《圆》复习试题
- 格式:doc
- 大小:236.00 KB
- 文档页数:2
圆单元测试题一、填空题.1.圆的周长除以它的直径,所得的商是( ),用字母( )表示.2.圆的半径扩大2倍,直径扩大( )倍,它的周长扩大( )倍.3.一个圆的半径是2厘米,它的直径是( )厘米,周长是( )厘米.4.在一个长4厘米,宽3厘米的长方形内画一个最大的圆,这个圆的周长是( )厘米.5.用长94.2厘米铁丝围成的圆的面积是( )平方厘米.6.在一个圆内画一个最大的正方形,这个正方形的对角线长12厘米,圆的面积是( )平方厘米.7.一张长0.6米,宽4分米的铁板,剪成半径是5厘米的圆,最多可以剪( )个.8在对称图形中,对称轴两侧相对的点到对称轴的距离( ).9. .如果一个图形沿着一条直线对折,两侧的图形能够( ),这个图形就是对称图形.折痕所在的这条直线叫做( ).10. 一个圆的半径扩大2倍,那么这个圆的直径就扩大( )倍.二、判断题.(对的画“√”,错的画“×”)1.半径长的圆,面积也较大.( )2.两个圆的半径相等,周长也相等.( )3.两上半圆可以拼成一个圆.( )4.周长相等的正方形和圆形,圆的面积比较大.( )5.如果一个圆的圆心与半径确定了,那么这个圆也就确定了.( )6. 任何一条直径都是圆的对称轴.( )7. 已知正方形的边长等于一个圆的直径,那么正方形的面积小于这个圆的面积.( )三、选择题.1、3点时,钟面上分针与时针的夹角是( ).①40°②120°③90°2、环形是轴对称图形,它的对称轴有( )条.①1 ②2 ③无数3、周长相等的两个圆,它们的面积( ).①不相等②相等4、3.14和π比较( ).①3.14=π②3.14<π③3.14>π5、若正方形、长方形和圆的周长都相等,面积最大的是( ).①正方形②长方形③圆四、应用题.1、一个圆形光盘的周长是21。
98厘米,求它的半径是多少?2、用10米长的席子围一个底面是圆形的粮囤,已知相接处重叠了0.58米,这个粮囤的占地面积有多大?3、一辆自行车轮胎的外直径约是60厘米,若每分钟转200圈,通过一座长2000米的桥,大约需几分钟?(得数保留整数)。
第5题《圆》测试题班级 姓名 得分一.选择题(每题3分,共30分) 1. 2010年福建省晋江市如图,A 、B 、C 是⊙O 上的三点,且A 是优弧BAC 上与点B 、点C 不同的一点,若BOC ∆是直角三角形,则BAC ∆必是( ) .A.等腰三角形B.锐角三角形C.有一个角是︒30的三角形D.有一个角是︒45的三角形2. 浙江省2010年(金华卷)如图,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为( ) A . 20° B . 40° C . 60° D . 80°3.兰州市2010年 已知两圆的半径R 、r 分别为方程0652=+-x x 的两根,两圆的圆心距为1,两圆的位置关系是( )A .外离B .内切C .相交D .外切 4. 兰州市2010年有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( )A .4个B .3个C . 2个D . 1个5.昆明市2010年如图,在△ABC 中,AB = AC ,AB = 8,BC = 12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( ) A.64π- B .1632π-C.16π-D.16π-6. 兰州市2010年 将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为( )A .15︒B .28︒C .29︒D .34︒7.2010年桂林市一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( ).A .1B .34C .12D .138. 2010安徽省 如图,⊙O 过点B 、C 。
圆心O 在等腰直角△ABC 的内部,∠BAC =900,OA =1,BC =6,则⊙O 的半径为( )B )32C ) 23D )13A )9.浙江舟山市2010如图是一个高为,底面半径为2cm 的圆锥形无底纸帽,现利用这个纸帽的侧面纸张裁剪出一个圆形纸片(不考虑纸帽接缝),这个圆形纸片的半径最长可以是( )第1题图(第2题)10(a ,0)xy O · 3 5第17题第9题图2cm215cm(计算结果保留3个有效数字。
北京市海淀区-九年级(上)期中数学复习试卷(圆)(解析版)一、填空题1.如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠ABD=度.2.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=.3.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是.4.(秋•海淀区期中)已知AB是直径,∠C等于15度,∠BAD的度数=.5.(秋•海淀区期中)如图,PA,PB分别与相⊙O切于点A,B,连接AB.∠APB=60°,AB=5,则PA的长是.6.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外7.已知⊙O的半径是5,OP的长为7,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定8.已知扇形的半径为3,扇形的圆心角是120°,则该扇形面积为.9.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于.10.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.11.(秋•海淀区期中)如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.12.(秋•陇西县期末)如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30.(1)求证:CG是⊙O的切线;(2)若CD=6,求GF的长.13.(秋•海淀区期中)已知:如图,PA,PB分别与⊙O相切于A,B两点.求证:OP 垂直平分线段AB.14.(秋•海淀区期中)已知:如图,Rt△ABC中,∠ACB=90°,以AC为直径的半圆O 交AB于F,E是BC的中点.求证:直线EF是半圆O的切线.15.(秋•海淀区期中)已知:⊙O的半径OA=1,弦AB、AC的长分别为,,求∠BAC的度数.16.(秋•海淀区期中)已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离.-学年北京市海淀区九年级(上)期中数学复习试卷(圆)参考答案与试题解析一、填空题1.如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠ABD=度.【考点】垂径定理;圆周角定理.【分析】本题关键是理清弧的关系,找出等弧,则可根据“同圆中等弧对等角”求解.【解答】解:由垂径定理可知,又根据在同圆或等圆中相等的弧所对的圆周角也相等的性质可知∠ABD=∠CEA=28度.故答案为:28.【点评】本题综合考查了垂径定理和圆周角的求法及性质.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.2.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=.【考点】垂径定理;勾股定理.【分析】根据垂径定理可以得到CE的长,在直角△OCE中,根据勾股定理即可求得.【解答】解:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.∴CE=CD=4.在直角△OCE中,OE===3.则AE=OA﹣OE=5﹣3=2.故答案为:2.【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.3.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是.【考点】切线的性质.【分析】根据切线的性质求出∠OCD,求出∠COD,求出∠A=∠OCA,根据三角形的外角性质求出即可.【解答】解:∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵∠D=50°,∴∠COD=180°﹣90°﹣50°=40°,∵OA=OC,∴∠A=∠OCA,∵∠A+∠OCA=∠COD=40°,∴∠A=20°.故答案为:20°.【点评】本题考查了三角形的外角性质,三角形的内角和定理,切线的性质,等腰三角形的性质的应用,主要考查学生运用这些性质进行推理的能力,题型较好,难度也适中,是一道比较好的题目.4.(秋•海淀区期中)已知AB是直径,∠C等于15度,∠BAD的度数=.【考点】圆周角定理.【分析】连接BD,根据圆周角定理得到∠B=∠C=15°,根据直角三角形的性质计算即可.【解答】解:连接BD,∠B=∠C=15°,∵AB是直径,∴∠ADB=90°,∴∠BAD=90°﹣15°=75°,故答案为:75°.【点评】本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等是解题的关键.5.(秋•海淀区期中)如图,PA,PB分别与相⊙O切于点A,B,连接AB.∠APB=60°,AB=5,则PA的长是.【考点】切线的性质.【分析】利用切线长定理得出PA=PB,再利用等边三角形的判定得出△PAB是等边三角形,即可得出答案.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,∵∠APB=60°,∴△PAB是等边三角形,∴AB=PA=5,故答案为:5.【点评】此题主要考查了切线长定理以及等边三角形的判定与性质,得出△PAB是等边三角形是解题关键.6.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【考点】点与圆的位置关系.【分析】先找出与点A的距离为2的点1和5,再根据“点与圆的位置关系的判定方法”即可解.【解答】解:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选:A.【点评】本题考查点与圆的位置关系的判定方法.若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.7.已知⊙O的半径是5,OP的长为7,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【考点】点与圆的位置关系.【分析】直接根据点与圆的位置关系即可得出结论.【解答】解:∵⊙O的半径是5,OP的长为7,5<7,∴点P在圆外.故选C.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.8.已知扇形的半径为3,扇形的圆心角是120°,则该扇形面积为.【考点】扇形面积的计算.【分析】直接根据扇形的面积公式进行计算即可.【解答】解:∵扇形的圆心角为120°,其半径为3,==3π.∴S扇形故答案为:3π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.9.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于.【考点】圆内接四边形的性质.【分析】由∠BOD=138°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠A的度数,又由圆的内接四边四边形的性质,求得∠BCD的度数,继而求得∠DCE的度数【解答】解:∵∠BOD=138°,∴∠A=∠BOD=69°,∴∠BCD=180°﹣∠A=111°,∴∠DCE=180°﹣∠BCD=69°.故答案为:69°.【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题比较简单,解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半与圆内接四边形的对角互补定理的应用.10.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.【考点】点与圆的位置关系.【分析】解答此题应进行分类讨论,点P可能位于圆的内部,也可能位于圆的外部.【解答】解:当点P在圆内时,则直径=6+2=8cm,因而半径是4cm;当点P在圆外时,直径=6﹣2=4cm,因而半径是2cm.所以⊙O的半径为4或2cm.故答案为:4或2.【点评】考查了点与圆的位置关系,解决本题的关键是首先要进行分类讨论,其次是理解最长距离和最短距离和或差的意义.11.(秋•海淀区期中)如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.【考点】圆内接四边形的性质;圆周角定理.【分析】先根据圆内接四边形的性质推出∠ADC=50°,再根据圆周角定理推出∠AOC=100°,然后根据等腰三角形的性质及三角形内角和定理即可得出∠OAC的度数.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∵∠ABC=130°,∴∠ADC=180°﹣∠ABC=50°,∴∠AOC=2∠ADC=100°.∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=(180°﹣∠AOC)=40°.【点评】本题主要考查圆内接四边形的性质、圆周角定理、等腰三角形的性质及三角形内角和定理,关键在于求出∠AOC的度数.12.(秋•陇西县期末)如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30.(1)求证:CG是⊙O的切线;(2)若CD=6,求GF的长.【考点】切线的判定.【分析】(1)连接OC,根据三角形内角和定理可得∠DCG=180°﹣∠D﹣∠G=120°,再计算出∠GCO的度数可得OC⊥CG,进而得到CG是⊙O的切线;(2)设EO=x,则CO=2x,再利用勾股定理计算出EO的长,进而得到CO的长,然后再计算出FG的长即可.【解答】(1)证明:连接OC.∵OC=OD,∠D=30°,∴∠OCD=∠D=30°.∵∠G=30°,∴∠DCG=180°﹣∠D﹣∠G=120°.∴∠GCO=∠DCG﹣∠OCD=90°.∴OC⊥CG.又∵OC是⊙O的半径.∴CG是⊙O的切线.(2)解:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=3.∵在Rt△OCE中,∠CEO=90°,∠OCE=30°,∴EO=CO,CO2=EO2+CE2.设EO=x,则CO=2x.∴(2x)2=x2+32.解得x=(舍负值).∴CO=2.∴FO=2.在△OCG中,∵∠OCG=90°,∠G=30°,∴GO=2CO=4.∴GF=GO﹣FO=2.【点评】此题主要考查了切线的判定,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.13.(2015秋•海淀区期中)已知:如图,PA,PB分别与⊙O相切于A,B两点.求证:OP垂直平分线段AB.【考点】切线的性质.【分析】由PA与PB为圆的两条切线,根据切线长定理得到PA=PB,且PO平分两切线的夹角,进而得到三角形PAB为等腰三角形,根据三线合一得到PC为高,PC为中线,可得出OP垂直平分线段AB,得证.【解答】证明:∵PA,PB分别为⊙O的切线,∴PA=PB,PO为∠APB的平分线,∴PO⊥AB,C为AB的中点,则OP垂直平分线段AB.【点评】此题考查了切线的性质,涉及的知识有:切线长定理,以及等腰三角形的性质,熟练掌握切线长定理是解本题的关键.14.(2015秋•海淀区期中)已知:如图,Rt△ABC中,∠ACB=90°,以AC为直径的半圆O交AB于F,E是BC的中点.求证:直线EF是半圆O的切线.【考点】切线的判定.【分析】连接OF,CF,利用等边对等角即可证得OF⊥EF,从而证得EF是圆的切线.【解答】证明:连接OF,CF.∵AC是直径,∴∠AFC=90°,∴∠BFC=90°,又∵E是BC的中点,∴EF=EC,∴∠EFC=∠ECF,∵OC=OF,∴∠OFC=∠FCO,∵∠ACB=∠FCO+∠ECF=90°,∴∠EFC+∠OFC=90°,即∠EFO=90°,∴OF⊥EF,∴EF是⊙O的切线.【点评】本题考查了切线的判定,直角三角形的性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.解决本题的关键是正确作出辅助线.15.(2015秋•海淀区期中)已知:⊙O的半径OA=1,弦AB、AC的长分别为,,求∠BAC的度数.【考点】垂径定理;解直角三角形.【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.【解答】解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,∴AE=AC=,AD=AB=,∴sin∠AOE===,sin∠AOD==,∴∠AOE=60°,∠AOD=45°,∴∠BAO=45°,∠CAO=90°﹣60°=30°,∴∠BAC=45°+30°=75°,或∠BAC′=45°﹣30°=15°.∴∠BAC=15°或75°.【点评】本题考查的是垂径定理及直角三角形的性质,解答此题时进行分类讨论,不要漏解.16.(2015秋•海淀区期中)已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB ∥CD.求这两条平行弦AB,CD之间的距离.【考点】垂径定理;勾股定理.【分析】分情况进行讨论,(1)如图,AB和CD再圆心的同侧,连接OB,OD,作OM ⊥AB交CD于点N,由AB∥CD,即可推出ON⊥CD,则MN为AB,CD之间的距离,通过垂径定理和勾股定理即可推出OM和ON的长度,根据图形即可求出MN=OM﹣ON,通过计算即可求出MN的长度,(2)AB和CD在圆心两侧,连接OB,OD,做直线OM⊥AB交CD于点N,由AB∥CD,即可推出MN⊥CD,则MN为AB,CD之间的距离,通过垂径定理和勾股定理即可推出OM和ON的长度,根据图形即可求出MN=OM+ON,通过计算即可求出MN的长度.【解答】解:(1)如图1,连接OB,OD,做OM⊥AB交CD于点N,∵AB∥CD,∴ON⊥CD,∵AB=40cm,CD=48cm,∴BM=20cm,DN=24cm,∵⊙O的半径为25cm,∴OB=OD=25cm,∴OM=15cm,ON=7cm,∵MN=OM﹣ON,∴MN=8cm,(2)如图2,连接OB,OD,做直线OM⊥AB交CD于点N,∵AB∥CD,∴ON⊥CD,∵AB=40cm,CD=48cm,∴BM=20cm,DN=24cm,∵⊙O的半径为25cm,∴OB=OD=25cm,∴OM=15cm,ON=7cm,∵MN=OM+ON,∴MN=22cm.∴平行弦AB,CD之间的距离为8cm或22cm.【点评】本题主要考查垂径定理和勾股定理的运用,平行线间的距离的定义,平行线的性质等知识点,关键在于根据题意分情况进行讨论,正确的做出图形,认真的做出辅助线构建直角三角形,熟练运用垂径定理和勾股定理推出OM和ON的长度,利用数形结合的思想即可求出结果.。
郑公中学九年级上学期数学《圆》单元测试题姓名分数一、选择题(本大题共30小题,每小题1分,共计30分)1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( )A.0个B.1个C.2个D.3个2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是( )A.外离B.相切C.相交D.内含3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )A.35°B.70°C.110°D.140°第3题第4题第5题4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( ) A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<55.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( ) A.42 ° B.28° C.21° D.20°6.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相切,则满足条件的⊙C有( )A.2个B.4个C.5个D.6个7.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数根,则直线与⊙O的位置关系为( )A.相离或相切B.相切或相交C.相离或相交D.无法确定8.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( ) A.130°B.120°C.110°D.1009有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弧是过圆心的弧;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( ) A.①③ B.①③④ C.①④ D.①10.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为( )A.140°B.125°C.130°D.110°第8题第9题第10题11.如图,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水面宽度为80cm,水面到管道顶部距离为20cm,则修理工应准备内直径是________cm的管道. 12.如图,为的直径,点在上,,则________.13.如图,在⊙O中,AB为⊙O 的直径,弦CD⊥AB,∠AOC=60°,则∠B=________.第42题第47题第48题14.已知⊙O1和⊙O2的半径分别为2和3,两圆相交于点A、B,且AB=2,则O1O2=______.15.已知四边形ABCD是⊙O的外切等腰梯形,其周长为20,则梯形的中位线长为_____.16.用铁皮制造一个圆柱形的油桶,上面有盖,它的高为80厘米,底面圆的直径为50厘米,那么这个油桶需要铁皮(不计接缝)_________厘米2(不取近似值).17.已知两圆的半径分别为3和7,圆心距为5,则这两个圆的公切线有_____条.18.如图,以AB为直径的⊙O与直线CD相切于点E,且AC⊥CD,BD⊥CD,AC=8cm,BD=2cm,则四边形ACDB的面积为______.19.如图,PA、PB、DE分别切⊙O于A、B、C,⊙O的半径长为6cm,PO=10cm,则△PDE 的周长是______.20.已知正六边形边长为a,则它的内切圆面积为_______.三、解答题(63~64题,每题2分,其他每题8分,共计60分)21.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O半径为5,∠BAC=60°,求DE 的长.22.如图所示,已知△ABC中,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G.(1)∠BFG与∠BGF是否相等?为什么?(2)求由DG、GE和所围成的图形的面积(阴影部分).23.如图,在△ABC中,∠BCA =90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说明理由.24.有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R. (1)证明:RP=RQ. (2)请探究下列变化:A、变化一:交换题设与结论.已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA 上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ. 证明:RQ为⊙O的切线.B、变化二:运动探求.(1)如图2,若OA向上平移,变化一中结论还成立吗?(只交待判断) 答:_________.(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?。
章末复习一、知识导图二、要点归纳1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).2.点和圆的位置关系设点P(x0,y0)及圆的方程(x-a)2+(y-b)2=r2.(1)(x0-a)2+(y0-b)2>r2⇔点P在圆外.(2)(x0-a)2+(y0-b)2<r2⇔点P在圆内.(3)(x0-a)2+(y0-b)2=r2⇔点P在圆上.3.直线与圆的位置关系设直线l与圆C的圆心之间的距离为d,圆的半径为r,则d>r⇒相离;d=r⇒相切;d<r⇒相交.4.圆与圆的位置关系设C1与C2的圆心距为d,半径分别为r1与r2,则位置关系外离外切相交内切内含图示d与r1,r2的d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2| d<|r1-r2|关系(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一圆的方程例1一个圆和已知圆x2+y2-2x=0相外切,并与直线l:x+3y=0相切于M(3,-3)点,求该圆的方程.考点题点解∵圆C与圆x2+y2-2x=0相外切,故两个圆心之间的距离等于半径的和,又∵圆C与直线l:x+3y=0相切于M(3,-3)点,可得圆心与点M(3,-3)的连线与直线x+3y=0垂直,其斜率为 3.设圆C的圆心为(a,b),则⎩⎪⎨⎪⎧ b +3a -3=3,(a -1)2+b 2=1+|a +3b |2.解得a =4,b =0,r =2或a =0,b =-43,r =6,∴圆C 的方程为(x -4)2+y 2=4或x 2+(y +43)2=36.反思感悟 求圆的方程主要是根据圆的标准方程和一般方程,利用待定系数法求解,采用待定系数法求圆的方程的一般步骤:第一步:选择圆的方程的某一形式.第二步:由题意得a ,b ,r (或D ,E ,F )的方程(组).第三步:解出a ,b ,r (或D ,E ,F ).第四步:代入圆的方程.注:解题时充分利用圆的几何性质可获得解题途径,减少运算量,例如:圆的切线垂直于经过切点的半径;圆心与弦的中点连线垂直于弦;当两圆相交时,连心线垂直平分两圆的公共弦;当两圆相切时,连心线过切点等.跟踪训练1 (1)如图所示,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2,则圆C 的标准方程为____________________.答案 (x -1)2+(y -2)2=2解析 取AB 的中点D ,连接CD ,AC ,则CD ⊥AB .由题意知,|AD |=|CD |=1,故|AC |=|CD |2+|AD |2=2,即圆C 的半径为 2.又因为圆C 与x 轴相切于点T (1,0),所以圆心C (1,2),故圆的标准方程为(x -1)2+(y -2)2=2.(2)求半径为10,圆心在直线y =2x 上,被直线x -y =0截得的弦长为42的圆的方程. 解 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心坐标为(a ,b ),半径r =10,圆心(a ,b )到直线x -y =0的距离d =|a -b |2, 由半弦长,弦心距,半径组成的直角三角形得,d 2+⎝⎛⎭⎫4222=r 2, 即(a -b )22+8=10, ∴(a -b )2=4,又∵b =2a ,∴a =2,b =4或a =-2,b =-4,故所求圆的方程是(x -2)2+(y -4)2=10或(x +2)2+(y +4)2=10.题型二 直线与圆、圆与圆的位置关系例2 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A.内切B.相交C.外切D.相离考点题点答案 B解析 由垂径定理得⎝⎛⎭⎫a 22+(2)2=a 2,解得a 2=4, ∴圆M :x 2+(y -2)2=4, ∴圆M 与圆N 的圆心距d =(0-1)2+(2-1)2= 2.∵2-1<2<2+1,∴两圆相交.(2)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.考点题点答案 4解析 联立⎩⎨⎧ x -3y +6=0,x 2+y 2=12,消去x 得y 2-33y +6=0, 解得⎩⎨⎧ x =-3,y =3或⎩⎨⎧x =0,y =2 3. 不妨设A (-3,3),B (0,23),则过点A 且与直线l 垂直的直线方程为3x +y +23=0,令y =0得x C =-2.同理得过点B 且与l 垂直的直线与x 轴交点的横坐标x D =2,∴|CD |=4.反思感悟 直线与圆、圆与圆的主要题型为:①位置关系的判断,②弦长问题,③求圆的方程.解决问题的方法主要有两种,一种代数法,一种几何法.跟踪训练2 (1)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( )A.1B.2C. 2D.2 2考点题点答案 C(2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.考点题点答案 4π解析 x 2+y 2-2ay -2=0,即x 2+(y -a )2=a 2+2,则圆心为C (0,a ).又|AB |=23,C 到直线y =x +2a 的距离为|0-a +2a |2, 所以⎝⎛⎭⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2, 得a 2=2,所以圆C 的面积为π(a 2+2)=4π.题型三 对称问题例3 从点B (-2,1)发出的光线经x 轴上的点A 反射,反射光线所在的直线与圆x 2+y 2=12相切,求点A 的坐标.考点题点解 点B (-2,1)关于x 轴对称的点为B ′(-2,-1),易知反射光线所在直线的斜率存在,设反射光线所在的直线方程为y +1=k (x +2),即kx -y +2k -1=0.由题意,得|0-0+2k -1|k 2+1=12, 化简得7k 2-8k +1=0,解得k =1或k =17, 故所求切线方程为x -y +1=0或x -7y -5=0.令y =0,则x =-1或x =5.所以A 点的坐标为(-1,0)或(5,0).反思感悟 (1)对称的两种类型即轴对称与中心对称.(2)准确把握对称的几何性质.(3)圆的对称图形关键是圆心的对称,其半径不变.跟踪训练3 若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________________________________________________________________________. 答案 x 2+(y -1)2=1解析 由题意知圆C 的圆心为(0,1),半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.题型四 圆中的最值问题例4 圆x 2+y 2+2ax +2ay +2a 2-1=0与x 2+y 2+2bx +2by +2b 2-2=0的公共弦长的最大值为( )A.2 2B.2C. 2D.1考点 与圆有关的最值问题题点 与圆的几何性质有关的最值答案 B解析 由题意得,两圆的标准方程分别为(x +a )2+(y +a )2=1和(x +b )2+(y +b )2=2,两圆的圆心坐标分别为(-a ,-a ),(-b ,-b ),半径分别为1,2,则当公共弦为圆(x +a )2+(y +a )2=1的直径时,公共弦长最大,最大值为2.反思感悟 与圆有关的最值问题包括(1)求圆O 上一点到圆外一点P 的最大距离、最小距离:d max =|OP |+r ,d min =||OP |-r |.(2)求圆上的点到某条直线的最大、最小距离:设圆心到直线的距离为m ,则d max =m +r ,d min=|m -r |.(3)已知点的运动轨迹是(x -a )2+(y -b )2=r 2,求①y x ;②y -m x -n;③x 2+y 2等式子的最值,一般是运用几何法求解.跟踪训练4 已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,那么四边形P ACB 的面积的最小值为________. 考点 与圆有关的最值问题题点 与面积有关的最值答案 2 2解析 圆x 2+y 2-2x -2y +1=0的圆心为C (1,1),半径为1,由题意知,当圆心C 到点P 的距离最小时(即为圆心到直线的距离),四边形的面积最小,又圆心到直线的距离d =|3+4+8|32+42=3, ∴|P A |=|PB |=d 2-r 2=22,∴S 四边形P ACB =2×12|P A |r =2 2.1.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( )A.(x -3)2+(y +4)2=16B.(x +3)2+(y -4)2=16C.(x -3)2+(y +4)2=9D.(x +3)2+(y -4)2=9考点 圆的标准方程题点 求与某直线相切的圆的标准方程答案 B2.已知圆C 与直线x -y =0和x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2题点 求圆的标准方程答案 B3.两圆x 2+y 2-6x +16y -48=0与x 2+y 2+4x -8y -44=0的公切线的条数为( )A.4B.3C.2D.1考点 圆与圆的位置关系题点 两圆的位置关系与其公切线答案 C解析 两圆的标准方程分别为(x -3)2+(y +8)2=121;(x +2)2+(y -4)2=64,则两圆的圆心与半径分别为C 1(3,-8),r 1=11;C 2(-2,4),r 2=8.圆心距为|C 1C 2|=(3+2)2+(-8-4)2=13.∵r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交,则公切线共2条.4.经过两个定点A (a,0),A 1(a ,a ),且圆心在直线y =13x 上的圆的方程为________________________.答案 ⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22 解析 圆过点A (a,0),A 1(a ,a ),则圆心在直线y =a 2上. 又圆心在直线y =13x 上, 所以圆心坐标为⎝⎛⎭⎫32a ,a 2,则半径r =⎝⎛⎭⎫a -32a 2+⎝⎛⎭⎫-a 22=22|a |, 故圆的方程为⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22. 5.已知直线x -my +3=0和圆x 2+y 2-6x +5=0.(1)当直线与圆相切时,求实数m 的值;(2)当直线与圆相交,且所得弦长为2105时,求实数m 的值. 考点 直线和圆的位置关系解 (1)因为圆x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0),r =2. 因为直线x -my +3=0与圆相切, 所以|3+3|1+(-m )2=2, 解得m =±2 2.(2)圆心(3,0)到直线x -my +3=0的距离为d =|3+3|1+(-m )2.由24-⎝ ⎛⎭⎪⎫|3+3|1+(-m )22=2105, 得2+2m 2=20m 2-160,即m 2=9.故m =±3.。
温馨提示:带着愉悦的心情,载着自信与细心,凭着沉着与冷静,迈向理想的此岸!一.复习指南圆综合题是中考重点考察的内容,占10-12分,本专题只要针对中考圆解答题.二.高频考点1垂径定理; 2圆心角、弧、弦的关系; 3圆周角定理及推论; 4切线的断定定理; 5切线的性质定理.三.考点过关1过三点的圆; 2垂径定理; 3圆心角、弧、弦的关系; 4圆周角定理及推论; 5圆的内接四边形性质; 6切线的断定定理; 7切线的性质定理; 8切线长定理; 9三角形的内心、外心; 10与圆有关的位置关系; 11弧长的计算公式; 12扇形的面积计算公式; 13圆锥的侧面积计算公式.四.最近三年中考试题1.〔08〕如下图,AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.〔1〕求证:∠ACO=∠BCD.〔2〕假设E B=8cm,CD=24cm,求⊙O的直径.CBAOP D 2.〔09〕如图,AB 是O ⊙的切线,切点为B AO ,交O ⊙于点C ,过点C 作DC OA ⊥,交AB 于点D .〔1〕求证:CDO BDO ∠=∠; 〔2〕假设30A O ∠=°,⊙的半径为4,求阴影局部的面积.〔结果保存π〕 3.(10)如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D ,且PD 与⊙O 相切.(1)求证:AB =AC ;(2)假设BC =6,AB =4,求CD 的值.五.中考圆解答题针对性训练〔课堂训练〕 1.〔10〕如图,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .〔1〕求证:CF ﹦BF ;OAB CDC D2A B OCD〔2〕假设CD ﹦6, AC ﹦8,那么⊙O 的半径为 ,CE 的长是 .2.〔10〕如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点M ,AE 切⊙O 于点A ,交BC 的延长线于点E ,连接AC .〔1〕假设∠B =30°,AB =2,求CD 的长;〔2〕求证:AE 2=EB ·EC .六.中考圆解答题针对性训练〔课后训练〕1.〔10〕 有以下四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的间隔 都相等;④半径相等的两个半圆是等弧.其中正确的有〔 〕 A .4个 B .3个 C . 2个 D . 1个2.〔10〕如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,那么∠CDB 大小为 ( )A .25°B .30°C .40°D .50°CD•ABO M EEDO CB ABC A3.〔10〕如图,AB 是O 的直径,CD 为弦,CD AB ⊥于E ,那么以下结论中不成立...的是〔 〕A.A D ∠=∠ B.CE DE = C.90ACB ∠= D.CE BD =4.〔10〕如图,在Rt△ABC 中,∠C = 90°,∠B = 30°,BC = 4 cm ,以点C 为圆心, 以2 cm 的长为半径作圆,那么⊙C 与AB 的位置关系是〔 〕 A .相离 B .相切 C .相交 D .相切或者相交5.〔10〕△ABC 中,∠A=30°,∠C=90°,作△ABC 的外接圆.如图,假设 弧A B 的长为12cm ,那么弧AC 的长是〔 〕A .10cmB .9cmC .8cmD .6cm6.〔10 〕有四个命题:①两条直线被第三条直线所截,同旁内角互补;②有两边和其中一边的对角对应相等的两个三角形全等;③菱形既是轴对称图形又是中心对称图形;④两圆的半径分别是3和4,圆心距为d ,假设两圆有公一共点,那么.71<<d 其中正确的命题有〔 〕A .1个B .2个C .3个D .4个7.〔10 〕小刚用一张半径为24cm 的扇形纸板做一个如下图的圆锥形小丑帽子侧面(接 缝忽略不计),假如做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸板的面积是 〔 〕24cmA .120πcm2B .240πcm 2C .260πcm 2D .480πcm 28.〔09〕如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE , △ABE 与△ADC 相似吗?请证明你的结论.9.〔09〕如图3,⊙O 中,弦AB CD 、相交于AB 的中点E ,连接AD 并延长至点F , 使DF AD =,连接BC 、BF .〔1〕求证:CBE AFB △∽△; 〔2〕当58BE FB =时,求CBAD的值.10.〔10〕如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 与E ,交BC 与D .求证:OFD AEBC〔1〕D 是BC 的中点;〔2〕△BEC ∽△ADC ;〔3〕BC 2=2AB ·CE .11.〔09〕如图,AB 是O ⊙的直径,过点O 作弦BC 的平行线,交过点A 的切线AP 于点P ,连结AC .〔1〕求证:ABC POA △∽△; 〔2〕假设2OB =,72OP =,求BC 的长.12.〔09〕如图,在Rt ABC △中,斜边1230BC C =∠=,°,D 为BC 的中点,ABD △的外接圆O ⊙与AC 交于F 点,过A 作O ⊙的切线AE 交DF 的延长线于E 点. 〔1〕求证:AE DE ⊥;ABCEOD〔2〕计算:AC AF ·的值.13.〔10〕如图,AB 是⊙O 的直径,∠A =30o,延长OB 到D 使BD =OB . 〔1〕△OBC 是否是等边三角形?说明理由. 〔2〕求证:DC 是⊙O 的切线.14.〔09〕如图,O ⊙是ABC △的外接圆,AB AC =,过点A 作AP BC ∥,交BO 的延长线于点P . 〔1〕求证:AP 是O ⊙的切线;〔2〕假设O ⊙的半径58R BC ==,,求线段AP 的长.CP15.〔09〕如图,PA 、PB 是半径为1的O ⊙的两条切线,点A 、B 分别为切点,60APB OP AB C O D ∠=°,与弦交于点,与⊙交于点.〔1〔2〕求阴影局部的面积〔结果保存π〕.16.〔09〕如图,一个圆锥的高为,侧面展开图是半圆.求: 〔1〕圆锥的母线长与底面半径之比;〔2〕求BAC ∠的度数;〔3〕圆锥的侧面积〔结果保存π〕.B。
(压轴题)小学数学六年级上册第五单元《圆》测试题(有答案解析)一、选择题1.圆是轴对称图形,它有()条对称轴。
A. 一B. 两C. 无数D. 四2.长方形纸长20厘米,宽16厘米,它最多能够剪下()个半径是3厘米的圆形纸片。
A. 6B. 8C. 113.如图,正方形的周长是16分米,则这个圆的面积是()A. 50.24平方分米B. 12.56平方分米C. 25.12平方分米D. 803.84平方分米4.关于圆,下列说法错误的是().A. 圆有无数条半径B. 圆有无数条对称轴C. 半径越大,周长越大D. 面积越大,周长越小5.已知大圆半径是小圆半径的3倍,则大圆面积是小圆面积的()A. 3倍B. 6倍C. 9倍D. 12倍6.观察如图,随着圆的个数增多,阴影的面积()A. 没有改变B. 可能不变C. 越变越大D. 越变越小7.一个圆的周长扩大3倍,它的面积就扩大()倍.A. 3B. 6C. 98.在长4厘米,宽3厘米的长方形内画最大半圆,这个半圆的周长是()A. 6.28厘米B. 7.71厘米C. 10.28厘米D. 12.56厘米9.把一个直径是2cm的圆平分成2个半圆后,每个半圆的周长是()。
A. 6.28cmB. 3.14cmC. 4.14cmD. 5.14cm 10.如果一个圆的半径由1分米增加到2分米,它的周长增加了()分米。
A. 2B. 6.28C. 12.56D. 18.84 11.一个圆的半径是6厘米,它的周长是()厘米。
A. 18.84B. 37.68C. 113.0412.一个圆和一个正方形的周长相等,他们的面积比较()A. 圆的面积大B. 正方形的面积大C. 一样大二、填空题13.一个圆形花坛的半径4米,周长是________米,面积是________平方米.14.两个圆的半径比是4:9,则它们的周长比是________,面积比是________.15.下图中,正方形的面积是9cm2,这个圆的周长是________cm,面积是________cm2。
17、一只直径为50厘米的木桶外面要加一条铁箍,铁箍的接头处为2厘米,这条铁箍的长度为()O18、一个半径是4分米的圆,如果半径减少2分米,它的周长减少()分米。
二、判断题1、r=3.14o ()2、圆的半径扩大4倍,圆的周长也扩大4倍。
()3、如果两个圆的周长相等,那么这两个圆的半径和直径的长度也一定分别相等。
()4、周长相等的两个圆面积一定相等。
()5、大圆的圆周率一定比小圆的圆周率大。
()三、解决问题2、一只大钟,时针长5分米,分针长7分米,它们的尖端转动一周各行多少距离?3、儿童公园有一个圆形的金鱼池,在金鱼池周围要做2圈直径是15米的圆形栏杆,至少要用多少钢条?4、砂子堆在地面上占地正好是圆形,量出它一周的长度是15.7米,那么直径是多少米?5、一辆自行车轮胎的外直径是70厘米,如果每分转120周,一小时能行多少千米?(保留整千米数)6、一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转多少圈?圆的周长和面积测试精选姓名分数一、填空题1、圆围成的曲线的长叫做圆的(),用字母()表示,圆无论大小它的周长总是直径长度的()倍多一些。
这个倍数是一个()的数,我们把它叫做(),用字母()表示,取两位小数近似值约是()。
2、()叫做圆的面积。
3、把一个圆分成32等份,然后剪开拼成一个近似的长方形.这个长方形的长相当于(),长方形的宽就是圆的().因为长方形的面积是(),所以圆的面积是()。
4、圆的直径是6厘米,它的周长是(),面积是()。
5、小圆的半径是2分米,大圆的半径是6分米,小圆和大圆的直径之比是(),周长之比是(),大圆和小圆的面积之比是()。
6、画一个周长是25.12厘米的圆,应该把圆规两脚间的距离定为()。
它的面积是()。
7、甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的(),甲圆面积是乙圆面积的()o8、圆的半径扩大3倍,直径扩大()倍,周长扩大()倍,面积扩大()倍。
第二十四章 圆一、填空题(每题3分,共18分)1.如图24-Z -1所示,在⊙O 中,若∠A =60°,AB =3 cm ,则OB =________ cm.图24-Z -12.如图24-Z -2,AB 是⊙O 的直径,∠AOC =130°,则∠D =________°.图24-Z -23.如图24-Z -3所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图24-Z -34.如图24-Z -4,P A ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图24-Z-45.如图24-Z-5,把半径为4 cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是________cm(结果保留根号).图24-Z-56.如图24-Z-6,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A,B,C,如果AB=1,那么曲线CDEF的长为________.图24-Z-6二、选择题(每题4分,共32分)7.如图24-Z-7,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()图24-Z-7A.40°B.50°C.80°D.100°8.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是() A.相交B.相切C.相离D.不能确定9.如图24-Z -8,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD =50°,则∠AOC 的度数为( )图24-Z -8A .40°B .50°C .80°D .100°10.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为( ) A.8π15 B.4π15 C.16π15 D.π211.已知圆锥的底面积为9π cm 2,母线长为6 cm ,则圆锥的侧面积是( ) A .18π cm 2 B .27π cm 2 C .18 cm 2 D .27 cm 212.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12 mmB .12 3 mmC .6 mmD .6 3 mm13.如图24-Z -9,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合,若BC =4,则图中阴影部分的面积是( )图24-Z -9A .2+πB .2+2πC .4+πD .2+4π12.如图24-Z -10,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )图24-Z -10A.252π B .13π C .25π D .25 2 三、解答题(共50分)15.(10分)如图24-Z -11,在⊙O 中,AB ︵=AC ︵,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC .图24-Z -1116.(12分)如图24-Z-12,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.图24-Z-1217.(12分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图24-Z-13①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图24-Z -1318.(16分)如图24-Z -14,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD ,BC 的延长线相交于点E .(1)求证:AD 是半圆O 的切线; (2)连接CD ,求证:∠A =2∠CDE ; (3)若∠CDE =27°,OB =2,求BD ︵的长.图24-Z -14教师详解详析【作者说卷】本试卷的重点是圆的基本概念、与圆有关的位置关系及应用.难点是如何构建垂径定理模型解决问题,切线的判定与性质的综合应用,亮点是既注重解决生活中的实际问题,又培养学生认真读题的习惯.知识与 技能圆的相 关性质 垂径定理 及其应用与圆有关的 位置关系题号1,2,4,7,9,153,168知识与技能 扇形、弧长、圆锥 综合运用 题号 5,6,10,11,13,1417,181.32.25 [解析] ∵AB 是⊙O 的直径,∠AOC =130°, ∴∠BOC =180°-∠AOC =50°, ∴∠D =12∠BOC =25°.故答案为25. 3.134[解析] 如图所示,设该圆的半径为x 厘米,已知弦长为6厘米,根据垂径定理,得AB =3厘米.根据勾股定理,得OA 2-OB 2=AB 2,即x 2-(x -2)2=32,解得x =134.4.110° [解析] 如图所示,连接OA ,OB ,∵PA ,PB 是切线, ∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-40°= 140°, ∴∠ADB =70°.又∵圆内接四边形的对角互补,∴∠ACB =180°-∠ADB =180°-70°=110°.5.2 3 [解析] 设圆锥的底面圆半径为r cm ,高为h cm ,则2πr =4π,r =2,根据勾股定理,得h =16-4=2 3.故答案是2 3.6.4π [解析] lCD ︵=120π×1180=2π3,lDE ︵=120π×2180=4π3,lEF ︵=120π×3180=2π,所以曲线CDEF 的长=2π3+4π3+2π=4π.7.D8.A [解析] ∵⊙O 的半径为3,圆心O 到直线l 的距离为2, 又∵3>2,即d <r ,∴直线l 与⊙O 的位置关系是相交.9.C [解析] ∵CD 为⊙O 的切线,∴∠OCD =90°. ∵∠BCD =50°,∴∠OCB =40°. ∵OB =OC ,∴∠OBC =∠OCB =40°, ∴∠AOC =2∠OBC =80°.故选C .10.A [解析] 根据扇形面积公式:S =n πr 2360=48π×4360=8π15.故选A .11.A [解析] 因为圆锥的底面积为9π cm 2,所以圆锥的底面圆的半径为3 cm ,圆锥的底面周长为6π cm ,根据扇形面积公式得S =12lR =12×6π×6=18π(cm 2).12.A [解析] 如图,已知圆的半径r 为12 mm ,△OBC 是等边三角形,所以BC =12 mm ,所以正六边形的边长最大不超过12 mm .故选A .13.A [解析] 如图,连接DO.∵△ABC 为等腰直角三角形,∴∠CBA =45°,∴∠DOC =90°.利用分割的方法,得到阴影部分的面积等于三角形BOD 的面积加扇形COD 的面积,所以阴影部分的面积=12×2×2+90360π×22=2+π.14.A [解析] 如图,连接BD ,B ′D.∵AB =5,AD =12, ∴BD =52+122=13, ∴BB′︵的长l =90×π×13180=132π.∵BB″︵的长l′=90×π×12180=6π,∴点B 在两次旋转过程中经过的路径的长是132π+6π=252π.故选A . 15.证明:∵AB ︵=AC ︵,∴AB =AC ,∴△ABC 是等腰三角形.∵∠ACB =60°,∴△ABC 是等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠AOC.16.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =16,∴DE =12CD =8. ∵BE =4,∴OE =OB -BE =OD -4.在Rt △OED 中,OE 2+DE 2=OD 2,即(OD -4)2+82=OD 2,解得OD =10.∴⊙O 的直径是20.(2)∵弦CD ⊥AB ,∴∠OED =90°,∴∠EOD +∠D =90°.∵∠M =∠D ,∠EOD =2∠M ,∴∠EOD +∠D =2∠M +∠D =3∠D =90°,∴∠D =30°.17.解:(1)如图①,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线,∴AT ⊥AB ,即∠TAB =90°.∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)证明:连接OD,BD.∵AB是以BC为直径的半圆O的切线,∴AB⊥BC,即∠ABO=90°.∵AB=AD,∴∠ABD=∠ADB.∵OB=OD,∴∠ABD +∠DBO =∠ADB +∠BDO ,即∠ABO =∠ADO =90°.又∵OD 是半圆O 的半径,∴AD 是半圆O 的切线. (2)证明:由(1)知∠ADO =∠ABO =90°,∴∠A =360°-∠ADO -∠ABO -∠BOD =180°-∠BOD =∠DOC. ∵AD 是半圆O 的切线,∴∠ODE =90°,∴∠ODC +∠CDE =90°.∵BC 是⊙O 的直径,∴∠ODC +∠BDO =90°,∴∠BDO =∠CDE.∵∠BDO =∠OBD ,∴∠DOC =2∠BDO ,∴∠DOC =2∠CDE ,∴∠A =2∠CDE.(3)∵∠CDE =27°,∴∠DOC =2∠CDE =54°,∴∠BOD =180°-54°=126°.∵OB =2,∴BD ︵的长=126×π×2180=75π.。
第1题
《圆》复习试题
一、选择题
1. 如图,⊙O中弧AB的度数为60°,AC是⊙O的直径,那么∠BOC等于 ( )
A.150° B.130° C.120° D.60°
2.下列命题是真命题的是( ).
A、垂直于圆的半径的直线是圆的切线 B、经过半径外端的直线是圆的切线
C、直线上一点到圆心的距离等于圆的半径的直线是圆的切线
D、到圆心的距离等于圆的半径的直线是圆的切线
3.⊙O的半径为R,圆心到点A的距离为d,且R、d分别是方程x2-6x+8=0的两根,则点A
与⊙O的位置关系是( ) A.点A在⊙O内 B.点A在⊙O上 C.点A在⊙O外 D.点A不在⊙O上 4.下列五个命题: (1)两个端点能够重合的弧是等弧;(2)圆的任意一条弧必定把圆分成劣弧和优弧两部分 (3)经过平面上任意三点可作一个圆;(4)任意一个圆有且只有一个内接三角形 (5)三角形的外心到各顶点距离相等.其中真命题有( ). A.1个 B.2个 C.3个 D.4个 5.如图,⊙O外接于△ABC,AD为⊙O的直径,∠ABC=30°,则∠CAD=( ). A.30° B.40° C.50° D.6 6.O是△ABC的外心,且∠ABC+∠ACB=100°,则∠BOC=( ). A.100° B.120° C.130° D.160° 7.如图,△ABC的三边分别切⊙O于D,E,F,若∠A=50°,则∠DEF=( ). A.65° B.50° C.130° D.80° 8.Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为( ). A.15 B.12 C.13 D.14 9.已知两圆的圆心距为3,两圆的半径分别是方程x2-4x+3=0的两根,•那么这两个圆的位置关系是( ). A.外离 B.外切 C.相交 D.内切 10.⊙O的半径为3cm,点M是⊙O外一点,OM=4cm,则以M为圆心且与⊙O•相切的圆 的半径一定是( ). A.1cm或7cm B.1cm C.7cm D.不确定 二、填空题 11.如图,在⊙O中,AB为直径,∠ACB的平分线交⊙O于D,则∠ABD= °. 12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AP:PB=1:4, CD=8,则AB= . 13.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧︵BC上的 一点, 已知80BAC,那么BDC 度.
14.如图,已知PA切⊙O于点A,PO交⊙O于点B,若PA=6,BP=4,
则⊙O的半径为 .
15.边长为2的等边三角形ABC内接于⊙O,则圆心O到△ABC一边的距
离为__________.
16.⊙O到直线L的距离为d,⊙O的半径为R,当d,R是方程x2-4x+m=0的根,且L•与⊙O相切
时,m的值为_________.
17.如图,△ABC三边与⊙O分别切于D,E,F,已知AB=7cm,AC=5cm, AD=2cm, 则BC=________.
18.已知两圆外离,圆心距d=12,大圆半径R=7,则小圆半径r•的所有可能的正整数值为_________.
三、解答题
19.下图是由一个圆,一个半圆和一个三角形组成的图形,
请你以直线AB为对称轴,把原图形补成轴对称图形.
(尺规作图,保留作图痕迹,不要求写作法和证明,)
B
A
B
D
C
A
O
第5题
B
E
D
C
A
F
O
第7题
O
D
C
B
A
第11题
B
O
A
P
第15题
A
B
C
D
.
O
第13题 第12题 BEDCAFO第17题
20.如图,从点P向⊙O引两条切线PA,PB,切点为A,B,
AC为弦,BC为⊙O•的直径,若∠P=60°,PB=2cm,求AC的长.
21.如图,已知弦AB与半径相等,连结OB,并延长使BC=OB.
(1)问AC与⊙O有什么关系?并说明理由。
(2)请你在⊙O上找出一点D,使AD=AC(自己完成作图,并证明你的结论).
22.如图,AB是⊙O的直径,AE平分∠BAF交⊙O于E,过E点作直线与AF垂直交AF延长线
于D点,且交AB于C点.求证:CD与⊙O相切于点E.
23.如图,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°,
求证:DC是⊙O的切线.
图9
24.如图,AC是⊙O的直径,PA、PB切⊙O于A、B,AC、PB的延长线交于D,若AC=3cm,DC=1cm,
DB=2cm,求:(1)PB的长;(2)ΔDOP的面积.
25.如图10,BC是⊙O的直径,A是弦BD延长24线上一点,切线DE平分AC于E.
(1)求证: AC是⊙O 的切线.(2)若∠A =45°,AC =10,求四边形BCED的面积.
B
C
A
P
O
B
C
A
O