高一数学集合的含义与表示教案[1].doc
- 格式:doc
- 大小:246.50 KB
- 文档页数:7
§1.1.1 集合的含义及其表示一、教学目标(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;初步了解属于关系和集合相等的意义(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;(3)熟记有关数集,培养学生认识事物的能力二、教学重点集合的基本概念与表示方法;三、教学难点运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;四、教学过程1、创设情境,引入新课在小学和初中我们已经接触了一些集合,例如自然数的集合,有理数的集合,不等式x-7<3的解的集合,到一个定点的距离的定长的集合(即圆),到一条线段的两个端点距离相等的点的集合(即这条线段的垂直平分线)……那么集合的含义是什么呢?我们再来看看下面的一些例子:(1)1~20以内的所有质数(2)2010年4月1日之前与我国建立外交关系的所有国家(2)所有的正方形(3)高一<2>班的学生在上数学课(4)方程x2+3x-2=0的所有实数解上面这些例子有什么共同的特征?2、推进新课(1)元素与集合的概念:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
(2)集合的性质○1确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
○2互异性:集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个。
○3无序性:集合中的元素间是无次序关系的。
(3)集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。
练习:1.判断以下元素的全体是否组成集合(1)大于3小于11的偶数。
(2)我国的小河流。
2.说出集合A={a,b,c}和集合B={b, a,c}的关系。
(4)集合与元素的表示:集合通常用大括号或大写的拉丁字母表示,如{1,2,3,4,5}与{高一(2)班的所有学生},又如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……如果a是集合A的元素,就说a属于A,记作a∈A。
集合的含义与表示教案一、教学目标1. 了解集合的含义,理解集合中元素的特征。
2. 学会用列举法、描述法表示集合。
3. 能够运用集合的基本运算解决实际问题。
二、教学重点与难点1. 教学重点:集合的含义,列举法、描述法表示集合。
2. 教学难点:理解集合中元素的确定性、互异性、无序性。
三、教学准备1. 教学素材:黑板、PPT、教学卡片。
2. 教学工具:多媒体投影仪、笔记本电脑。
四、教学过程1. 导入新课:通过生活中的实例,引导学生思考集合的概念。
2. 讲解集合的含义:讲解集合的定义,强调集合中元素的确定性、互异性、无序性。
3. 表示集合的方法:(1)列举法:引导学生学会用列举法表示集合。
(2)描述法:引导学生学会用描述法表示集合。
4. 集合的基本运算:讲解并演示集合的并、交、差运算。
5. 课堂练习:布置练习题,让学生巩固所学知识。
五、课后作业1. 完成练习册上的相关题目。
2. 思考生活中的集合实例,总结集合的特点。
教学反思:本节课通过生活中的实例,引导学生了解集合的含义,学会用列举法、描述法表示集合。
在教学过程中,要注意强调集合中元素的确定性、互异性、无序性,帮助学生建立正确的集合观念。
通过课堂练习和课后作业,让学生巩固所学知识,提高运用集合解决实际问题的能力。
六、教学拓展1. 讲解集合的其他表示方法:数轴法、Venn图法。
2. 引导学生学会利用数轴、Venn图解决集合问题。
七、课堂小结1. 回顾本节课所学内容,总结集合的含义、表示方法及基本运算。
2. 强调集合中元素的确定性、互异性、无序性。
八、教学评价1. 课后收集学生的课堂练习和课后作业,评估学生对集合知识的掌握程度。
2. 在下一节课开始时,进行简要的知识点测试,了解学生对所学知识的巩固情况。
九、教学建议1. 针对不同学生的学习水平,适当调整教学难度,给予学困生更多的关心和帮助。
2. 鼓励学生积极参与课堂讨论,提高学生的思维能力和解决问题的能力。
高一数学——集合第一讲集合的含义与表示【教学目标】:(1)通过实例,使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生体会元素与集合的“属于”关系(3)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;【重点难点】:1.重点:集合的基本概念与表示方法2.难点: 运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合【教学过程】:用具:一副扑克牌、本教室内的学生及老师一、知识导向或者情景引入大家接到录取通知书的时候,上面会有学校通知:8月19日8点,新高一年段在学校操场集合进行军训动员;试问这个通知的对象是全体的新高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是新高一而不是新高二、新高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
我们在初中已经接触到一些集合:不等式的解集、实数、有理数。
那么什么是集合,如何表示一个集合,请大家看教材的:1.1.1集合的含义与表示补充知识:(做练习的时候补充)所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子。
例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。
从这个观点可将整数分为两种,一种叫质数,一种叫合成数。
除了1和它本身两个约数外,还有其它约数的数,叫合数1.把能够整除某一个数的数,叫做这个数的约数。
几个数所公有的约数叫这几个数的公约数。
公约数中最大的一个叫做这几个数的最大公约数。
2.几个数所公有的倍数,叫做这几个数的公倍数。
公倍数中最小的一个(零除外)叫做这几个数的最小公倍数。
二、给学生15分钟看书,学会预习(一)、课前预习的意义1、预习可以提前消灭听课中的“拦路虎”。
通过预习,必然仍有部分内容弄不懂。
为什么看不懂呢?原因很多,其中一个原因是没有掌握好有关的旧知识,也可以说没有掌握好新课的预备知识。
第一章集合与函数概念1.1集合1.1.1 集合的含义及其表示教学目的:(1)初步理解集合的概念,知道常用数集及其记法;(2)初步了解“属于”关系的意义;(3)初步了解有限集、无限集、空集的意义;教学重点:集合的含义与表示方法;教学难点:运用集合的两种常用表示方法一一列举法与描述法,正确表示一些简单的集合。
教学过程:一、问题引入:我家有爸爸、妈妈和我;我来自燕山中学;省溧中高一(1)班;我国的直辖市。
分析、归纳上述各个实例的共同特征,归纳出集合的含义。
二、建构数学:1 •集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set)。
集合常用大写的拉丁字母来表示,如集合A、集合B .........集合中的每一个对象称为该集合的元素(element),简称元。
集合的元素常用小写的拉丁字母来表示。
女口a、b、c、p、q ..........指出下列对象是否构成集合,如果是,指出该集合的元素。
(1)我国的直辖市;(2)省溧中高一(1)班全体学生;(3)较大的数(4)you ng中的字母;(5)大于100的数;(6)小于0的正数。
2 •关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。
3 •集合元素与集合的关系用“属于”和“不属于”表示;(1)如果a是集合A的元素,就说a属于A,记作a € A(2)如果a不是集合A的元素,就说a不属于A,记作a A (“€”的开口方向,不能把a€ A颠倒过来写.)4 •有限集、无限集和空集的概念:5•常用数集的记法:(1)非负整数集(自然数集):全体非负整数的集合•记作N,N 0,1,2,(2)正整数集:非负整数集内排除0的集.记作N*或N+ N* 1,2,3,(3)整数集:全体整数的集合+记作Z , Z 0, 1, 2,(4)有理数集:全体有理数的集合+记作Q ,Q 整数与分数(5)实数集:全体实数的集合+记作R R 数轴上所有点所对应的数注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数 0.(2)非负整数集内排除0的集.记作N *或N + *Q 、Z 、R 等其它数集内排除0的集,也是这样 表示,例如,整数集内排除0的集,表示成Z6 •集合的表示方法:集合的表示方法,常用的有列举法和描述法(1) 列举法:把集合中的元素一一列举出来,写在大括号内。
1.1.1 集合的含义与表示一.教学目标1.知识与技能①通过实例,了解集合的含义,体会元素与集合的属于关系.②知道常用数集及其专用记号.③会用集合语言表示有关数学对象.2.过程与方法①让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.②让学生归纳整理本节所学的知识.3.情感、态度与价值观增强学生的社会责任感,增强学习的积极性.二.教学重点与难点1.重点:集合的含义与表示方法.2.难点:用描述法表示集合.三.教学设计(一)创设情境,揭示课题同学们看一下,这两个图形分别是什么?他们的定义是什么?那么,集合的含义是什么呢?我们这节课就来学习一下……(二)研探新知如果把昌江中学高一(1)班的每一个同学作为元素,这些元素的全体就是一个集合.请全体女生起立,如果把我们班的每一个女同学作为元素,这些元素的全体也是一个集合.思考:下面的例子也都能组成集合吗?他们的元素分别是什么?① 1~20以内的所有质数;②所有的正方形;③到直线L的距离等于定长d的所有的点;④方程x2+3x+2=0的所有实数根.1.集合的含义一般地,我们把研究的对象统称为元素,把一些元素组成的总体叫做集合(简称为集).给定一个集合,它的元素必须是确定的,例如,我们班的全体同学构成一个集合,你们每个同学都在这个集合中,隔壁班的同学不在这个集合中.“美女”能构成一个集合吗?不能.因为组成它的元素是不确定的.我们班有模样相同的两个同学吗?没有.说明集合中的元素是互不相同的.我们班每个星期都会换座位,我们班所有同学组成的集合改变了吗?没变.说明只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.思考:判断下列元素的全体是否组成集合,并说明理由:①大于3小于11的偶数;②我国的小河流;③中国的直辖市;④身材较高的人.2.元素与集合的关系通常用大写的拉丁字母A,B,C,…表示集合,小写的拉丁字母a,b,c,…表示集合中的元素.如果a是集合A的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就a A.说a不属于集合A,记作如果用A表示“我们班的所有女生”组成的集合,xx属于A,xxx不属于A.3.集合的表示方法①自然语言②字母表示常见的数集及其记法:自然数集N;正整数集N*或N+;整数集Z;有理数集Q;实数集R.记忆.随机提问③列举法:“我国的直辖市”组成的集合表示为{北京,天津,上海,重庆}像这样把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.注意:在花括号内不多,不漏,元素之间用“,”隔开.分组:男生一组,女生一组,分组讨论,比赛,输的一方要负责发动全校的同学为玉树地震灾区筹集资金.分组讨论:然后收集一些学生的答案,并分析.例1. 用列举法表示下列集合:①小于10的所有自然数组成的集合;②方程x2=x的所有实数根组成的集合;③由1~20以内的所有质数组成的集合.解:①{0,1,2,3,4,5,6,7,8,9}.②{0,1}.③{2,3,5,7,11,13,17,19}.思考:你能用列举法表示不等式x-7<3 的解集吗?不能,因为这个集合中的元素是列举不完的.但是我们可以用这个集合中元素所具有的共同特征来描述.④描述法:用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再划一条竖线,在竖线后写出这个集合中元素所具有的共同特征.注意:表示元素的符号及取值范围,共同特征.例2. 试分别用列举法和描述法表示下列集合:①方程x2-2=0的所有实数根组成的集合;②由大于10小于20的所有整数组成的集合.解:①用描述法表示为{ x∈R|x2-2=0}.用列举法表示为{2,-2}s②用描述法表示为{x∈Z|10<x<20}.用列举法表示为{11,12,13,14,15,16,17,18,19}通过例2,让学生发现,用描述法表示集合时,如果从上下文的关系来看,元素的取值范围是确定的,则可以省略范围,只写其元素.思考:试比较用列举法和描述法表示集合时,各自的特点和适用的对象.(三)巩固练习:选择适当的方法表示下列集合:1. 所有奇数组成的集合;2. 一次函数y=x+3与y=-2x+6的图像的交点组成的集合.(四)小结1.集合的含义.2.元素与集合.3.集合的表示:①自然语言;②字母表示;③列举法;④描述法.(五)作业: P5 练习1.2.四.板书1.1.1 集合的含义与表示1.集合的含义. 3.集合的表示:集合相等①自然语言;2.元素与集合②字母表示;a∈Aa A ④描述法.五.教学反思。
集合的含义与表示教案教学目标:1. 理解集合的含义和特点;2. 学会使用集合的表示方法;3. 能够运用集合的概念解决实际问题。
教学内容:第一章:集合的概念1.1 集合的定义1.2 集合的元素1.3 集合的特点第二章:集合的表示方法2.1 列举法2.2 描述法2.3 图像法第三章:集合之间的关系3.1 子集的概念3.2 真子集与非真子集3.3 集合的相等第四章:集合的运算4.1 并集的定义及运算4.2 交集的定义及运算4.3 补集的定义及运算第五章:集合的实际应用5.1 集合在数学中的应用5.2 集合在生活中的应用5.3 集合在其他学科中的应用教学方法:1. 采用讲授法,系统地介绍集合的概念、特点、表示方法、关系和运算;2. 利用例题和练习题,让学生巩固集合的基本知识;3. 结合生活实例,让学生了解集合在实际中的应用。
教学步骤:第一章:集合的概念1.1 集合的定义1. 引入集合的概念,讲解集合的定义;2. 通过实例让学生理解集合的元素和特点。
1.2 集合的元素1. 讲解集合元素的特点;2. 分析集合元素的属性。
1.3 集合的特点1. 总结集合的特点;2. 通过练习题让学生巩固集合的特点。
第二章:集合的表示方法2.1 列举法1. 讲解列举法的概念和用法;2. 让学生通过练习题学会使用列举法表示集合。
2.2 描述法1. 讲解描述法的概念和用法;2. 让学生通过练习题学会使用描述法表示集合。
2.3 图像法1. 讲解图像法的概念和用法;2. 让学生通过练习题学会使用图像法表示集合。
第三章:集合之间的关系3.1 子集的概念1. 讲解子集的概念;2. 让学生通过练习题学会判断子集关系。
3.2 真子集与非真子集1. 讲解真子集与非真子集的概念;2. 让学生通过练习题学会判断真子集与非真子集关系。
3.3 集合的相等1. 讲解集合的相等概念;2. 让学生通过练习题学会判断集合的相等关系。
第四章:集合的运算4.1 并集的定义及运算1. 讲解并集的定义和运算方法;2. 让学生通过练习题学会计算并集。
1.1.1集合的含义与表示学习目标:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.学习重点: 1、元素与集合间的关系2、集合的表示法学习难点:集合的表示方法学习过程:一、新授:1、集合的概念 2、实例引入:⑴ 1~20以内的所有质数;⑵我国从1991~2003的13年内所发射的所有人造卫星;⑶金星汽车厂2003年生产的所有汽车;⑷ 2004年1月1日之前与我国建立外交关系的所有国家;⑸所有的正方形; ⑹黄图盛中学2004年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.2、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴2,3,4 ⑵(2,3),(3,4)⑶三角形⑷2,4,6,8,…⑸1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解3、集合相等构成两个集合的元素一样,就称这两个集合相等4、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∈A5、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?6、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)二、例题分析例 1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成。
“1_示范教案(1_1集合的含义与表示)”一、教学目标:1. 理解集合的含义,掌握集合的表示方法。
2. 能够运用集合的概念解决实际问题。
二、教学内容:1. 集合的含义2. 集合的表示方法:列举法、描述法三、教学重点与难点:1. 教学重点:集合的含义,集合的表示方法。
2. 教学难点:集合的表示方法的应用。
四、教学方法:1. 采用问题导入法,引导学生思考集合的概念。
2. 通过实例讲解,让学生掌握集合的表示方法。
3. 运用小组讨论法,培养学生合作解决问题的能力。
五、教学步骤:1. 导入新课:通过提问,引导学生回顾已学的数学概念,为新课的学习做好铺垫。
2. 讲解集合的含义:讲解集合的定义,让学生理解集合是一种数学概念,用于表示一些确定的对象的全体。
3. 讲解集合的表示方法:3.1 列举法:通过列举集合中的所有元素,表示该集合。
3.2 描述法:通过描述集合中元素的属性,表示该集合。
4. 实例分析:运用集合的表示方法解决实际问题,巩固所学知识。
5. 课堂练习:布置一些有关集合表示的练习题,让学生独立完成,检验学习效果。
7. 课后作业:布置一些有关集合表示的作业题,让学生巩固所学知识。
8. 课后反思:教师对本节课的教学效果进行反思,为下一步的教学做好准备。
六、教学评价:1. 评价学生对集合概念的理解程度。
2. 评价学生对集合表示方法的掌握情况。
3. 评价学生在解决实际问题中运用集合概念的能力。
七、教学资源:1. 教学PPT:包含集合的概念、表示方法及实例分析。
2. 练习题:包括选择题、填空题和应用题。
3. 小组讨论工具:如白板、便签纸等。
八、教学进度安排:1. 第1-2周:讲解集合的概念和表示方法。
2. 第3-4周:通过实例分析,让学生运用集合表示方法解决实际问题。
3. 第5-6周:进行课堂练习和课后作业,巩固所学知识。
九、教学反思:1. 教师在课后应对本节课的教学效果进行反思,了解学生的学习情况。
2. 对教学方法和教学内容进行调整,以提高教学效果。
数学《集合的含义与表示》教案【教学目标】1. 理解集合的含义,掌握集合的表示方法。
2. 掌握集合之间的关系及运算法则。
3. 能够应用集合的概念解决简单的问题。
4. 养成细心、准确、严谨的数学思维习惯。
【教学重点】1. 集合的概念及表示方法。
2. 集合之间的关系和运算法则。
【教学难点】1. 集合的概念及表示方法。
2. 集合之间的关系和运算法则。
【教学方法】1. 归纳法2. 演示法3. 讨论法4. 经验法【教学过程】一、引入新课1. 安排课前预习任务,要求学生回顾课本中有关集合的知识,为下节课掌握相关概念和知识铺垫。
2. 以一个简单的问题为例来引入新课:“如果学校要统计某个班级的身高,需要对学生身高做一个分类,可以按照男生和女生分类,也可以按照高于和低于平均身高分类。
这个分类的方法和我们学习的集合有什么关系呢?”3. 通过引导学生思考,让学生认识到集合是一种分类方法,有助于解决实际问题。
二、新课讲解1. 集合的概念及表示方法。
①集合的概念:集合是由若干个元素组成的整体。
②元素:集合中的每一个事物都是集合中的元素,如数学集合中可以有数字、函数、图形等元素。
③表示方法1)列举法:用大括号括起来,里面把所有元素写出来。
2)描述法:用一个性质或条件来描述集合中的元素。
3)符号法:A={1,2,3},B={x|x是偶数},C={a|0<a<5}等。
2. 集合之间的关系和运算法则。
①子集:如果集合A中的每一个元素都属于集合B,则称集合A是集合B的子集。
表示为A⊆B,记作B⊇A。
a. 自反性:对于任意一个集合A,A⊆A。
b. 反对称性:如果A⊆B,且B⊆A,则A=B。
c. 传递性:如果A⊆B,B⊆C,则A⊆C。
②真子集:如果集合A是集合B的子集,但A不等于B,则称A是B的真子集。
表示为A⊂B,记作B⊃A。
③并集:两个集合A和B的并集是由所有在A中或B中至少出现一次的元素组成的集合。
用符号"∪"表示,即A∪B={x|x∈A或x∈B}。
高一数学《集合的概念及其表示方法》数学思想教案教案目标:1. 理解集合的基本概念及其符号表示方法。
2. 掌握集合的运算法则。
3. 培养学生的抽象思维能力和逻辑推理能力。
教学重点:1. 集合的概念及其表示方法。
2. 集合的基本运算法则。
教学难点:1. 集合的复杂运算法则。
教学准备:教师准备:教案、黑板、彩色粉笔、PPT演示等。
学生准备:课本、笔记本等。
教学过程:一、导入(5分钟)教师可以通过一个例子引出集合的概念,如"小明班上的男生"。
教师:假设小明所在的班级有30个学生,其中有15个是男生,请问这个集合该如何表示呢?二、讲授(20分钟)1. 集合的定义及基本概念集合是由各种对象按照一定规律组成的整体,其中的对象称为元素。
用大写字母A、B、C等表示集合,用小写字母a、b、c等表示元素。
集合用花括号{}括起来表示,元素之间用逗号分隔。
例如:A = {1, 2, 3, 4, 5},表示集合A由元素1、2、3、4、5组成。
2. 集合的符号表示方法a. 列举法:直接将集合中的元素一一列举出来。
如:B = {2, 4, 6},表示集合B由元素2、4、6组成。
b. 描述法:用一个条件句描述集合中的元素。
如:C = {x | x是正整数,且x < 5},表示集合C由小于5的正整数组成。
3. 集合的分类a. 空集:不包含任何元素的集合,用∅表示。
b. 单集:只包含一个元素的集合。
c. 有限集:元素个数有限的集合。
d. 无限集:元素个数无限的集合。
三、实践操作(25分钟)1. 通过示例引导学生理解集合的概念及表示方法。
例如:集合A表示所有年龄大于16岁的学生,用描述法表示为A = {x | x是学生,且x的年龄 > 16}。
集合B表示小明喜欢的水果,用列举法表示为B = {苹果, 香蕉, 草莓}。
2. 练习题演练学生通过课本提供的习题和练习题进行集合的练习,巩固概念和表示方法。
例如:1)用集合的描述法表示一个包含所有整数的集合。
高一数学——集合第一讲集合的含义与表示【教学目标】:(1)通过实例,使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生体会元素与集合的“属于”关系(3)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;【重点难点】:1.重点:集合的基本概念与表示方法2.难点: 运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合【教学过程】:用具:一副扑克牌、本教室内的学生及老师一、知识导向或者情景引入大家接到录取通知书的时候,上面会有学校通知:8月19日8点,新高一年段在学校操场集合进行军训动员;试问这个通知的对象是全体的新高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是新高一而不是新高二、新高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
我们在初中已经接触到一些集合:不等式的解集、实数、有理数。
那么什么是集合,如何表示一个集合,请大家看教材的:1.1.1集合的含义与表示补充知识:(做练习的时候补充)所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子。
例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。
从这个观点可将整数分为两种,一种叫质数,一种叫合成数。
除了1和它本身两个约数外,还有其它约数的数,叫合数1.把能够整除某一个数的数,叫做这个数的约数。
几个数所公有的约数叫这几个数的公约数。
公约数中最大的一个叫做这几个数的最大公约数。
2.几个数所公有的倍数,叫做这几个数的公倍数。
公倍数中最小的一个(零除外)叫做这几个数的最小公倍数。
二、给学生15分钟看书,学会预习(一)、课前预习的意义1、预习可以提前消灭听课中的“拦路虎”。
通过预习,必然仍有部分内容弄不懂。
为什么看不懂呢?原因很多,其中一个原因是没有掌握好有关的旧知识,也可以说没有掌握好新课的预备知识。
预习,就像“火力侦察”,可以发现自己知识上的薄弱环节,在上课前迅速补上这部分知识,不使它成为听课时的“拦路虎”。
这样,在学习和理解新知识时就会很顺利。
有的学生,所以听讲效果差,有一条原因,就是没有准备好听课前所必需的旧知识,从而给听课带来了困难,很难做到当堂理解。
结果,上课的时间被白白浪费,而预习,就可避免这种局面的出现。
2、预习可以提高听讲水平。
一般来说,预习不可能把新教材全都理解了,总会遗留下一些不懂的问题,盼着上课时解决。
这样,这样,听讲的目的明确,态度积极,注意力也容易集中,听讲效果好。
比那些老师讲什么听什么、主观上没有思想准备,没有重点、没有具体目标的学生,要主动得多。
当老师讲到自己预习时已经理解的部分时,就可以把注意力集中在老师如何提出出问题、分析问题和解决问题上,拿自己的思路与教师的思路进行比较,看教师高明在什么地方,自己还有哪些理解不够的地方,取人之长,补己之短。
可见,预习后上课不是没事干,而是听有重点,看有“门道”,学目标,重在思考。
这样做,不仅有利于掌握新知识,而且有利于思维能力的发展。
3,预习可以提高笔记水平。
由于预习时看过课本,所以老师讲的内容及教师板书,书上有没有,心里一清二楚。
凡是书上有的,上课可以不记或少记,也可留下空白待课后记。
上课时,着重记书上没有的或自己不太清楚的部分,以及老师反复提醒的关键问题。
这样做,就可以把更多的时间用在思考理解问题上。
有的同学课前不预习,不知教师板书的内容书上有没有,从头抄到底,顾不上听课,更来不及思考,失去了许多宝贵时间。
后来翻翻书,原来许多内容书上都有。
根本用不着抄。
这种盲目性的听课,大大影响了学习效果。
(二)、课前预习的设计依据1、根据老师的要求预习。
当然,老师们一般都要求学生预习,但要求各有差别。
有的教师每节新授课前都要求预习,如数学,物理,化学等科,有的教师要求对新授的一篇文章进行预习,如语文课,有的教师要求对新授的某一部分进行预习,如政治、地理、历史等科。
如此,同学们必须依据老师的要求,具体安排每天的预习范围。
2、根据课程的特点预习。
尤其对预习的方式方法,是精细的,还是粗略的,精细到什么程度,粗略到什么程度,都要在预习前想到。
如对历史课,事实多,不难学,只要理清纲要就可以,可做粗略地预习,而数学课,逻辑性强,难度较大,最好采用精细的方式预习。
3、根据个人的学习情况预习。
对自己学习较差的一科或几科,可加强预习(多用点时间,搞得精细一点),对学习较好的几科,可一般用力,但要把握学习效果,一旦感到成绩有下降趋势,需及时调整对自己学习情趣很浓的学科,可多花点时间预习,精力主要放在课外参考书对教材的阐发上。
当然,兴趣有赖于个人的学习实践,由没兴趣到有兴趣,由淡到浓是在不断变化的卜目的是合理地发展自己的特长,同时弥补薄弱学科。
4、根据教师的教学特点预习。
教与学,本来就是对立的统一,是你中有我,我中有你的事。
预习也必须考虑教师授课的特点。
有的教师多采用演译法,环环相扣,层层推演,有的教师常用归纳法,例举各异,求同于一,有的教师善于提取书中要点,系统地列出标题。
预习最好摹仿教师,一为听课做准备,二为检验自己学习的本事。
除上,预习还要根据时间的多少自学能力的强弱以及个人学习的习惯来安排(三)、预习方法应该怎样预习呢?1、是要妥善安排时间。
最好在前一天晚上预习第二天早上的新课,这样印象较深。
新课难道度大,就多预习一些时间,难度小就少预习一些时间。
应选择那些自己学起来吃力,又轮到讲新课的科目进行重点预习,其它的科目大致翻翻即可。
某些学科,也可以利用星期天,集中预习下一周要讲的课程,以减轻每天预习的负担。
2、是要明确任务。
预习总的任务是先感知教材,初步处理加工,为新课的顺利进行扫清障碍。
具体任务,要根据不同科目,不同内容来确定。
一般有:①巩固复习旧概念,查清理解新概念,查不清,理解不透的记下来。
②初步理解新课的基本内容是什么?思路如何?在原有知识结构上向前跨进了多远?⑨找出书中重点、难点和自己感到费解的地方。
④把本课后面的练习尝试性地做一做,不会做可以再预习,也可记下来,等教师授课时注意听讲或提出。
3、是要看、做、思结合。
看,一般是把新课通读一遍,然后用笔勾画出书上重要的内容,需要查的就查,需要想的就想,需要记的就记。
做,在看的过程中做需要动手的准备工作以及本课后的练习题。
思,指看的时候要想,做到低头看书,抬头思考,手在写题,脑在思考。
预习以后,还要合上书本,小结一下。
(四)、搞好预习应注意的问题1.如果以前没有预习的习惯,现在想改变方法,先预习后上课,一下子全面铺开,科科课课都搞提前预习,时间就会不够用,弄得十分紧张,质量也未必能够保证。
解决的办法是,先选一两门自己学起来感到吃力的学科进行预习试点,等尝到了甜头取得了经验后,在时间允许的前提下,再逐渐增加学科,直到全面展开。
2.预习应在当天作业做完之后再进行。
时间多时,就多预习几门,钻得深一点,否则就少预习几门,钻得浅一点。
切不可每天学习任务还未完成就忙着预习,打乱了正常的学习秩序。
3.学习差的同学,上课听不懂,课后花大量时间补缺和做作业,整天忙得晕头转向,挤不出时间预习。
其实,这种同学差的根本原因可能就在“不预习”上,因为前面一环欠债”,而影响了下面环节的顺利运行。
这些同学在短时间内要多吃点苦,在完成每天学习任务之后,加班个把小时预习。
这样做虽然费时间,但上课能听得懂,减少因上课听不懂而浪费的时间。
时间一长,学习的被动局面就改变了。
三、提问(集合例子)1、教材第2页的(3)-(8)例子中元素是什么?集合是什么?2、2008年厦门市中考所有考生,元素是什么?集合是什么?3、本教室内所有人,元素是什么?集合是什么?4、一副扑克牌,元素是什么?集合是什么?5、《魔兽》游戏超级爱好者?能否组成集合,每天玩一小时、二小时、三小时叫超级爱好者?无法确定将学生分成几组(4个人一组),每组提出四个集合的例子和2个不是集合的例子,对这些例子大家讨论是对是错。
四、关于集合概念的提问大家对集合、元素已有一定的概念,那么从特殊到一般,我们对元素、集合给一个定义。
1、那么什么叫元素?集合?定义:一般地,研究对象统称为元素(element ),一些元素组成的总体叫集合(set ),也简称集。
(通俗一点说:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.)集合通常用大写的拉丁字母表示,如A 、B 、C 、……元素通常用小写的拉丁字母表示,如a 、b 、c 、……2、集合中的元素的有哪些特征?(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:集合中的元素没有固定的顺序.(这一点教材中的例1中有一句话,可举例,让教室中的同学坐到不同的位置,问本教室内所有人,这个集合是否有变化)3、什么叫集合是相等的?集合相等:构成两个集合的元素完全一样4、如何表示元素与集合的关系?(1)如果a 是集合A 的元素,就说a 属于(belong to )A ,记作a ∈A(2)如果a 不是集合A 的元素,就说a 不属于(not belong to )A ,记作a ∉A例如:1、扑克牌的黑桃为集合A ,则红心2∉A ,黑桃2∈A5、常用数集及其记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + , {} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R , {}数数轴上所有点所对应的=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z * 练习:用符号“∈”或“∉”填空:2 N 0 N 0 N + 0 Z3 Q2 Q 7 R 1.5 Z五、集合的表示方法1、列出集合的表示方法:自然语言、列举法和描述法表示集合。
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
2、列举法列举法:把集合中的元素一一列举出来,写在大括号内。