0(w(s))=Ãλ+X b<aµb½1−p(b,s)p(a,s)¾!.By the MLRP,the right hand side is non-increasing in s,so the left hand side is non-increasing,which means that w(s)is non-decreasing.3.7ExamplesThere are two outcomes s=1,2,where R(1)<R(2),and two projects a=1,2represented by the respective probabilities of success0<p(1,2)< p(2,2)<1.The costs of effort areψ(1)=0andψ(2)>0.The agent’s utility3.7.EXAMPLES9 function U(·)is assumed to satisfy U(0)=0and the reservation utility is ¯u=0.The inferior project can be implemented by setting w(s)=0for s=1,2.Suppose the principal wants to implement a=2.The constraints can be written as(IC)(1−p(2,2))U(w(1))+p(2,2)U(w(2))−ψ(2)≥(1−p(1,2))U(w(1))+p(1,2)U(w(2)) which simplifies to(p(2,2)−p(1,2))(U(2)−U(1))≥ψ(2)and(IR)(1−p(2,2))U(w(1))+p(2,2)U(w(2))−ψ(2)≥0.In order to satisfy the(IR)constraint,consumption must be positive in at least one state.This implies that the expected utility from choosing low effort is strictly positive:(1−p(1,2))U(w(1))+p(1,2)U(w(2))>0,so if the(IC)constraint is satisfied,the(IR)constraint must be strictly satisfied:(1−p(2,2))U(w(1))+p(2,2)U(w(2))−ψ(2)>0.Thus,if(w(1),w(2))is the solution to the optimal contract problem,the (IR)constraint does not bind.The principal’s problem can then be written as:min w(1−p(2,2))w(1)+p(2,2)w(2)s.t.(w(1),w(2)≥0(p(2,2)−p(1,2))(U(w(2))−U(w(1)))≥ψ(2).Then it is clear that a necessary condition for an optimum is that w(1)=0. So the optimal contract for implementing a=2is(0,w∗(2)),where w∗(2) solves the(IC):(p(2,2)−p(1,2))U(w∗(2))=ψ(2).The payment w∗(2)needed to give the necessary incentives to the manager will be higher:10CHAPTER3.THE PRINCIPAL-AGENT PROBLEM•the higher the cost of effortψ(2);•the smaller the manager’s risk tolerance(as measured by U(w(2))−U(0));•the smaller the marginal productivity of effort(as measured by p(2,2)−p(1,2)).To decide whether it is optimal to implement high or low effort,the prin-cipal compares the profit from optimally implementing each level of effort. The maximum profit from low effort is(1−p(1,2))R(2)+p(1,2)R(1).The maximum profit from high effort is(1−p(2,2))R(1)+p(2,2)R(2)−p(2,2)w∗(2).So high effort is optimal if and only if(p(2,2)−p(1,2))(R(2)−R(1))≥w∗(2),that is,the increase in expected revenue is greater than the cost of providing managerial incentives.3.7.1Optimality and incentive-efficiencySuppose there are two states s=1,2,two actions a=1,2and the reservation utility is¯u=0.The principal and the agent are both risk neutral.The other parameters of the problem are given byR(1)=0<R(2)ψ(1)=0<ψ(2)0<p(1,2)<p(2,2).The action a=1is optimally implemented by puttingw1(s)=0,∀s.The action a=2is optimally implemented by puttingw2(s)=½0if s=1ψ(2)/(p(2,2)−p(1,2))if s=2.3.7.EXAMPLES11The payoffto the principal from each action isV∗(a)=½p(1,2)R(2)if a=1p(2,2)(R(2)−ψ(2)/(p(2,2)−p(1,2)))if a=2. Suppose the parameter values are chosen so that V∗(1)=V∗(2).Then the contract(a,w(·))=(1,w1(·))solves DP1for the reservation utility¯u=0 but is not incentive efficient,because the agent is better offwith the contract (a,w(·))=(2,w2(·)).3.7.2Boundary solutionsIn the preceding example,we note that the agent’s payoffis zero in state s=0 whichever action is implemented.It might be thought that this boundary solution is dependent on risk neutrality but in fact boundary solutions for optimal incentive scheme are possible even if U0(0)=∞,for example,for the utility function U(c)=cαwhere0<α<1.In this case,U(0)=0so, taking the other parameters from the previous example,the optimal incentive scheme for a=1is stillw1(s)=0,∀s.For a=2the optimal incentive scheme isw2(s)=½0if s=1U−1(ψ(2)/(p(2,2)−p(1,2)))if s=2.This example provides a good illustration of the dangers of simply assuming an interior solution.3.7.3Local incentive constraintsIn many problems,convexity implies that one only has to consider local deviations in order to characterize an optimum.The analogous principle in principal-agent problems is to check only local incentive constraints.For example,if a=1,...,A and it is desired to implement an action a then one would only check the neighboring constraints a−1and a+1(or in the case where only downward constraints are considered,one would look at the constraint between a and a−1only).There is in general no reason to think that this method will produce the right answer:there may well be non-local constraints that are binding at the optimum.For example,suppose that12CHAPTER3.THE PRINCIPAL-AGENT PROBLEM there are two states s=1,2and three actions a=1,2,3.The principal and the agent are both assumed to be risk neutral and the reservation utility is ¯u=0.The other parameters are as follows:R(1)=0<R(2)ψ(1)=0<ψ(2)=ψ(3)0<p(1,2)<p(2,2)<p(3,2).The optimal incentive scheme to implement a=3isw3(s)=½0if s=1(ψ(3)/(p(2,2)−p(1,2)))if s=2.Because a=2has the same cost but lower probability of success than a=3, the agent will never be tempted to choose a=2as long as the payment in state s=2is positive;but he may well be tempted to choose a=1if the payment in state s=2is too low.Thus,the incentive constraint between a=1and a=3will be binding but the incentive constraint between a=3 and a=2will not.To ensure that the local constraint was sufficient,we would need to impose the following inequality on the parameters:p(3,2)−p(2,2)ψ(3)−ψ(2)≤p(2,2)−p(1,2)ψ(2)−ψ(1).This is,in effect,an assumption of diminishing returns to scale:the marginal product of effort as measured by the ratio of the change in the probability of success to the change in cost is declining.In more general problems,stronger conditions are needed to ensure that only local incentive constraints bind. See,for example,the discussion of thefirst-order approach in Stole(2001).3.7.4Participation constraints3.8The value of informationThe principal may observe some information that is relevant to the agent’s action in addition to the revenue from the project.We can incorporate this possibility in the current setup by assuming that the state is an ordered pair s=(s1,s2)∈S1×S2and that the revenue is a function R(s1)of thefirst3.9.MECHANISM DESIGN13 component.Then s2is a pure signal of the action a.Thefirst-order condition for an interior solution to DP4isV0(R(s1,s2)−w(s1,s2)) U0(w(s1,s2))=Ãλ+X b<aµb½1−p(b,s1,s2)p(a,s1,s2)¾!The state s2gives information about the action of the principal if the like-lihood ratio p(b,s1,s2)/p(a,s1,s2)varies with s2for somefixed s1.In other words,all relevant information should be reflected in the agent’s payment.3.9Mechanism designThe principal-agent problem is a special case of the general problem of mech-anism design,that is,designing a game form that will implement a desired outcome as an equilibrium of the game.Suppose there is afinite number of agents i=1,...,I,each of whom has a typeθi∈Θi and chooses an action a i∈A i.There may also be a set of actions a0∈A0chosen by the mechanism designer.LetΘ=Q I i=1Θi and A=Q I i=0A i and denote elements ofΘand A byθand a respectively.An agent’s utility is given by u i(a,θ),that is, u i:A×Θ→R.An agent’s type is private information,but the distribution of types p(θ) is common knowledge,as are the setsΘi and A i and the utility functions u i.The mechanism designer faces two problems:how to get the agents to reveal their information truthfully and how to get them to choose the“right”actions.The general form of a mechanism contains two stages:in thefirst agents are asked to send messages to the planner and in the second the planner sends instructions to the agents.Let M i denote the space of messages available to agent i and let M=Q I i=1M i.Let M0denote the planner’s message space and f:M→M0denote the decision rule chosen by the planner.Then each agent has to choose a strategy(σi,αi),whereσi:Θi→M i andαi:M0×Θi→A i.Given f we have a well-defined game with players is i=1,...,I,strategy sets{Σi}I i=1and payofffunctions{U i}I i=1, where U i:Σ→R is defined byU i(σ,α,θ)=u i(α(f◦σ(θ),θ),θ).A Bayes-Nash equilibrium for this game is a strategy profile(σ∗,α∗)such that,for every agent i,E[U i(σ,α,θ)|θi]≥E[U i((σi,αi),(σ−i,αi),θ)|θi],∀θi,∀(σi,αi).14CHAPTER3.THE PRINCIPAL-AGENT PROBLEMA mechanism(f,M)is called a direct mechanism if M i=Θi for i= 1,...,I and M0=A.In other words,agents’messages are their types and the planner’s message is the vector of desired actions.For any agent i,the truthful communication strategy in a direct mechanism is a communication strategyσi such thatσi(θi)=θi,∀θi.Similarly,in a direct mechanism,an action strategyαi is truthful ifαi(a)=a i,∀a∈A.The Revelation Principle allows us to substitute direct mechanisms for gen-eral mechanisms and restrict attention to truthful strategies.Theorem4(RevelationP rinciple)Let(σ,α)be a Bayes-Nash equilibrium of the mechanism(f,M).Then there exists a Bayes-Nash equilibrium(ˆσ,ˆα) of the direct mechanism(ˆf,Θ)such that(ˆσi,ˆαi)are truthful for every i and the outcomes of the two equilibria are the same:α◦f◦σ=ˆα◦ˆf◦ˆσ.Proof.Putˆf=α◦f◦σ.Although the proof is trivial,this result offers a great simplification of the problem of characterizing implementable SCFs.A SCF is a function f:Θ→A that specifies an outcome for every state of natureθ.We can think of the SCF f as a collection of decision rules(f0,f1,...,f I),one for each agent i.The SCF f is incentive-compatible if,for every i,truth-telling is optimal and the decision rule f i is optimal,assuming that every other agent j tells the truth and follows the decision rule f j,that is,E[u i(f(θ),θ)|θi]≥E h u i³a i,f−i(ˆθi,θ−i),θ´|θi i.Theorem5The direct mechanism(f,Θ)has a truthful equilibrium if and only if f is an incentive-compatible SCF.Remark1The theorem suggests that we can“implement”f using a direct mechanism,but the direct mechanism may have other equilibria.Full im-plementation requires that every equilibrium of the mechanism used have the same outcome.For this it may be necessary to use a general mechanism. Most of the implementation literature is taken up with this problem of try-ing to eliminate unwanted equilibria,either by using fancier mechanisms or stronger solution concepts.3.10.NON-CONVEXITY AND LOTTERIES15 Remark2The principal-agent problem is a special kind of mechanism de-sign problem.In the problem described earlier,there are two“agents”(the principal and the agent both being economic agents in the eyes of the mech-anism designer).The agent chooses an action a∈A,the principal has no action to choose,and the mechanism designer chooses the incentive scheme w(·)∈W.Since there is no private information about types,the SCF is an incentive-efficient allocation f=(a,w(·))and the direct mechanism has a truthful equilibrium in which the agent chooses the correct value of a.Even in this simple context we can see the problem of multiple equilibria at work. Typically,the incentive scheme is chosen so that the agent is indifferent be-tween a and some other action b.It would be an equilibrium for the agent to choose b even though this would not be as good for the principal.We can use this example to illustrate how a more complex mechanism and a stronger equilibrium concept helps resolve this difficulty.Suppose that the principal is told to choose the incentive scheme and that the agent chooses his action after observing the incentive scheme.The appropriate solution concept here is subgame perfect equilibrium:the agent should choose the best response (action)to any incentive scheme and not simply the one that is chosen in equlibrium.Clearly,the truthful equilibrium of(a,w(·))remains a SPE of this game but(b,w(·))does not.If the principal anticipates that the agent will choose b under the incentive scheme w(·)and if the principal prefers a to b,then he will choose an alternativeˆw(·)which is very close to w(·)but makes the agent strictly prefer a to b.Thus,(b,w(·))is not a SPE. Remark3The sequential game described above,in which the principal of-fers an incentive scheme and the agent responds optimally to any scheme offered,is closer to the original formulation of the principal-agent problem than the decision problems analyzed above.We have taken an approach much closer to the Revelation Principal,in which we focus exclusively on the truth-ful equilibria.Within the context of mechanism design,we can see that both approaches are closely related.3.10Non-convexity and lotteriesThe principal-agent problem as stated earlier is not a convex programming problem because the feasible set defined by the incentive constraints is not16CHAPTER3.THE PRINCIPAL-AGENT PROBLEM convex:X s∈S p(a,s)U(w(s))−ψ(a)≥X s∈S p(b,s)U(w(s))−ψ(b),∀bThe concave function U(·)appears on both sides of the inequality.However, a simple transformation suggested by Grossman and Hart converts this into a convex programming problem.Let C(u)=U−1(u)for any number u.C(·)is convex because U(·)is concave and we can write the implementation problem equivalently asminu(·)X s∈S p(a,s)V(R(s)−C(u(s)))subject toX s∈S p(a,s)u(s)−ψ(a)≥X s∈S p(b,s)u(s)−ψ(b),∀b,X s∈S p(a,s)u(s))−ψ(a)≥¯u.Because the incentive scheme u(s)is written in terms of utility rather than consumption,the incentive constraints are linear in the choice variables and hence the feasible set is convex.This trick works because of the additive separability of the utility func-tion.In general,this will not work and we are stuck with a highly non-convex problem.One general solution to non-convexities is to introduce lotteries. Let the incentive scheme specify a probability distribution W(c,s)over non-negative consumption levels c conditional on the state s and let the utility function take the general form u(c,a).The incentive constraint is then writ-ten as X s∈S[p(a,s)−p(b,s)]u(c,a)W(dc,s)≥0,∀b.Expected utility is linear in probabilites,so once again the incentive con-straints define a convex feasible set of distributions W(·).Lotteries are not simply a solution to a technical problem(non-convexity).They can also increase welfare.Note that even if the implementation problem does not include non-convexities because of the additive separability of preferences,the global principal agent problem may do so because the cost functionψis non-convex. Although each action a can be implemented efficiently with a non-stochastic incentive scheme,there may be a gain from randomizing over the action a.。