抽芯机构设计
- 格式:doc
- 大小:63.50 KB
- 文档页数:12
第八节:抽芯机构设计一`概述当塑料制品侧壁带有通孔凹槽,凸台时,塑料制品不能直接从模具内脱出,必须将成型孔,凹槽及凸台的成型零件做成活动的,称为活动型芯。
完成活动型抽出和复位的机构叫做抽苡机构。
(一)抽芯机构的分类1.机动抽芯开模时,依靠注射检的开模动作,通过抽芯机来带活动型芯,把型芯抽出。
机动抽芯具有脱模力大,劳动强度小,生产率高和操作方便等优点,在生产中广泛采用。
按其传动机构可分为以下几种:斜导柱抽芯,斜滑块抽芯,齿轮齿条抽芯等。
2.手动抽芯开模时,依靠人力直接或通过传递零件的作用抽出活动型芯。
其缺点是生产,劳动强度大,而且由于受到限制,故难以得到大的抽芯力、其优点是模具结构简单,制造方便,制造模具周期短,适用于塑料制品试制和小批量生产。
因塑料制品特点的限制,在无法采用机动抽芯时,就必须采用手动抽芯。
手动抽芯按其传动机构又可分为以下几种:螺纹机构抽芯,齿轮齿条抽芯,活动镶块芯,其他抽芯等。
3.液压抽芯活动型芯的,依靠液压筒进行,其优点是根据脱模力的大小和抽芯距的长短可更换芯液压装置,因此能得到较大的脱模力和较长的抽芯距,由于使用高压液体为动力,传递平稳。
其缺点是增加了操作工序,同时还要有整套的抽芯液压装置,因此,它的使用范围受到限制,一般很小采用。
(二)抽芯距和脱模力的计算把型芯从塑料制品成型僧抽到不妨碍塑料制品脱出的僧,即型芯在抽拔方向的距离,称为抽芯距。
抽芯距应等于成型孔深度加上2-3MM.一.抽芯距的计算如图3-102所示。
计算公式如下:S=Htgθ(3-26)式中S------ 抽芯距(MM)H------ 斜导柱完成抽芯所需的行程(MM)θ----- 斜导柱的倾斜角,一般取15·~20·2.脱模力的计算塑料制品在冷却时包紧型芯,产生包紧力,若要将型芯抽出,必须克服由包紧力引起的磨擦阻力,这种力叫做脱模力,在开始抽芯的瞬间所需的脱模力为最大。
影响脱模力因素很多,大致归纳如下;(1) 型芯成型部分表面积和断面几何形状:型芯成型部分面积大,包紧力大,其模力也大;型芯的断面积积形状时,包紧力小,其脱模也小;型芯的断面形状为矩形或曲线形时,包运费力大,其脱模力也大。
39第在,则应考虑镶拼结构,否则,只能采用其他结构形式。
胶件表面允许夹线存在,则可以采用镶拼结构,以利于加工,如图1-85(a )所示。
胶件正表面不允许夹线存在,为了利于加工或其他目的,将夹线位置移向侧壁,从而采用镶拼结构,如图1-85(b )所示。
当圆弧处不允许夹线时,更改镶件结构,将夹线位置移向内壁,如图1-85(c ) 所示。
图1-85 允许夹线和不允许夹线的结构形式⑦ 综合考虑模具冷却。
成型零件采用镶拼结构后,若造成局部冷却困难,应考虑采用其他冷却方法或整体结构。
1.4.6 抽芯行位机构设计1.常用行位机构类型行位机构类型较多,分类方法多种多样。
根据各类行位结构的使用特点,常用行位机构可以概括为以下几类。
① 前模行位机构。
② 后模行位机构。
③ 内行位机构。
④ 哈夫模机构。
⑤ 斜顶、摆杆机构。
⑥ 液压(气压)行位机构。
2.行位设计要求(1)行位机构的各组件应有合理的加工工艺性,尤其是成型部位合理的加工工艺性一般有如下要求。
① 尽量避免出现行位夹线。
若不可避免,夹线应位于胶件不明显的位置,且夹线长度尽量短小,同时应尽量采用组合结构,使行位夹线部位与型腔可一起加工,如图1-86所示。
② 为了便于加工,成型部位与滑动部分尽量做成组合形式,如图1-87所示。
40与︱图1-86 行位有夹线的结构图1-87 成型部位与滑动部分的组合形式(2)行位机构的组件及其装配部位应保证足够的强度、刚度 行位机构一般依据经验设计,也可进行简化计算。
为保证足够的强度、刚度,一般情况采用如下原则。
① 结构尺寸最大。
在空间位置可满足的情况下,行位组件采用最大结构尺寸。
② 优化设计结构。
例如以下几种情况。
• 对较长行位针末端定位,避免行位针弯曲,如图1-88所示。
• 改变铲鸡的结构,增强装配部位模具的强度,如图1-89所示。
(3)行位机构的运动应合理 为了使行位机构可以正常工作,应保证在开、合模的过程中,行位机构不与其他结构部件发生干涉,且运动顺序合理可靠。
第十一章抽芯机构当制品具有与开模方向不同的内侧孔、外侧孔或侧凹时,除极少数情况可以强制脱模外,一般都必须将成型侧孔或侧凹的零件做成可移动的结构。
在制品脱模前,先将其抽出,然后再从型腔中和型芯上脱出制品。
完成侧向活动型芯抽出和复位的机构就叫侧向抽芯机构。
从广义上讲,它也是实现制品脱模的装置。
这类模具脱出制品的运动有两种情况:一是开模时优先完成侧向抽芯,然后推出制品;二是侧向抽芯分型与制品的推出同时进行。
11.1 抽芯机构的组成和分类1、抽芯机构的组成抽芯机构按功能划分,一般由成型组件、运动组件、传动组件、锁紧组件和限位组件五部分组成,见表11-1 抽芯机构的组成2、侧向抽芯机构的分类及特点侧向分型和抽芯机构按其动力源可分为手动、机动、气动或液压三类。
(1)手动侧向分型抽芯模具结构比较简单,且生产效率低,劳动强度大,抽拔力有限。
故在特殊场合才适用,如试制新制品、生产小批量制品等。
(2)机动侧向分型抽芯开模时,依靠注塑机的开模动力,通过侧向抽芯机构改变运动方向,将活动零件抽出。
机动抽芯具有操作方便、生产效率高、便于实现自动化生产等优点,虽然模具结构复杂,但仍在生产中广为采用。
机动抽芯按结构形式主要有:斜导柱分型抽芯、弯销分型抽芯、斜滑块分型抽芯、齿轮齿条分型抽芯、弹簧分型抽芯等不同形式。
其特点见表11-2所示。
(3)液压或气压侧向分型抽芯系统以压力油或压缩空气作为抽芯动力,在模具上配置专门的油缸或气缸,通过活塞的往复运动来进行侧向分型、抽芯及复位的机构。
这类机构的主要特点是抽拔距长,抽拔力大,动作灵活,不受开模过程11.2 抽芯机构的设计要点1、模具抽芯自锁自锁:自由度F≥1,由于摩擦力的存在以及驱动力方向问题,有时无论驱动力如何增大也无法使滑块运动的现象称为抽芯的自锁。
在注塑成型中,对于机动抽芯机构,当抽芯角度处于自锁的摩擦角之内,即使增大驱动力,都不能使之运动,因此,模具设计时必须考虑避免在抽芯方向上发生自锁。
企业导报2015年第12期作者简介:张倩(1989-),女,湖北天门人,助教,硕士,江汉大学文理学院教师,机电与建筑工程学部,研究方向:材料成型及控制工程;胡双锋(1981-),男,湖北应城人,讲师,博士,武汉工程大学材料科学与工程学院教师,研究方向:塑料成工艺,模具设计与制造。
内侧抽芯机构的设计与结构优化张倩胡双锋(1.江汉大学文理学院,湖北武汉430056;2.武汉工程大学,湖北武汉430073)摘要:对于带有内侧凹或内侧凸的塑件,本文设计了四种侧抽芯机构,基于滑块与提供动力结构的接触状况不同,分为线接触、面接触、点接粗3种形式,本文通过对这三种形式的受力分析与对比,讨论了各机构运动的优缺点以及对生产成本和制品质量的影响,以指导实际生产。
关键词:罩壳;注射模;侧抽芯一、引言当注射成型的塑件与开合模方向不同的内侧或外侧具有孔、侧凹或凸台时,如图1所示某罩壳(材料为PC ),成型时,无论塑件留在定模还是动模一侧,侧凹部分的金属都会阻挡塑件脱模,此时,模具结构中须采用侧向分型与抽芯机构才能成型。
图1塑件内侧凹示意图常用的侧抽芯机构有斜导柱、弯销、斜导槽、斜滑块和齿轮齿条等,不同机构的运动过程、抽拔倾角、侧抽芯与提供动力结构的接触状况和受力情况差异很大,模具的开模距离、模具体积、制造难度、生产成本也各不相同,对制品的质量影响也很大。
大量文献对内侧抽芯机构中斜导柱进行了受力分析和倾角优化,但很少有对不同类型的内侧抽芯机构进行归纳总结并对比分析的,因此,本文在充分阅读分析大量文献的基础上,设计归纳了4种内侧抽芯机构,并依照侧抽芯与提供动力结构的接触状况和受力情况分为三类,讨论了各种机构的生产成本以及对制品的影响,供设计生产者参考。
二、内侧抽芯机构的设计图2内侧抽芯机构设计方案一1.内侧凹2.滑块3.定模板4.定模仁5.斜导柱6.镶块7.弹簧8.动模仁9.动模板(一)内侧抽芯设计方案1———斜导柱抽芯机构。
毕业设计-斜导柱抽芯机构模具设计一、引言斜导柱抽芯机构模具是模具中常见的一种,主要用于注塑成型中需要抽芯的零件的模具,抽芯机构模具可以大大提高产品的生产效率和产品质量,并且可以缩短产品制造周期,降低产品成本。
因此,本文将介绍一种斜导柱抽芯机构模具的设计方案。
二、斜导柱抽芯机构模具的设计原理斜导柱抽芯机构模具主要由以下几个部分组成:活动模板、固定模板、执行器、斜导柱和抽芯杆。
1. 活动模板活动模板是斜导柱抽芯机构模具的主要零件之一,它与固定模板一起用于将塑料材料注入成型中,然后通过活动模板的移动来脱离,最后得到成形零件。
在斜导柱抽芯机构模具中,活动模板设置了抽芯孔,以实现抽芯的功能。
2. 固定模板固定模板是模具的另一个主要零件,它与活动模板相对固定,用于支持模具中其他零件的运动,通常使用钢板加工制造,以保证模具的耐用性和稳定性。
3. 执行器执行器是斜导柱抽芯机构模具中的必要部件。
在抽芯过程中,执行器通常是一个液压或气动元件,驱动抽芯杆的运动。
4. 斜导柱斜导柱也是斜导柱抽芯机构模具中的必要零件,它是活动模板和固定模板之间的连接部件,即活动模板上的斜导孔和固定模板上的斜导柱一一匹配,保证活动模板的平移运动。
5. 抽芯杆抽芯杆是斜导柱抽芯机构模具的关键结构部件。
它是从活动模板底部穿过抽芯孔并与执行器相连的。
通过执行器的作用,抽芯杆将抽芯模具抽出模具,从而完成抽芯功能。
三、斜导柱抽芯机构模具的设计步骤1. 确定模具产品尺寸和形状首先,需要根据零件的尺寸和形状,确定模具的大小和结构。
在确定模具的结构时,需要考虑到模具的功能和使用寿命等因素。
2. 设计模具结构模具结构是模具设计的关键部分,通过模具结构的设计,可以确定不同部分之间的连接方式和各个部件的布局。
在设计模具结构时,需要选择合适的材料,以保证模具的刚度和耐用性。
同时,还要考虑到模具的重量和制造成本等因素。
3. 设计抽芯机构抽芯机构的设计是整个斜导柱抽芯机构模具设计中的重要环节。
Science &Technology Vision科技视界0前言在塑料模具产品中,有些产品的侧壁存在孔和凸台,产品成型后这些部位阻碍产品的出模,产品没有办法顶出,这种现象在模具设计中属称倒扣。
在模具设计中倒扣有很多中类型有内倒扣、外倒扣,而外倒扣还分为与PL 面平行型的水平倒扣和与PL 面成一定角型的斜型倒扣,其中斜型倒扣在模具设计中是最难解决的一种倒扣,本文以夹式台灯的上夹盖为例,论述斜型倒扣的斜侧滑块机构设计。
1模具及塑料产品分析图11.1塑料产品分析如图1所示的产品材料为ABS,塑料件属于外观件,如图所提示的斜孔与产品的水平方向的角度为45度,斜孔的倒扣深度为3mm,必须采用斜侧抽芯机构才可以顺利脱模。
1.2模具分析从塑料产品的结构分析可以看出该塑件模具的结构特点为:塑料产品的倒扣成型应设计在定模侧;制件属于外观件;倒扣深度不深并具成型面积不大。
2斜侧抽芯机构设计与原理分析图2夹式台灯夹盖的模具结构图1.浇口套;2.定模固定板;3.A 板;4.拔杆;5.斜侧滑块;6.斜侧滑块镶件7.拉料杆;8.定模仁;9.动模仁;10.B 板;11.顶针;12.弹簧;13.限位螺丝;14.面针板;15.底针板;16.动模固定板;17.大拉杆;18.导套根据夹式台灯上下盖的产品要求设计出来的模具结构图如图2所示,从该结构图可以看出,斜侧抽芯机构主要是由拔杆、斜侧滑块、斜侧滑块镶件等三大部件组成整个结构,拔杆与斜侧滑块部件主要是由T 型槽进行配合。
在模具注塑成型后,由于2定模固定板与3型腔板(A 板)之间有12弹簧的弹力作用下,模具分型面PL1先开,由于4拔杆固定在2定模固定板上,所以随着分型面PL1的分开斜锁紧块向开模方向作垂直(与地平面垂直)运动,运动距离在限位螺丝13的限位下,分开6.5mm 的距离后PL1处暂不分开状态。
在PL1分开6.5mm 后,由于拔杆与斜侧滑块是以T 型槽进行配合,所以斜侧滑块与斜侧滑块镶件在拔杆的运动力下,作与分型线夹角45度的运动,使得斜侧滑块镶件与产品分开,如图3所示的效果。
职业教育材料成型与控制技术专业教学资源库《铝合金铸件铸造技术》课程教案压铸模具侧抽机构设计—弯销抽芯机构制作人:贾娟娟陕西工业职业技术学院压铸模具侧抽机构设计——弯销抽芯机构弯销抽芯机构类似斜销抽芯机构,如图1所示。
只是弯销替代了斜销而已,因此弯销抽芯机构工作原理与斜销抽芯机构基本相同,但又有自身的特点:图1 弯销抽芯机构1—弹簧;2—限位块;3—螺钉;4—楔紧块;5—弯销;6—滑块;7—型芯(1)弯销一般为矩形截面,因此能承受较大的弯曲应力;(2)弯销各段可以加工成不同斜度,甚至直段,因此可根据需要随时改变抽芯速度和抽芯力大小或实现延时抽芯。
弯销与弯销孔的配合间隙一般为0.5~1mm,以防止弯销在弯销孔内卡死。
(3)特殊情况下,可在弯销末端设置支承块,以增加其强度。
1、弯销的形式弯销的结构形式如图2所示,其截面大多数为正方形和矩形。
图2 弯销的结构形式(a)所示的受力情况比斜销好,但制造较为困难;(b)所示适用于抽芯距较小的场合,同时起导柱的作用,模具结构紧凑,制造方便;(c)所示适用于无延时抽芯要求,抽拔离分型面垂直距离较近的型芯;(d)所示适用于抽拔离分型面垂直距离较远的有延时抽芯要求的型芯。
2、滑块的锁紧压铸过程中,由于活动型芯受到金属液的压力会发生位移,因此,必须对滑块锁紧,弯销滑块的锁紧装置如图3所示。
图3 弯销滑块的锁紧(a)所示为当滑块承受的压力不大时,可以直接用弯销锁紧;(b)所示为当滑块承受的压力较大时,则需要另加楔紧块锁紧;(c)所示为当滑块承受的压力很大时,则需要另加楔紧块。
为了保证抽芯机构的正常工作,当α>α1时,则必须保证S延>S。
3、弯销尺寸的确定(1)弯销斜角的确定弯销斜角α越大,抽芯距S抽则越大,弯销所受弯曲力也越大。
因此:当抽芯距短而抽芯力大时,斜角α取较小值;当抽芯距长而抽芯力小时,斜角α取较大值。
常用α取值为10°、15°、18°、20°、22°、25°、30°。
第八节:抽芯机构设计 一`概述 当塑料制品侧壁带有通孔凹槽,凸台时,塑料制品不能直接从模具内脱出,必须将成型孔,凹槽及凸台的成型零件做成活动的,称为活动型芯。完成活动型抽出和复位的机构叫做抽苡机构。 (一)抽芯机构的分类 1.机动抽芯 开模时,依靠注射检的开模动作,通过抽芯机来带活动型芯,把型芯抽出。机动抽芯具有脱模力大,劳动强度小,生产率高和操作方便等优点,在生产中广泛采用。按其传动机构可分为以下几种:斜导柱抽芯,斜滑块抽芯,齿轮齿条抽芯等。 2.手动抽芯 开模时,依靠人力直接或通过传递零件的作用抽出活动型芯。其缺点是生产,劳动强度大,而且由于受到限制,故难以得到大的抽芯力、其优点是模具结构简单,制造方便,制造模具周期短,适用于塑料制品试制和小批量生产。因塑料制品特点的限制,在无法采用机动抽芯时,就必须采用手动抽芯。手动抽芯按其传动机构又可分为以下几种:螺纹机构抽芯,齿轮齿条抽芯,活动镶块芯,其他抽芯等。 3.液压抽芯 活动型芯的,依靠液压筒进行,其优点是根据脱模力的大小和抽芯距的长短可更换芯液压装置,因此能得到较大的脱模力和较长的抽芯距,由于使用高压液体为动力,传递平稳。其缺点是增加了操作工序,同时还要有整套的抽芯液压装置,因此,它的使用范围受到限制,一般很小采用。 (二)抽芯距和脱模力的计算 把型芯从塑料制品成型僧抽到不妨碍塑料制品脱出的僧,即型芯在抽拔方向的距离,称为抽芯距。抽芯距应等于成型孔深度加上2-3MM. 一.抽芯距的计算 如图3-102所示。 计算公式如下: S=Htgθ (3-26) 式中 S------ 抽芯距(MM) H------ 斜导柱完成抽芯所需的行程(MM) θ----- 斜导柱的倾斜角,一般取15·~20· 2.脱模力的计算 塑料制品在冷却时包紧型芯,产生包紧力,若要将型芯抽出,必须克服由包紧力引起的磨擦阻力,这种力叫做脱模力,在开始抽芯的瞬间所需的脱模力为最大。 影响脱模力因素很多,大致归纳如下; (1) 型芯成型部分表面积和断面几何形状:型芯成型部分面积大,包紧力大,其模力也大;型芯的断面积积形状时,包紧力小,其脱模也小;型芯的断面形状为矩形或曲线形时,包运费力大,其脱模力也大。 (2) 塑料的收缩率,磨擦系数和刚性:塑料的收缩率大,对型芯包紧力大,脱模力也大;表面润滑性能好的塑料,脱模力较小;软塑料比硬塑料所需脱模力小。 (3) 塑料制品的壁厚:包容面积同样大小的塑料制品,薄壁塑料制品收缩小,脱模力也小;夺取壁塑料制品收缩大,脱模力也大。 (4) 塑料制品同一侧面的同时抽芯数量:当塑料制品在同一侧面有两个以上的孔槽,采用抽机构抽拔进,由于塑料制品在同一侧面有两个以上的孔槽,采用抽世机构同时抽拔时,由于塑料制品孔距的收缩较大,故脱模力也大。 (5) 活动型芯成型面的粗糙度:活动型芯成型表面与塑料制品的接触表面在抽拔时所产生的相对磨擦,对脱模力有很大影响,因此,
成型表面应有较小的粗糙度(一般在Rα0.4um以下),加工的纹向
要求与抽拔方向一致。 (6) 成型工艺;注射压力,保压时间,冷却时间对于脱模力的影响也
很大。当注射大小,保压时间短时,脱模力小。冷却时间长,塑料制品冷凝收缩基本完成时,包紧力也大,脱模力也大。 根据各种因素的影响,脱模力计算力公式如下: F=Lhp(u*cosα-sinα) 式中 F----脱模力(N) L---活动型芯被塑料制品包紧的断面形状的周长(MM) H---成型部分深度(MM) P---单位面积包紧力,一般取8…12Pa; u---磨擦斜度(°) 二.斜导柱抽芯机构设计 (一)斜导柱抽芯的工作原理 斜导柱侧向机芯机构是由与开模方向成一定角度的斜导柱和滑块所组成。为了保证抽芯动作平稳可靠,必须有滑块定位及闭锁装置,如图3---103所示。 上图3---103中的活动型芯8用销钉7固定在定滑块上,它可沿动模垫9的导滑槽向左移动,当斜导柱6全部脱离定滑块5上的斜孔后,型芯8就全部从塑料制品中抽出。这时,在推出机构的作用下,塑料制品就可能脱模,然后合模后复位。 (二)斜导柱抽芯机构设计原则 (1) 活动型芯一般比较小,应牢固装在滑块上,防止在抽芯进松动滑脱。型芯与滑块连接有一定的强度和刚度。 (2) 滑块在导滑槽中滑动要平稳,不要发生卡住,跳动等 现象。 (3) 滑块限位装装置要可靠,保证开模后滑块停止在一定而不任意滑动。 (4) 锁紧块要能承受注射时向压力,应选用可靠的连接方式与模板连接。锁紧块和模板可做成一体。锁紧块的斜角θ,一般取θ1-θ>2°-3°,否则斜导柱无法带动滑块运动。 (5) 滑块完成抽芯运动后,仍停留在导滑槽内,留在导滑槽内的长度不应小于滑块全长的-4、3,否财,滑块在开始复位时容易倾斜而损坏模具。 (6) 防止滑块设在定模的情况下,为保证塑料制品留在定模上,开模前必须先抽出侧向型芯,最好采取定向定距拉紧装置。 (三)斜导柱 (1) 斜导柱形式:如图3-104所示。 图3-104中A为圆形斜导柱。B为减小斜导柱与滑块的斜孔壁之间的磨擦,在圆导柱上铣去二平面,铣去后的平面间距约为斜导直径的0.8倍,C为在模内抽拔的矩形斜导柱。D为在模外抽拔的矩形斜导柱。E为起延时作用的矩形斜导柱。 (2) 斜导柱各项参数计算 1)斜导柱倾斜角θ的计算:斜导柱倾斜角θ与脱模力及抽芯距有关。角度θθ大则斜导柱所受弯曲力要增大,所需模力也增大。因此希望角度小些为好。但是当抽芯距一寂静时,角度θ小则使斜导柱所受弯曲力两 方面。一般采用斜角θ值为15°~20°.但当抽芯距较大时,可适当增加θ值以满足抽芯距的要求,这时斜导柱的直径和固定部分长度需相应增加,这样才能 承受较大。 2) 为了满足滑块和锁紧块先分开,斜导柱后抽芯的动作要求,则滑块和锁紧块的角度应比斜导柱的角度大2°~3°.抽芯距与斜导柱角度θ的关系如下: 向平行分型面方向抽出;如图3-105所示。 计算公式如下; L4=S/sinθ H=S ctgθ 式中 L4------ 斜导柱工作部分长度(MM) θ-----斜导柱斜角(°) S------ 抽芯距(MM) H-----开模行程(MM) 向动模方向抽出;如图3-106所示 计算公式如下: s=H’tgθ/cosβ (3-30) L4=H’/cosθ (3-31) H=H’-s sinβ (3-32) 式中 S----抽芯距(MM) L4----斜导柱工作部分长度(MM) H-----开模行程(MM) θ-----斜导柱斜角(°) β---- 抽拔方向与分型面交角(°) H’---- 斜导柱工作部分在开模方向的垂直距离(MM) 由图3-106可知,实际工作时θ为有效抽拔角,即θ1=θ+β,θ1应取20°为好。但当θ1=20°时,斜导柱上承受的弯曲力比湍分型面平行方向抽出时为小,所以θ1也可取稍大于20°。向定模方向抽出;如图3-107所示。 计算公式如下; H=H+s sinβ 参数的意义同前。 由图3-107可知,实际工作时θ2为有效抽拔角,即θ2=θ-β,θ的值不能大于20°,β的值应比向动模方向抽出时小。抽芯距S及斜导柱工作部分长度L4=可按式(3-30),式(3-31)算出。 3)斜导柱直径D的计算;斜导食糖的直径D决定于所承受的弯曲力,而弯曲力又决定于脱模力,斜导柱的斜角θ及工作部分长度。在模具设计中,先算出脱模力,再选定斜导柱的倾斜角,然后计算斜导柱直径,如图3-108所示。斜导柱直径的计算公式如下: M=F 故 M弯= W 故 W=FL/ 因W圆=0.1d³,取〔σ〕弯=300Mpa 故 d=√fl/30=√FH/30cosθ 式中 F---- 斜导柱所受弯曲力(力); L-----A点到弯曲力作用点B的距离(MM) W----截面系数(MM³) 圆形截面W圆=πd³/32=0.1d³ 〔σ〕弯-----材料抗弯强度,一般取〔σ〕弯=300Mpa; H----抽芯孔中心与A点的垂直距离(MM) θ----斜导柱的斜角(°); d=斜导柱直径(MM) 4)斜导柱总长度计算:斜导柱的总长度L,主要根据抽芯距,斜导柱直径和倾 斜角的大小而定,如图3-109所示。 L=L1+L2+L4+L5=D/2tgθ+h/cosθ+s/sinθ+5~10MM(3-36) 其中: L3=1/2dtgθ L6=L2-L3 式中 L-----斜导柱总长度(MM) D----斜导柱固定部分的直径(MM) S----抽芯距(侧孔深度加2~3MM)(MM) H---斜导柱倾斜角(MM) θ----斜导柱倾斜角度(°) 在模具设计中,根据塑料制品和模具实际情况,选择D,s,h及θ等数值。 在确定D,s,h,θ后,可按表3-15查得L1,L2,L3和L4。 2.滑块和斜孔与斜导柱进行配合,在配合的同时要做成单邊0.5MM的间隙,这样在开模的瞬间有一个很小的空行程,使滑块和活动型芯末抽动前强制塑料制品脱出凹模或凸模,并使锁紧块先脱离滑块,然后再进行抽芯。滑块的结构形式,视模具结构信侧抽芯力的大小来决定。 滑尬一般与导滑槽配合,其结构形式如图3-111所示。 4.导滑槽定位装置 为了保证斜导柱的伸出端可靠的进入滑块的斜孔,滑块在抽芯后必须停留在一位轩为此必须设滑块限位装置,滑块限位装置要灵活可靠,如图3-112所示。 上图 3-112中a利用挡块限位,安全可靠。B利用钢球限位,弹簧的弹力要足够。 5.锁紧块 活动型 芯和滑块一般用锁紧块锁隹。它的主要作用是防止侧型芯在注射成型时因受力产生移动。因为它要承受注射压力,所以应选用可靠的方式和模块相连接。最好紧块与模板做成整体。同时锁紧块的斜角θ1应比导柱斜角θ 大2°~3°,否则斜导柱无法带动滑块。锁紧块的结构形式如图3-113所示。 6.防止斜导柱,滑块抽结构中的干扰措施 在塑料省事射模具, 推出塑料制品后的推杆复位,一般都是采用反推杆来完成的。但在斜导柱抽芯机构中,若活动型芯的水平投影与推杆相重全合时,如果仍然采用反推杆复位,将产生推杆与活动型芯发生干扰的现象。因为这种复位形式往往是滑块先于推杆复位,致使活动型芯或推杆损坏,如图3-114所示。在一定条件下,采髟反推杆复位亦可使推杆复位,致使活动型芯或推杆损坏。其条件是:推杆地端面至活动型 芯最近距离H’要大于活动型芯与推 杆(或反推杆)在水平方向的重合距离S’和ctgθ的乘积,即H’>S’ctgθ,也可以写成H’tgθ>s’(一般大于0.5MM左右),这时就不会产生推杆与活动滑块之间的干扰。如果S’略大于H’.tgθ,时,可以加大θ值,使其达到H’tgθ>s’,即可满足避 免干扰的条件,如图3-115所示。 (四)斜导柱内侧抽芯结构 当塑料制品内侧壁有凸台用凹空时,可采用斜柱抽芯结构进行内投影抽芯。塑料投影品顶面有孔的内侧抽芯,如图3-116所示。