- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l 上,按顺
时针方向转动一次,使它转到 ABC 的位置。若 BC=1,∠A=300。求点A运动到A′位置时,点A经过 的路线长。 A′ C A
B
C′
l
4.如下图,所示的三角形铁皮余料,剪下扇形制 成圆锥形玩具,已知∠C=90度,AC=BC=4cm, 使剪下的扇形边缘半径在三角形边上,弧与其 他边相切,设计裁剪的方案图,直接写出扇形 的半径长。
(2)若弦AB=80cm,AB的中点C到AB的距离是 20cm,求该零件所在的半径长.
基础题:
1.既有外接圆,又内切圆的平行四边形是正方形 ______. 2.直角三角形的外接圆半径为5cm,内切圆半径为1cm, 22cm 则此三角形的周长是_______. 3.⊙O边长为2cm的正方形ABCD的内切圆,E、F切⊙O 2cm 于P点,交AB、BC于E、F,则△BEF的周长是_____.
C
只要连接OC, 而后证明OC 垂直CD
A
O
B
D
2.AB是⊙O的弦,C是⊙O外一点,BC是 ⊙O的切线,AB交过C点的直径于点D, OA⊥CD,试判断△BCD的形状,并 说明你的理由.
三角形的外接圆与内切圆:
A.
B. O
A
.
. C
. O
B C
三角形的外心就是三角形各边垂直平分线的交点. 三角形的内心就是三角形各角平分线的交点.
A F O
B
D
C
3.如图在比赛中,甲带球向对方球门 PQ进攻,当他带球冲到A点时,同伴乙 已经助攻冲到B点,此时甲是直接射门 好,还是将球传给乙,让乙射门好?为什 么?
P A B Q
·
三.与圆有关的位置关系: 1.点和圆的位置关系 (1)点在圆内 (2)点在圆上 (3)点在圆外 如果规定点与圆心的距离为d,圆的半径 为r,则d与r的大小关系为:
直线与圆位置关系的识别:
r
.
O d
∟
r
l
l
设圆的半径为r,圆心到直线的距离为d,则: (1)当直线与圆相离时d>r; (2)当直线与圆相切时d =r; (3)当直线与圆相交时d<r.
∟
∟
O d
.
r
dO
.
l
1.与圆有一个公共点的直线。 2.圆心到直线的距离等于圆的半 径的直线是圆的切线。 3.经过半径的外端且垂直于这条 半径的直线是圆的切线。
直径MN⊥AB,垂足为E,交弦CD于点F.
A
C
O
D B
C
O
反思:在⊙ O中,若⊙ O的半径r、 A B 圆心到弦的距离d、弦长a中, D 任意知道两个量,可根据 垂径 定理求出第三个量:
3、如图,P为⊙O的弦BA延长线上一点,PA= AB=2,PO=5,求⊙O的半径。 关于弦的问题,常常需 B 要过圆心作弦的垂线段, 这是一条非常重要的辅 助线。 圆心到弦的距离、半径、 弦长构成直角三角形, 便将问题转化为直角三 角形的问题。
不在同一直线上的三点确定一个圆.
特别的: 等边三角形的外心与内心重合. 内切圆半径与外接圆半径的比是1:2. A
O
B
D
C
二、过三点的圆及外接圆
无数 个 1.过一点的圆有________ 无数 个,这些圆的圆心 2.过两点的圆有_________ 的都在_______________ 连结着两点的线段的垂直平分线 上. 0或1 3.过三点的圆有______________ 个
D ∵ ∠COD =∠AOB O
∴
B
︵ ︵ AB = CD
C ∴AB=CD
A
1、如图,已知⊙O的半径OA长 AC=BC 为5,弦AB的长8,OC ⊥AB于C, 则OC的长为 _______. 3
A
O
弦心距
半径
C 半弦长 B
E
2:如图,圆O的弦AB=8 ㎝ , DC=2㎝,直径CE⊥AB于D, 求半径OC的长。
2.如图,正方形ABCD的边长为2,P是线段 BC上的一个动点.以AB为直径作圆O,过点 P作圆O的切线交AD于点F,切点为E. C (1)求四边形CDFP的周长. E . P (2)设BP=x,AF=y,求y关 Q 于x的函数解析式. B
D F A
.
O
三.正多边形:
1.中心:一个正多边形外接圆的圆心 F 叫做这个正多边形的中心.
O R 1 d a A 2 C a
边心距r
边
1 2 ( a) d 2 R 2 2
B
四.圆中的有关计算:
1.圆的周长和面积公式
周长C=2πr
2.弧长的计算公式
面积s=πr2
r . O
L=
S=
3.扇形的面积公式
nπr 180
nπr2
360
或
S=
1
2
lr
4.圆柱的展开图: A h
D
B
r
C
S侧 =2πr h S全=2πr h+2 π r2
第24章圆知识体系复习
本章知识结构图
圆的基本性质
圆的对称性
弧、弦圆心角之间的关系 同弧上的圆周角与圆心角的关系
点和圆的位置关系 三角形的外接圆 切线
与圆有关的位置关系
直线和圆的位置关系
三角形内切圆
圆
正多边形和圆
圆和圆的位置关系
等分圆
弧长 有关圆的计算 扇形的面积 圆锥的侧面积和全面积
一.圆的基本概念:
G E
F H
4.如图, ⊙O为△ABC的内切圆,切点分 别为D,E,F,P是弧FDE上的一点,若 ∠A+ ∠C=110度,则∠FPE=_____度
A P D C
.o
F B E
5 . 如 图 , 已 知 △ ABC 的 三 边 长 分 别 为 AB=4cm , BC=5cm , AC=6cm ,⊙ O 是△ ABC 的内切圆,切点分 别是E、F、G,则AE= ,BF= ,CG= 。
.A
∵PA、PB为⊙O的切线 ∴PA=PB, P ∠APO= ∠BPO
. O
.
B
1.在Rt△ABC中,∠B=90°,∠A的平分线交 BC于D,以D为圆心,DB长为半径作⊙D. 试说明:AC是⊙D的切线.
过D点作DF ^AC 于F点,然后证明 DF等于圆D的半 径BD
F
如图,AB在⊙O的直径,点D在AB的延长 线上,且BD=OB,点C在⊙O上,∠CAB=30°. (1)CD是⊙O的切线吗?说明你的理由; (2)AC=_____,请给出合理的解释.
点与圆的位置关系
d与r的关系
.
C
.
A .
. B
点在圆内 点在圆上 点在圆外
d<r d=r d>r
7.在Rt△ ABC中,∠C=90°,BC=3cm,AC=4cm,D 为AB的中点,E为AC的中点,以B为圆心,BC为 半径作⊙B, 问:(1)A、C、D、E与⊙B的位置关系如何? (2)AB、AC与⊙B的位置关系如何?
7.如图,⊙M与x 轴相交于点A(2,0),B (8,0),与y轴相切于点C,求圆心M的坐 标 y
C
O
A
.M
B
x
6.小红家的锅盖坏了,为了配一个锅盖,需要测量锅盖的 直径(锅边所形成的圆的直径),而小红家只有一把长20cm 的直尺,根本不够长,怎么办呢?小红想了想,采取以下方 法:首先把锅平放到墙根,锅边刚好靠到两墙,用直尺紧贴 墙面量得MA的长,即可求出锅盖的直径,请你利用图乙,说 明她这样做的道理.
4.如何作过不在同一直线上的三点的圆(或三 角形的外接圆、找外心、破镜重圆、到三个村 庄距离相等) 内 ,直角三角 5.锐角三角形的外心在三角形____ 在斜边的中点上 _,钝角 形的外心在三角形___ 外。 三角形的外心在三角形____
经过三角形的三个顶点的圆叫做三角形的外接圆, 外接圆的圆心叫做三角形的外心,
B
D
C
· E
A
2.如图,OA是⊙O的半径,已知AB=OA,试探 索当∠OAB的大小如何变化时点B在圆内? 点B在圆上?点B在圆外?
O •
A
B
2.直线和圆的位置关系:
.
O
.
O l
.
O l
l (1) 相离: 一条直线与一个圆没有公共点,叫做 直线与这个圆相离. (2) 相切: 一条直线与一个圆只有一个公共点,叫 做直线与这个圆相切. (3) 相交: 一条直线与一个圆有两个公共点,叫 做直线与这个圆相交.
.
2.垂径定理:
垂直于弦的直径平分这条弦,并且 平分弦所对的两条弧.
C
.
A P D
∵CD是圆O的直 径,CD⊥AB ∴AP=BP, AD = BD B AC = BC
︵ ︵
︵ ︵
3.同圆或等圆中圆心角、弧、弦之间的关系:
(1)在同圆或等圆中,如果圆心角相等,那么它所 对的弧相等,所对的弦相等. (2)在圆中,如果弧相等,那么它所对的圆心角相 等,所对的弦相等. (3)在一个圆中,如果弦相等,那么它所对的弧相 等,所对的圆心角相等.
5.圆锥的展开图:
a h r S侧 =πr a S全=πr a+ π r2 底面 a 侧面
1、 扇形AOB的半径为12cm,∠AOB=120°,求 扇形的面积和周长.
2、 如图,当半径为30cm的转动轮转过120°时, 传送带上的物体A平移的距离为______.
A
3:如图,把Rt△ABC的斜边放在直线
圆与圆的位置关系:
. .
外离
外切
.
.
.
相交
内切
内含
. O
1
. O
2
. O
1
. O
2
. . O
1
O2
. . O