侧抽芯机构设计
- 格式:doc
- 大小:229.50 KB
- 文档页数:11
侧抽芯模具毕业设计侧抽芯模具毕业设计在现代工业制造中,模具被广泛应用于各个行业。
而侧抽芯模具作为一种常见的模具类型,在塑料制品的生产中扮演着重要的角色。
侧抽芯模具的设计与制造对于产品的质量和效率有着直接的影响。
因此,我选择了侧抽芯模具作为我的毕业设计课题,旨在通过深入研究和实践,提高对侧抽芯模具的理解和应用能力。
首先,我将从侧抽芯模具的基本原理和结构开始。
侧抽芯模具是一种用于制造带有凹槽或凸起的塑料制品的模具。
它通过一种特殊的结构设计,使得在注塑过程中可以实现侧向抽芯的功能。
这种设计可以在一次注塑过程中完成多个零件的制造,大大提高了生产效率。
同时,侧抽芯模具的结构复杂,需要精确的加工和装配,以确保其正常运行和长期使用。
接下来,我将研究侧抽芯模具的设计流程和方法。
在进行侧抽芯模具的设计时,首先需要进行产品的分析和需求确定。
然后,根据产品的要求和工艺特点,进行模具的结构设计。
这包括芯子的设计、导向机构的设计、抽芯机构的设计等。
在设计过程中,需要考虑到材料的选择、加工工艺的可行性以及模具的可靠性等因素。
最后,通过CAD软件进行模具的三维建模和设计验证,确保模具的准确性和可行性。
在实践环节中,我将亲自参与侧抽芯模具的制造和调试。
首先,我将学习模具加工的基本知识和技能,包括车削、铣削、磨削等工艺。
然后,我将亲自操作加工设备,制造出符合设计要求的模具零件。
在模具的装配过程中,我将学习如何正确地安装和调整各个零部件,确保模具的正常运行。
最后,我将进行模具的调试和试模,验证模具的性能和精度。
除了理论和实践的学习,我还将进行相关的研究和探索。
侧抽芯模具作为一种复杂的模具类型,其应用领域和技术难点都有待深入研究。
我将通过文献阅读和实验研究,了解侧抽芯模具的最新发展和应用技术。
同时,我还将与导师和同学进行交流和讨论,共同探讨侧抽芯模具的设计和制造方法。
通过这些研究和探索,我将进一步提高对侧抽芯模具的理解和应用能力。
最后,我将对侧抽芯模具的设计和制造进行总结和评价。
第九章:侧向抽芯机构侧向抽芯机构概念与A,B板开模方向不一致的开模机构使用场合1)当胶件上存在与开模方向不一致的结构2)存在不能有脱模斜度的外侧面(比如要装配的垂直的面) 侧向抽芯机构分类1)斜导柱(或弯销)+滑块2)斜滑块3)斜顶4)液压或气动5)手动斜导柱(或弯销)+滑块侧向分型机构1、工作原理:将垂直运用分解为侧向运动2、机构组成:(见图)该机构包括斜导柱(或斜销),锁紧快,滑块,压块,定位滚珠,弹簧等3、主要设计参数:1)斜导柱倾角a: 150≤a≤250(注a尽量取小些,通常为160~200,角度与抽芯距和滑块高度有关)2)滑块斜面倾角b=a+20~303)抽芯距S=胶件侧向凹凸深度+2~5mm(当行遂道时,可以取1mm)4)斜导柱的长度L=S/sin(a)+H/cos(a),H为固定板的厚度,还可以用图解法确定5)斜导柱直径一般在8~20mm,购买比计算长2-5mm左右的顶针回来加工斜导柱直径的经验值4、设计要点1)斜导柱的固定和加工(见图)2)如何实现延时抽芯(见图),斜导柱的孔加大,做成鹅蛋型孔3)滑块的导向定位及配合精度(H7/f7),一般定位为下行用挡块,上行用弹簧,左右行用波仔加弹簧先复位机构。
4)滑块上的斜孔直径应比斜导柱大1~1.5mm5)什么情况下用压块,(A. 滑块的宽度大于80-100mm以上时,B.产品的定单大,模具的使用时间长,寿命长,C.模具的精度要求高)压块的因定(见图),用螺钉加销子6)滑块滑离导向槽的长度应不大于滑块长的三分之一7)滑块的限位装置(包括弹簧滚珠<香港叫Ball仔)定位,两种弹簧螺钉定位法)8)滑块的运水(滑块的高度,宽度较大,与熔胶的接触面大)9)滑块斜面上的镶块(主要是耐磨)10)销紧块的固定与定位11)尽量将顶针布置于侧抽芯或斜滑块在分模面上的投影范围之外,若无法做到,则必加先复位机构5、弯销侧向分型机构:该机构常用于适时抽芯,抽芯距离较长等场合,其原理和斜导柱相似,但加工较复杂,见图斜滑块抽芯机构:常用于胶件有侧凹,侧孔,抽芯距不大,但面积较大的场合1、后模斜滑块抽芯机构(见图)1)滑出长度应不小于滑块总长度的三分之一2)滑出长度L=抽芯距S/tg(a)3)斜面倾角一般在15~25度之间4)不能让胶件在脱模时留在其中一个滑块上5)上面应高出0.5mm,下面应避空0.5mm6)斜滑块推出时应有导向及限位机构7)当胶件易粘前模时,应设置滑块止动销,确保胶件留在后模8)注意有时须加先复位机构2、前模斜滑块抽芯机构(见图)其原理和结构与后模斜滑块抽芯机构基本相同,不同的是为保证弹簧推出安全可靠,须加设拉钩装置.如果与顶针发生干涉,要加先复位机构。
侧向分型与抽芯机构设计引言侧向分型与抽芯机构在注塑模具设计中起着重要的作用。
侧向分型是指在模具中设置缓冲阀和侧板,通过侧向运动来将塑料制品从模具中取出。
而抽芯机构则是用于取出模具中的中空或凸起的零件。
本文将重点讨论侧向分型与抽芯机构的设计原理和注意事项。
侧向分型的设计原理侧向分型是指在注塑模具中采用侧向运动的方式将塑料制品从模具中取出。
侧向分型的设计原理如下:1.设置缓冲阀:在模具的侧壁上设置缓冲阀,用于控制分型板的侧向运动。
缓冲阀可采用气动或液压方式控制,通过控制缓冲阀的开合,可以实现模具的分型操作。
2.侧板设计:在模具中设置侧板,用于支撑分型板和缓冲阀。
侧板的设计应符合模具的整体结构和功能要求,同时要考虑到侧板的材料选择和加工工艺。
3.分型板设计:分型板是侧向分型的关键部件,其设计应考虑到制品的尺寸和形状。
分型板的材料通常采用高硬度的工具钢,以确保分型过程的稳定性和可靠性。
侧向分型的注意事项在设计侧向分型时,需要注意以下几点:1.分型力的控制:在侧向分型过程中,分型力的大小直接影响到制品的质量。
因此,在设计时应合理控制分型板的运动速度和缓冲阀的开合力度,以保证制品不受损坏。
2.分型板的导向设计:分型板的导向设计直接影响到分型过程的准确性和稳定性。
在设计时应考虑到分型板的导向孔和导向销的配对设计,以确保分型过程的顺利进行。
3.分型板的润滑和冷却:分型板在长时间使用过程中容易受到磨损和热变形的影响。
因此,在设计时应考虑到分型板的润滑和冷却措施,以延长模具的使用寿命。
抽芯机构的设计原理抽芯机构是用于取出模具中的中空或凸起的零件。
抽芯机构的设计原理如下:1.抽芯导向设计:抽芯导向是指在模具中设置抽芯导向销和抽芯导向孔,以确保抽芯过程的准确性和稳定性。
抽芯导向的设计应考虑到抽芯导向销和抽芯导向孔的配对设计,以保证抽芯过程的顺利进行。
2.弹簧压力的控制:在抽芯过程中,弹簧的压力大小直接影响到抽芯的力度。
斜导柱侧向分型与抽芯机构设计引言一、斜导柱侧向分型的意义和要求1.斜导柱的位置应该具有合理的设计和布置,使得嵌套件与注塑件能够在开模时顺利分离,避免卡死和损坏。
2.斜导柱的数量应该根据模具的具体情况来确定,一般而言,两对斜导柱就能够满足大部分模具的要求。
3.斜导柱的倾斜角度应该根据模具的开模力大小和嵌套件的形状来确定,一般而言,角度为3-10度。
二、抽芯机构的设计原则抽芯机构是指在注塑模具中用于取出内部被模腔包围的注塑件或者核心的一种机构。
抽芯机构的设计需要遵循以下几个原则:1.抽芯机构的动作应该稳定可靠,不应该出现抖动和滑动的现象,否则会影响成型件的质量。
2.抽芯机构的设计应该尽可能地简单、易操作,以减少故障发生的可能性,同时,也能够提高生产效率。
3.抽芯机构的结构应该紧凑,不占用过多的模腔空间,以便于成型件的顺利流动。
4.抽芯机构的材料选择要正确,应该具有足够的强度和耐磨性,以保证其长时间的使用寿命。
三、斜导柱侧向分型与抽芯机构的结合设计1.斜导柱与抽芯机构的位置关系:斜导柱和抽芯机构的位置应该被合理地安排,以确保嵌套件与注塑件之间的顺利分离。
一般来说,斜导柱和抽芯机构应该尽量靠近模具的侧面。
2.斜导柱与抽芯机构的数量关系:斜导柱和抽芯机构的数量应该根据模具的具体情况来确定。
一般而言,斜导柱和抽芯机构的数量应该保持一致,一个斜导柱对应一个抽芯机构。
3.斜导柱与抽芯机构的夹角:斜导柱与抽芯机构的夹角应该根据模具的开模力大小和嵌套件的形状来确定。
一般而言,夹角为3-10度。
4.斜导柱与抽芯机构的动作配合:斜导柱和抽芯机构的动作应该配合紧密,以确保模具的开模效果。
抽芯机构应该能够顺利地取出内部被模腔包围的注塑件或者核心。
结论斜导柱侧向分型与抽芯机构设计是注塑模具设计中至关重要的组成部分。
合理的斜导柱侧向分型和抽芯机构设计可以提高模具的开模效果,避免卡死和损坏。
同时,斜导柱侧向分型与抽芯机构的结合设计也是模具设计的一项难点,需要充分考虑因素,确保各个部分的配合紧密,以确保模具的正常使用。
5.3.1 斜导柱安装在定模、侧滑块安装在动模斜导柱安装在定模、滑块安装在动模的结构,是斜导柱侧向分型抽芯机构的模具中应用最广泛的形式。
它既可用于结构比较简单的注射模,也可用于结构比较复杂的双分型面注射模。
模具设计人员在接到设计具有侧抽芯塑件的模具任务时,首先应考虑使用这种形式,图5-1所示属于单分型面模具的这类形式,而图5-15所示是属于双分型面模具的这类形式。
图5-15 斜导柱在定模、滑块在动模的双分型面注射模1-型芯 2-推管 3-动模镶件 4-动模板 5-斜导柱 6-侧型芯滑块7-楔紧块 8-中间板 9-定模座板 10-垫板 11-拉杆导柱 12-导套(注意件3件4滑块定位销推管侧型芯)在图5-15中,斜导柱5固定于中间板8上,为了防止在A—A分型面分型后,侧向抽芯时斜导柱往后移动,在其固定端后部设置一块垫板10加以固定。
开模时,动模部分向左移动,且A—A分型面首先分型;当A—A分型面之间距离可从中取出点浇口浇注系统的凝料时,拉杆导柱11的左端螺钉与导套12接触;继续开模,B—B分型面分型,斜导柱5驱动侧型芯滑块6在动模板4的导滑槽内作侧向抽芯;斜导柱脱离滑块后继续开模,最后推出机构开始工作,推管2将塑件从型芯1和动模镶件3中推出。
这种形式在设计时必须注意,侧型芯滑块与推杆在合模复位过程中不能发生“干涉”现象。
所谓干涉现象是指滑块的复位先于推杆的复位致使活动侧型芯与推杆相碰撞,造成活动侧型芯或推杆损坏的事故。
侧向型芯与推杆发生干涉的可能性出现在两者在垂直于开模方向平面上的投影发生重合的条件下,如图5-16所示。
在模具结构允许的情况下,应尽量避免在侧型芯的投影范围内设置推杆。
如果受到模具结构的限制而在侧型芯的投影下方一定要设置推杆,应首先考虑能否使推杆在推出一定距离后仍低于侧型芯的底面,当这一条件不能满足时,就必须分析产生干涉的临界条件和采取措施使推出机构先复位,然后才允许型芯滑块复位,这样才能避免干涉。
5.3.1 斜导柱安装在定模、侧滑块安装在动模斜导柱安装在定模、滑块安装在动模的结构,是斜导柱侧向分型抽芯机构的模具中应用最广泛的形式。
它既可用于结构比较简单的注射模,也可用于结构比较复杂的双分型面注射模。
模具设计人员在接到设计具有侧抽芯塑件的模具任务时,首先应考虑使用这种形式,图5-1所示属于单分型面模具的这类形式,而图5-15所示是属于双分型面模具的这类形式。
图5-15 斜导柱在定模、滑块在动模的双分型面注射模1-型芯 2-推管 3-动模镶件 4-动模板 5-斜导柱 6-侧型芯滑块7-楔紧块 8-中间板 9-定模座板 10-垫板 11-拉杆导柱 12-导套(注意件3件4滑块定位销推管侧型芯)在图5-15中,斜导柱5固定于中间板8上,为了防止在A—A分型面分型后,侧向抽芯时斜导柱往后移动,在其固定端后部设置一块垫板10加以固定。
开模时,动模部分向左移动,且A—A分型面首先分型;当A—A分型面之间距离可从中取出点浇口浇注系统的凝料时,拉杆导柱11的左端螺钉与导套12接触;继续开模,B—B分型面分型,斜导柱5驱动侧型芯滑块6在动模板4的导滑槽内作侧向抽芯;斜导柱脱离滑块后继续开模,最后推出机构开始工作,推管2将塑件从型芯1和动模镶件3中推出。
这种形式在设计时必须注意,侧型芯滑块与推杆在合模复位过程中不能发生“干涉”现象。
所谓干涉现象是指滑块的复位先于推杆的复位致使活动侧型芯与推杆相碰撞,造成活动侧型芯或推杆损坏的事故。
侧向型芯与推杆发生干涉的可能性出现在两者在垂直于开模方向平面上的投影发生重合的条件下,如图5-16所示。
在模具结构允许的情况下,应尽量避免在侧型芯的投影范围内设置推杆。
如果受到模具结构的限制而在侧型芯的投影下方一定要设置推杆,应首先考虑能否使推杆在推出一定距离后仍低于侧型芯的底面,当这一条件不能满足时,就必须分析产生干涉的临界条件和采取措施使推出机构先复位,然后才允许型芯滑块复位,这样才能避免干涉。
下面分别介绍避免侧型芯与推杆干涉的条件和推杆先复位机构。
a)b)图5-16 干涉现象1. 避免干涉现象的条件图5-17所示为开模侧抽芯后推杆推出塑件的情况。
图5-17b是合模复位时,复位杆使推杆复位、斜导柱使侧型芯复位而侧型芯与推杆不发生干涉的临界状态;图5-17c是合模复位完毕的状态。
从图5-17中可知,在不发生干涉的临界状态下,侧型芯已复位s′,还需复位的长度为s- s′= s c,而推杆需复位的长度为h c。
,如果完全复位,应该为h c = s c cotα即h c tanα=S c (5-14)在完全不发生干涉的情况下,需要在临界状态时侧型芯与推杆还有一段微小的距离∆,因此不发生干涉的条件为h c= s c cot α+∆或者h c tanα>s(5-15)式中h c—在完全合模状态下推杆端面到侧型芯的最近距离;s c—在垂直于开模方向的平面上,侧型芯与推杆投影重合的长度;∆—在完全不干涉的情况下,推杆复位到hc位置时,侧型芯沿复位方向距离推杆侧面的最小距离,一般取△=0.5 mm。
在一般情况下,只要使h c tanα - s c>0.5 mm即可避免干涉。
如果实际的情况无法满足这个条件,则必须设计推杆先复位机构。
a)开模推出状态b)合模过程中不发生干涉的临界状态c)合模复位完毕状态图5-17 不发生干涉的条件1-复位杆 2-动模板 3-推杆 4-侧型芯滑块 5-斜导柱 6-定模板 7-楔紧块2. 推杆先复位机构推杆先复位机构应根据塑件和模具的具体情况进行设计,下面介绍几种典型的推杆先复位机构,但应注意,先复位机构一般都不容易保证推杆、推管等推出零件的精确复位,故在设计先复位机构的同时,通常还需要设置能保证复位精度的复位杆。
(1)弹簧式先复位机构弹簧先复位机构是利用弹簧的弹力使推出机构在合模之前进行复位,弹簧安装在推杆固定板和动模支承板之间,如图5-18所示。
图5-18a中弹簧安装在复位杆上;图5-18b中弹簧安装在另外设置的簧柱上;图5-18c弹簧安装在推杆上。
一般情况设置4根弹簧,并且尽量均匀分布在推杆固定板的四周,以便让推杆固定板受到均匀的弹力而使推杆顺利复位。
a)b)c)图5-18 弹簧式先复位机构1-推板 2-推板固定板 3-弹簧 4-推杆 5-复位杆 6-动模座板 7—簧柱开模推出塑件时,塑件包紧在凸模上一起随动模部分后退,当推板与注射机上的顶杆接触后,动模部分继续后退,推出机构相对静止而开始脱模,弹簧被进一步压缩。
一旦开始合模,注射机顶杆与模具推板脱离接触,在弹簧回复力的作用下推杆迅速复位,因此在斜导柱还未驱动侧型芯滑块复位时,推杆便复位结束,因而避免了与侧型芯的干涉。
弹簧先复位机构具有结构简单、安装方便等优点,但弹簧的力量较小,而且容易疲劳失效,可靠性差,一般只适于复位力不大的场合,并需要定期更换弹簧。
(2)楔杆三角滑块式先复位机构楔杆三角滑块式先复位机构如图5-19所示。
合模时,固定在定模板上的楔杆1与三角滑块4的接触先于斜导柱2与侧型芯滑块3的接触,在楔杆作用下,三角滑块在推管固定板6的导滑槽内向下移动的同时迫使推管固定板向左移动,使推管先于侧型芯滑块复位,从而避免两者发生干涉。
a)合模状态b)楔杆接触三角滑块时的初始状态图5-19 楔杆三角滑块式先复位机构1-楔杆 2-斜导柱 3-侧型芯滑块 4-三角滑块 5-推管 6-推管固定板(注意件4侧型芯图a的定位销)(3)楔杆摆杆式先复位机构楔杆摆杆式先复位机构如图5-20所示,它与楔杆三角滑块式先复位机构相似,所不同的是摆杆代替了三角滑块。
合模时,固定在定模板的楔杆1推动摆杆4上的滚轮,迫使摆杆绕着固定于动模支承板上的转轴做逆时针方向旋转,同时它又推动推杆固定板5向左移动,使推杆2先于侧型芯滑块复位,避免侧型芯与推杆发生干涉。
为了防止滚轮与推板6的磨损,在推板6上常常镶有淬过火的垫板。
a)合模状态b)开模状态图5-20 楔杆摆杆式先复位机构1-楔杆 2-推杆 3-支承板 4-摆杆 5-推管固定板 6-推板图5-21所示为楔杆双摆杆式先复位机构,其工作原理与楔杆摆杆式先复位机构相似,这里不再详述。
图5-21 楔杆双摆杆式先复位机构1-楔杆 2-推杆 3、5-摆杆 4-支承板 6-推杆固定板 7-推板(4)楔杆滑块摆杆式先复位机构楔杆滑块摆杆式先复位机构如图5-22所示。
合模时,固定在定模板上的楔杆4的斜面推动安装在支承板3内的滑块5向下滑动,滑块的下移使滑销6左移,推动摆杆2绕其固定于支承板上的转轴作顺时针方向旋转,从而带动推杆固定板1左移,完成推杆7的先复位动作。
开模时,楔杆脱离滑块,滑块在弹簧8作用下上升,同时,摆杆在本身的重力作用下回摆,推动滑销右移,从而挡住滑块继续上升。
a)合模状态b)合模过程中楔杆接触滑块的初始状态图5-22 楔杆滑块摆杆式先复位机构1-推管固定板 2-推杆 3-支承板 4-楔杆 5-滑块 6-滑销 7-推杆 8-弹簧(5)连杆式先复位机构连杆式先复位机构如图5-23所示,图中连杆4以固定在动模板10上的圆柱销5为支点,一端用转销6安装在侧型芯滑块7上,另一端与推杆固定板2接触。
合模时,斜导柱8一旦开始驱动侧型芯滑块7复位,则连杆4必须发生绕圆柱销5做顺时针方向的旋转,迫使推杆固定板2带动推杆3迅速复位,从而避免侧型芯与推杆发生干涉。
a)合模状态b)斜导柱接触滑块的初始状态图5-23 连杆式先复位机构1-推板 2-推杆固定板 3-推杆 4-连杆 5-圆柱销6-转销 7-侧型芯滑块 8-斜导柱 9-定模板 10-动模板(注意限位钉及型腔尺寸一致)斜导柱与滑块同时安装在定模的结构,完成侧抽芯动作的条件是两者之间必须产生相对运动。
要实现两者之间的相对运动,必须在定模部分增加一个分型面,因此需要用顺序分型机构。
图5-26所示为采用弹簧式顺序分型机构的形式,开模时,动模部分向下移动,在弹簧7的作用下,A—A分型面首先分型,主流道凝料从主流道衬套中脱出,分型的同时,在斜导柱2的作用下侧型芯滑块1开始侧向抽芯,侧向抽芯动作完成后,定距螺钉6的端部与定模板5接触,A—A面分型结束。
动模部分继续向下移动,B—B分型面开始分型,塑件包在凸模3上脱离定模板,最后在推杆8的作用下,推件板4将塑件从凸模上脱下。
在采用这种结构形式时,必须注意弹簧7应该有足够的弹力以满足分型侧抽芯时开模力的需要。
图5-26 斜导柱与滑块同在定模的结构之一1-侧型芯滑块 2-斜导柱 3-凸模 4-推件板5-定模板 6-定距螺钉 7-弹簧 8-推杆(注意件5剖面线)图5-27所示为采用摆钩式顺序分型机构的形式,合模时,在弹簧7的作用下用转轴6固定于定模板10上的摆钩8钩住固定在动模板11上的挡块12。
开模时,由于摆钩8勾住挡块,模具首先从A—A分型面分型,同时在斜导柱2的作用下,侧型芯滑块1开始侧向抽芯,侧向抽芯结束后,固定在定模座板上的压块9的斜面压迫摆钩8按逆时针方向摆动而脱离挡块12,定模板10在定距螺钉5的限制下停止运动。
动模部分继续向下移动,B—B分型面分型,塑件随凸模3保持在动模一侧,然后推件板4在推杆13作用下使塑件脱模。
设计上述结构时必须注意,挡块12与摆钩8钩接处应有1°~ 3°的斜度,在设计该机构时,一般应将摆钩和挡块成对并对称布置于模具两侧。
斜导柱与滑块同时安装在定模的结构中,斜导柱的长度可适当加长,以便定模部分分型后斜导柱工作端仍留在侧型芯滑块的斜导孔内,因此不需设置滑块的定位装置。
以上介绍的两种顺序分型机构,除了应用于斜导柱与滑块同时安装在定模形式的模具外,只要A—A分型距离足以满足点浇口浇注系统凝料的取出,就可用于点浇口浇注系统的三板式模具。
图5-27 斜导柱与滑块同在定模的结构之二1-侧型芯滑块 2-斜导柱 3-凸模 4-推件板 5-定距螺钉 6-转轴7-弹簧 8-摆钩 9-压块 10-定模板 11-动模板 12-定模板 13-推杆(注意件5处导柱导套多线,导套换向)。