50m沿海工程驳破舱稳性计算书
- 格式:docx
- 大小:813.99 KB
- 文档页数:49
船舶运动稳定性的计算与分析随着航运业的不断发展,船舶在海洋中的运行也越来越多。
但是,船舶在海上航行时,由于海浪的影响,总会产生各种各样的不稳定因素,给船舶运行带来困难和风险。
因此,确保船舶的运动稳定性显得尤为重要。
船舶的运动稳定性就是指在海上航行时,船体保持平衡,避免翻船或侧翻的概率。
要保证船舶的运动稳定性,首先需要进行计算和分析,以确保航行时侧倾角度控制在可接受的范围内。
一、船舶运动稳定性的计算与分析方法1. 船舶稳性计算方法船舶稳性计算是指通过测量、计算和分析船舶稳态和动态数据,得出船舶受到波浪力和风力时的稳态和动态特性。
主要包括稳态、动态稳定性、自由恢复性等。
船舶稳性计算主要通过计算公式和图表进行。
2. 有限元方法有限元方法是一种数学计算方法,它以船舶的结构模型作为基础,对船舶运动的三维模型进行求解,从而得到船舶的运动稳定性。
有限元方法可以考虑到船体柔性变形、复杂海浪和气象特性等,因此可以更加精确地计算船舶的运动稳定性。
3. 模拟计算方法模拟计算方法是指建立船舶运动稳定性的数学模型,通过数字仿真计算,得到船舶在风力和波浪下的受力和运动情况。
模拟计算方法包括动态稳定性分析、湍流流场计算等。
二、船舶运动稳定性的影响因素船舶的运动稳定性不仅受到自身结构的影响,还受到外部因素的影响。
1. 船舶结构因素船体的尺寸、形状、重心位置、装载状态、船尾设计等均会影响船舶的运动稳定性。
在进行船舶结构设计时,需要考虑以上因素对稳定性的影响。
2. 外部气象海况因素外部气象海况因素包括风速、浪高、浪向等。
当气象海况恶劣时,对船舶的稳定性造成的影响较大,因此需要及时掌握并采取相应的预警措施。
3. 航线选择航线上存在的航行条件也会对船舶运动稳定性造成一定的影响,如港口、卡口、水深等,需要在航行前进行详细的规划和考虑。
三、船舶运动稳定性的应对措施1. 船舶结构设计在船舶结构设计时,应根据航行的环境条件,合理选择船舶的尺寸、重心位置等参数,以优化船舶的稳定性。
船舶初稳性高度计算一、计算初始稳性力矩:1. 确定负载线(Load Line):根据船舶的装载性质和状况,确定船舶的负载线位于船舶的多少米以下。
负载线可以通过船舶登记证书或者船舶建造图纸来确定。
2.确定艏舱口的高度:通过测量或者船舶建造图纸,确定船头部分(艏舱口)的高度。
3.确定船舶负载条件:根据船舶装载情况,确定船舶的轻载条件和满载条件。
轻载条件下,将轻载的货物和物资负载在船舶上,满载条件下,将满载的货物和物资负载在船舶上。
4.确定船舶的垂心高度:根据船舶建造图纸或者测量,确定船舶的垂心高度。
5.确定船舶的初始稳性力矩:根据公式M=V*GZ,计算船舶的初始稳性力矩。
其中,V表示船舶的排水量,可以根据船舶建造图纸或者测量得到;GZ表示初始稳性力矩曲线的纵坐标值,可以通过船舶建造图纸或者船舶稳性书来查找得到,或者通过模型试验来测量得到。
二、计算初始上曲力:1.确定初始上曲力的初始高度:根据船舶的装载情况,确定初始上曲力的高度。
初始上曲力通常是在船舶最高处,例如烟囱顶部或者天线桅杆顶部。
2.确定初始上曲力力臂:根据船舶建造图纸或者测量,确定初始上曲力力臂的长度。
3.确定初始上曲力大小:根据公式F=M/R,计算初始上曲力的大小。
其中,M表示初始稳性力矩,可以通过上一步计算得到;R表示初始上曲力力臂的长度。
三、计算船舶的初稳性高度:船舶的初稳性高度可以通过下面的公式计算得到:H=V*(GZ-F)/F其中,H表示船舶的初稳性高度;V表示船舶的排水量;GZ表示初始稳性力矩曲线的纵坐标值;F表示初始上曲力的大小。
通过以上的计算步骤,就可以确定船舶的初稳性高度。
初稳性高度的计算对于船舶的安全和稳定至关重要。
船舶的初稳性高度一般应该保持在一定的范围内,以确保船舶在不同的负载条件下都能够保持稳定。
船舶运营者可以根据实际情况和船舶建造图纸来计算船舶的初稳性高度,并根据计算结果来调整船舶的装载情况,以确保船舶的安全和稳定。
海岸工程5防护墙稳定计算海岸工程中的防护墙是一种用于保护海岸线免受侵蚀和波浪冲击的结构物。
在设计海岸工程中的防护墙时,稳定性是一个非常关键的考虑因素。
本文将探讨海岸工程防护墙的稳定计算方法。
首先,我们需要了解防护墙所面临的主要稳定性问题。
在海岸工程中,防护墙主要面临两个稳定性问题:倾覆和滑动。
倾覆是指防护墙沿其高度方向发生倒塌的情况,而滑动是指防护墙在地基上发生横向位移的情况。
为了保证防护墙的稳定性,我们需要对这两个问题进行计算和分析。
在进行稳定性计算之前,我们需要收集一些设计参数和基础数据。
设计参数包括防护墙的高度、宽度和底宽尺寸等。
基础数据则包括土壤的密度、内摩擦角和剪切强度等。
对于倾覆稳定性计算,我们使用了一个简化的方法,即根据防护墙的自重和倾覆力矩之间的平衡关系来判断是否会发生倾覆。
倾覆力矩可以通过乘以防护墙的重心高度来计算,而防护墙的重心高度则可以根据防护墙的几何形状和材料密度推算出来。
如果倾覆力矩小于自重力矩,则防护墙是稳定的。
对于滑动稳定性计算,我们需要考虑防护墙所承受的水平力,如波浪压力、液体压力和土壤侧压力等。
这些力可以通过计算防护墙表面的压力分布来获得。
然后,我们可以使用经典的土力学理论,如库仑和简化的莫尔-库仑理论,来计算滑动力和滑动阻力之间的平衡关系。
如果滑动力小于滑动阻力,则防护墙是稳定的。
在稳定性计算中,我们还需要考虑一些其他因素,如水平地震力、地基条件和土壤的液化等。
这些因素会对防护墙的稳定性产生影响,因此需要进行相应的计算和分析。
总之,海岸工程中的防护墙稳定计算是一个复杂而重要的问题。
通过合理收集和分析设计参数和基础数据,并结合土力学理论和其他相关因素的考虑,我们可以对防护墙的稳定性进行合理的计算和评估,从而保证海岸工程的安全和可靠性。
基于FORAN的船舶概率破舱稳性计算分析船舶概率破舱稳性计算分析是船舶设计和运营中至关重要的一环。
FORAN是一种用于船舶设计和建造的软件工具,它提供了各种功能模块,包括针对船舶稳性计算的分析工具。
在船舶设计过程中,破舱稳性计算是一项必不可少的任务,其目的是评估船舶在破损情况下的稳性性能,以确保船舶在遭遇损坏情况时能够保持稳定性,从而保障人员和财产的安全。
FORAN软件提供了一套完整的工具和算法,用于进行船舶破舱稳性计算分析。
在进行破舱稳性计算时,首先需要构建船舶的几何模型,在FORAN中可以轻松地完成这一步骤。
接下来,需要定义破损的位置和类型,例如船舶的侧面或底部受损等,然后进行稳性计算并评估船舶在破损情况下的稳定性性能。
在FORAN中,可以根据不同的破损情况进行多种稳性计算,如大偏船稳性计算、均衡稳性计算等。
通过这些计算,可以得出船舶在破损情况下的倾覆稳性、稳定裕度等重要参数,以评估其在灾难情况下的表现。
此外,FORAN还提供了可视化的结果展示功能,可以直观地展示船舶在不同破损情况下的稳性性能,帮助设计者和决策者做出合理的判断。
值得注意的是,在进行船舶破舱稳性计算时,需要考虑多种因素,如船舶的结构强度、重心位置、载重状态等。
FORAN提供了丰富的参数和选项,可以方便地进行这些考虑,确保稳性计算的准确性和可靠性。
总的来说,FORAN是一种强大的船舶设计和建造软件,它提供了先进的工具和算法,用于进行船舶破舱稳性计算分析。
通过FORAN,设计者和运营者可以更好地了解船舶在灾害情况下的表现,及时采取措施确保船舶的安全性,保护人员和财产的安全。
FORAN的使用不仅可以提高船舶设计和运营的效率,还可以增加船舶的安全性和可靠性,是船舶行业不可或缺的工具。
图样和技术文件履历 PLAN HISTORY日期 DATE 版本 REV. 标记 MARK 数量Q’TY修改通知单号REVISE NO. 说 明 DESCRIPTION 设绘 DESIGNED 校对 CHECKED 审定 APPROVED 2005-12-23A 完工文件 黄小勇 李从波杨葆和OT1100-1 FINAL DESIGN图号 DWG.NO DL594-050-006JS标记 数量 修改单号 签字 日期 110,000吨级载重量原油船 110,000DWT Crude Oil Tanker 代码 CODE版本REV .A 重量kg MASS 比例 SCALE 设绘DESIGNED校对CHECKED共 63 页 TOTAL SHEETS 第 1 页 SHEET 审核REVIEWED完工破舱稳性计算 FINAL DAMAGE STABILITY CALCULATION 标检STANDARDIZED审定APPROVED 天鹅洲 TIAN E ZHOU 大连造船重工有限责任公司 船 舶 设 计 研 究 所 DALIAN SHIPYARD CO . , LTDSHIP DESIGN & RESEARCH INSTITUTECONTENTS1.PRINCIPAL PARTICULAR (3)1.1.G ENERAL (3)1.2.P RINCIPAL D IMENSIONS (3)2.EXPLANATION TO THE CALCULATION (3)2.1.ICLL1966/1988 (3)2.2.MARPOL 73/78 (6)3.DAMAGE CASE (8)4.RESTRICT (12)4.1.D OWN-F LOODING P OINTS (12)4.2.W EATHER-T IGHT P OINTS (12)5.RESULTS OF THE DAMAGE STABILITY CALCULATION (13)1. Principal Particular1.1. GeneralHull No.: OT1100-1CCS Con. No.: SP046069Owner: Nanjing Changjiang Oil Transportation Co.Builder: Dalian Shipyard Co., Ltd.Designer: MARIC82Navigation Area: Unrestricted Ocean-goingClass: CSA, Oil Tanker, Double Hull, F.P.≤60°C, CCSS, ESP,Ice Class B, In Water Survey, Single Point Mooring,Emergency Towing Arrangements, Loading ComputerS.I.D.CSM, AUT-0, SCM, IGS, CMSDimensions1.2. PrincipalLength over all: about 244.500 mLength, registered: 234.980 mLength between perpendiculars: 233.000 mBreadth (Moulded): 42.000 mDepth (Moulded): 21.900 mCamber: 0.780 mDesign Draught (Moulded): 12.000 mScantling (Maximum Summer) Draught (Moulded): 15.500 mSummer Freeboard (from Top of Freeboard Deck): 6.416 mDisplacement (Design/Scantling Draught): 97771/130201 tLightship Weight (assumed): 19930.4 tDeadweight (Design/Scantling Draught): about 77840.6 t/110270.6 tBlock coefficient (Design/Scantling Draught): 0.8123/0.8374Total Overall Area of Bilge Keels : 53.2m2 (Fr.118~ Fr.163)(Fr.168~Fr.208)Capacity:Cargo Oil Tanks (100%Full, including SLOP T.): 126656.7 m3Heavy Fuel Oil Tanks (100%Full, including H.F.O.Overflow T.) 3420.4 m3Diesel Oil Tanks (100%Full) 230.8 m3Lubrication Oil Tanks (100%Full) 169.9 m3Ballast Water Tanks (100%Full) 39042.1 m3Fresh Water Tanks (100%Full) 519.6 m32. Explanation to the CalculationThe proof of the damage stability is effected according to the criteria of ICLL66/1988protocol and “MARPOL 73/78” Consolidated Edition 20022.1. ICLL1966/19882.1.1 Type of ship and intended useThis ship’s purpose of freeboard computation is type A (See FREEBOARD CALCULATION, Drawing No. DL594-101-005JS), she is designed to carry liquid cargoes in bulk; she has a high integrity of exposed deck with only small access openings to cargo compartments, closed by watertight gasketed covers of steel or equivalent material; and has low permeability of load cargo compartments.The type A ship when loaded in accordance with the requirements of paragraph 2.1.2 shall be able to withstand the flooding of any compartment or compartments, with an assumed permeability of 0.95, consequent upon the damage assumptions specified in paragraph 2.1.2, and shall remain afloat in a satisfactory condition of equilibrium as specified in paragraph 2.1.3. In such a ship the machinery space shall be treated as a floodable compartment, but with a permeability 0.85.2.1.2 Initial Conditions of LoadingThe initial condition of loading before flooding shall be determined as follows:a) The ship is loaded to its summer load waterline on an imaginary even keel.b) When calculating the vertical center of gravity, the following principles apply:(i) Homogeneous cargo is carried.(ii) All cargo compartments, except those referred to under (iii) of this sub-paragraph, but including compartments intended to be partially filled, shall be consideredfully loaded except that in the case of fluid cargoes each compartment shall betreated as 98 percent full.(iii) If the ship is intended to operate at its summer load waterline with empty compartments, such compartments shall be considered empty provided the heightof the center of gravity so calculated is not less than as calculated under (ii) of thissub-paragraph.(iv) Fifty percent of the individual total capacity of all tanks and spaces fitted to contain consumable liquids and stores is allowed for. It shall be assumed that foreach type of liquid, at least on transverse pair or a single center line tank hasmaximum free surfaces is the greatest; in each tank the center of gravity of thecontents shall be taken at the center of volume of the tank. The remaining tanksshall be assumed either completely empty or completely filled, and thedistribution of consumable liquids between these tanks shall be effected so as toobtain the greatest possible height above the keel for the center of gravity.(v) At an angle of heel of not more than 5 degree in each compartment containing liquids, as prescribed in (ii) of this sub-paragraph except that in the case ofcompartments containing consumable fluids, as prescribed in (iv) of thissub-paragraph of this paragraph, the maximum free surface effect shall be takeninto account. Alternatively, the actual free surface effects may be used, providedthe methods of calculation are acceptable to the Administration.(vi) Weight shall be calculated on the basis of the following values for specific gravities:Salt Water 1.025Fresh Water 1.000Oil Fuel 0.950Diesel Oil 0.900Lubricating Oil 0.900Calculation of this initial loading condition “Load Line”INIT LOADLINET, 15.5TRIM, 0KG, 12.58GMR 1.25 (GM-reduction)OK2.1.3 Damage AssumptionsThe following principles regarding the character of the assumed damage apply:a) The vertical extent of damage in all case is assumed to be from base line upwardswithout limit.b) The transverse extent of damage is equal to B/5=8.4m (or 11.5m, whichever is thelesser), measured inboard from the side of the ship perpendicularly to the centerline at the level of the summer load waterline.c) If damage of a lesser extent than specified in sub-paragraphs a) and b) of thisparagraph results in a more severe condition, such lesser extent shall be assumed.d) The flooding shall be confined to a single compartment between adjacent transversebulkheads provided the inner longitudinal boundary of the compartment is not in aposition within the transverse extent of assumed damage. Transverse boundarybulkheads of wing tanks, which do not extend over the full breadth of the ship shallbe assumed not to be damaged, provided they extend beyond the transverse extentof assumed damage prescribed in sub-paragraph b) of this paragraph. If in atransverse bulkhead there are steps or recesses of not more than 3.00 meters inlength located within the transverse extent of assumed damage as defined insub-paragraph b) of this paragraph, such transverse bulkhead may be consideredintact and the adjacent compartment may be floodable singly. If, however, withinthe transverse extent of assumed damage there is a step or recess of more than 3.00meters in length in a transverse bulkhead, the two compartments adjacent to thisbulkhead shall be considered as flooded. The step formed by the after peakbulkhead and the after peak tank top shall not be regarded as a step for the purposeof this Regulation.e) Where the flooding of any two adjacent fore and aft compartments is envisagedmain transverse watertight bulkheads shall be spaced at least 1/3L2/3=12.69m (or14.5m, whichever is the lesser), in order to be considered effective. Wheretransverse bulkhead are spaced at a lesser distance. One or more of these bulkheadsshall be assumed as non-existent in order to achieve the minimum spacing betweenbulkheads.2.1.4 Condition of Equilibriuma) The final waterline after flooding, taking into account sinkage, heel, and trim, isbelow the lower edge of any opening through which progressive flooding may takeplace. Such openings shall in include air pipes, ventilators and openings which areclosed by means of weathertight doors or hatch covers, and may exclude thoseopenings closed by means of manhole covers and flush scuttles, cargo hatch covers,remotely operated sliding watertight doors, and side scuttles of the non-openingtype.(PROGR.LL)b) If pipes, ducts or tunnels are situated within the assumed extent of damagepenetration as defined in paragraph 2.1.3 b), arrangements are to be made so thatprogressive flooding cannot thereby extend to compartments other than thoseassumed to be floodable in the calculation for each case of damage.c) The angle of heel due to unsymmetrical flooding does not exceed 15 degrees. If nopart of the deck is immersed, an angle of heel of up to 17 degrees may beaccepted.(MAXHEEL.LL)d) The metacentric height in the flooded condition is positive.(MINGM.LL)e) When any part of the deck outside the compartment assumed flooded in particularcase of damage is immersed, or in any case where the margin of stability in theflooded condition may be considered doubtful, the residual stability is to beinvestigated. It may be regarded as sufficient if the righting lever curve hasminimum range of 20 degrees beyond the position of equilibrium(RANGE.LL)with a maximum righting lever of at least 0.1 meter within thisrange(MAXGZ.LL). The area under the righting lever curve within this range shallbe not less than 0.0175 meter-radians(MINAREA.LL). The administration shallThe following provisions regarding the extent and the character of the assumeddamage shall apply:a) Side Damage(i) Longitudinal extent 1/3L2/3=12.96m (or 14.5 m, whichever is less)(ii) Transverse extent B/5=8.4m (or 11.5 m, whichever is less) (inboard from the ship’s side at right angles to the center-line at the level of the summer load line)(iii) Vertical extent from the moulded line of the bottom shell plating atcenter-line, upwards without limitb) Bottom DamageFor 0.3L (#203+484) from the F.P. Any other part of the ship(i) Longitudinal extent 1/3L2/3=12.96 meters 5 meters(or 14.5m, whichever is less) (or 1/3L2/3, whichever is less) (ii) Transverse extent B/6= 7 meters 5 meters(or 10m, whichever is less) (or B/6, whichever is less) (iii) Vertical extent B/15=2.8 meters(or 6m, whichever is less measured from the moulded line of thebottom shell plating at centerline)c) Bottom Raking Damage(i) Longitudinal extent 0.6L=140.988m measured from F.P. (from #117+510)(ii) Transverse extent B/3=16 meters anywhere in the bottom(iii) Vertical extent breach of the outer hulld) If any damage of a lesser extent than the maximum extent of damage specified in a)and b) of this paragraph would result in a more severe condition, such damage shallbe considered.e) Where the damage involving transverse bulkheads is envisaged as specified insubparagraph 2.2.1, transverse watertight bulkheads shall be spaced at least at adistance equal to the longitudinal extent of assumed damage specified in a) of thisparagraph in order to be considered effective. Where transverse bulkheads are spacedat a lesser distance, one or more of these bulkheads within such extent of damageshall be assumed as non-existent for the purpose of determining floodedcompartments.f) If pipes, ducts or tunnels are situated within the assumed extent of damage,arrangements shall be made so that progressive flooding cannot thereby extend tocompartments other than those assumed to be floodable for each of dagame.2.2.4 Damage Stability CriteriaThis ship shall be regarded as complying with the damage stability criteria if thefollowing requirements are met:a) The final waterline, taking into account sinkage, heel and trim, shall be below thelower edge of any opening through which progressive flooding may take place. Suchopenings shall include air-pipes and those which are closed by means of watertightdoors or hatch covers and may exclude those openings closed by means of watertightmanhole covers and flush scuttles, small watertight cargo tank hatch covers whichmaintain the high integrity of the deck, remotely operated watertight sliding doors,and sidescuttles of the non-opening type.(PROGR.M)b) In the final stage of flooding, the angle of heel due to unsymmetrical flooding shallnot exceed 25 degrees, provided that this angle may be increased up to 30 degrees ifno deck edge immersion occurs.(MAXHEEL.M)c) The stability in the final stage of flooding shall be investigated and may be regardedas sufficient I the righting lever curve has at least a range of 20 degrees beyond theposition of equilibrium(RANGE.M) in association with a maximum residual rightinglever of at least 0.1m within the 20 degrees range(MAXGZ.M); the area under thecurve within this range shall not be less than 0.0175 meter radians(MINAREA.M).5. RESULT OF DAMAGE STABILITY CALCULATIONABBREVIATIONS USED IN THE OUTPUT LISTSCASE initial cond/damage case T draught, moulded m TR trim m HEEL heeling angle degree RANGE range of righting lever degree MAXGZ maximum of GZ-curve m MAXKG maximum KG m FAUN fl. angle of unprotected openings degree FAWE fl. angle of weathertight openings degree CASE initial cond/damage case RCR relevant criteria SIDE side of ship SB/PS REQ required value ATTV attained value UNIT unit STAT status of stability crit.5.1 DAMAGE STABILITY FOR ICLL TYPERESULTS---------------------------------------------------------------------- CASE T TR HEEL RANGE MAXGZ MAXKG FAUN FAWE m m degree degree m m degree degree ---------------------------------------------------------------------- IL/LL01 15.628 0.865 0.0 79.9 2.43 17.772 40.1 20.3 IL/LL02 17.128 8.793 0.0 75.1 1.70 16.806 - 8.3 IL/LL03 16.546 3.874 8.3 68.5 1.33 14.061 31.3 14.7 IL/LL04 16.458 3.360 8.4 69.9 1.42 14.494 32.5 15.9 IL/LL05 16.424 1.307 8.2 69.8 1.43 15.124 35.6 16.6 IL/LL06 16.436 -0.495 8.3 68.9 1.38 15.039 38.3 16.9 IL/LL07 16.463 -2.354 8.5 67.6 1.29 14.876 41.1 15.1 IL/LL08 16.506 -4.421 8.9 65.8 1.17 14.307 44.2 13.1 IL/LL09 16.453 -5.648 7.3 67.6 1.30 14.760 46.7 12.2 IL/LL10 15.883 -2.360 0.0 79.2 2.30 17.823 44.6 17.5 ----------------------------------------------------------------------STABILITY CRITERIA---------------------------------------------------------------------- CASE RCR SIDE REQ ATTV UNIT STAT ---------------------------------------------------------------------- IL/LL01 PROGR.LL SB 0.0000 6.5998 m OK IL/LL01 MAXHEEL.LL SB 17.0000 0.0000 deg OK IL/LL01 MINGM.LL SB 0.0000 5.2083 m OK IL/LL01 MAXGZ.LL SB 0.1000 1.9180 m OK IL/LL01 MINAREA.LL SB 0.0175 0.3306 mrad OK IL/LL01 RANGE.LL SB 20.0000 40.1243 deg OK IL/LL02 PROGR.LL SB 0.0000 1.4605 m OK IL/LL02 MAXHEEL.LL SB 17.0000 0.0290 deg OK IL/LL02 MINGM.LL SB 0.0000 4.7575 m OK IL/LL02 MAXGZ.LL SB 0.1000 1.4645 m OK IL/LL02 MINAREA.LL SB 0.0175 0.2776 mrad OK IL/LL02 RANGE.LL SB 20.0000 75.0842 deg OK IL/LL03 PROGR.LL SB 0.0000 2.3562 m OK IL/LL03 MAXHEEL.LL SB 17.0000 8.3447 deg OK IL/LL03 MINGM.LL SB 0.0000 5.6932 m OK IL/LL03 MAXGZ.LL SB 0.1000 1.2612 m OK IL/LL03 MINAREA.LL SB 0.0175 0.2758 mrad OK IL/LL03 RANGE.LL SB 20.0000 22.9367 deg OK IL/LL04 PROGR.LL SB 0.0000 2.7109 m OK IL/LL04 MAXHEEL.LL SB 17.0000 8.4008 deg OK IL/LL04 MINGM.LL SB 0.0000 5.7522 m OK IL/LL04 MAXGZ.LL SB 0.1000 1.3361 m OK IL/LL04 MINAREA.LL SB 0.0175 0.2897 mrad OK IL/LL04 RANGE.LL SB 20.0000 24.1371 deg OK IL/LL05 PROGR.LL SB 0.0000 2.9611 m OK IL/LL05 MAXHEEL.LL SB 17.0000 8.1788 deg OK IL/LL05 MINGM.LL SB 0.0000 5.7075 m OK IL/LL05 MAXGZ.LL SB 0.1000 1.3602 m OK IL/LL05 MINAREA.LL SB 0.0175 0.2985 mrad OK IL/LL05 RANGE.LL SB 20.0000 27.3969 deg OK IL/LL06 PROGR.LL SB 0.0000 3.1765 m OK IL/LL06 MAXHEEL.LL SB 17.0000 8.2596 deg OK IL/LL06 MINGM.LL SB 0.0000 5.6442 m OK---------------------------------------------------------------------- CASE RCR SIDE REQ ATTV UNIT STAT ---------------------------------------------------------------------- IL/LL07 PROGR.LL SB 0.0000 2.4445 m OK IL/LL07 MAXHEEL.LL SB 17.0000 8.5016 deg OK IL/LL07 MINGM.LL SB 0.0000 5.5918 m OK IL/LL07 MAXGZ.LL SB 0.1000 1.2463 m OK IL/LL07 MINAREA.LL SB 0.0175 0.2799 mrad OK IL/LL07 RANGE.LL SB 20.0000 32.6124 deg OK IL/LL08 PROGR.LL SB 0.0000 1.5488 m OK IL/LL08 MAXHEEL.LL SB 17.0000 8.9487 deg OK IL/LL08 MINGM.LL SB 0.0000 5.5140 m OK IL/LL08 MAXGZ.LL SB 0.1000 1.1355 m OK IL/LL08 MINAREA.LL SB 0.0175 0.2569 mrad OK IL/LL08 RANGE.LL SB 20.0000 35.2638 deg OK IL/LL09 PROGR.LL SB 0.0000 1.8294 m OK IL/LL09 MAXHEEL.LL SB 17.0000 7.2563 deg OK IL/LL09 MINGM.LL SB 0.0000 5.3629 m OK IL/LL09 MAXGZ.LL SB 0.1000 1.2409 m OK IL/LL09 MINAREA.LL SB 0.0175 0.2693 mrad OK IL/LL09 RANGE.LL SB 20.0000 39.4721 deg OK IL/LL10 PROGR.LL SB 0.0000 6.0562 m OK IL/LL10 MAXHEEL.LL SB 17.0000 0.0000 deg OK IL/LL10 MINGM.LL SB 0.0000 5.3163 m OK IL/LL10 MAXGZ.LL SB 0.1000 1.8956 m OK IL/LL10 MINAREA.LL SB 0.0175 0.3337 mrad OK IL/LL10 RANGE.LL SB 20.0000 44.6467 deg OK ----------------------------------------------------------------------5.2 DAMAGE STABILITY FOR MARPOLINITIAL CONDITION : I01RESULTS---------------------------------------------------------------------- CASE T TR HEEL RANGE MAXGZ MAXKG FAUN FAWE m m degree degree m m degree degree ---------------------------------------------------------------------- I01/SD01 16.726 7.407 0.1 75.4 1.72 16.495 - 10.8 I01/SD02 17.129 9.334 3.9 69.1 1.24 14.925 - 9.7 I01/SD03 15.569 0.712 2.4 76.5 1.95 16.291 37.9 19.6 I01/SD04 15.725 1.210 5.1 73.6 1.60 15.533 36.1 19.0 I01/SD05 15.606 0.490 3.8 74.6 1.66 15.736 38.5 19.3 I01/SD06 15.605 0.257 3.8 74.2 1.61 15.671 40.1 19.0 I01/SD07 15.607 0.025 3.8 73.6 1.54 15.558 41.9 18.1 I01/SD08 15.661 -0.484 3.9 72.7 1.48 15.441 43.8 17.8 I01/SD09 16.057 -2.964 2.8 72.5 1.63 15.941 45.9 15.2 I01/BB01 16.650 -4.496 15.0 64.4 0.86 13.483 41.9 18.2 I01/BB02 18.507 -6.851 0.3 79.7 1.49 16.426 42.1 14.4 I01/AD01 17.158 9.465 3.2 71.2 1.47 15.675 - 9.9 I01/AD02 15.783 1.536 4.7 74.8 2.05 16.273 38.9 19.4 I01/AD03 15.956 1.840 7.6 72.4 1.80 15.695 37.4 19.0 I01/AD04 15.894 0.611 6.7 73.0 1.86 15.837 39.5 19.2 I01/AD05 15.901 -0.243 6.8 72.7 1.83 15.790 40.6 18.9 I01/AD06 15.907 -1.103 6.9 72.4 1.80 15.740 41.8 18.0 I01/AD07 15.940 -2.068 6.7 71.9 1.74 15.679 43.2 17.9 I01/AD08 16.159 -3.585 3.6 72.7 1.76 16.066 45.4 15.3 ---------------------------------------------------------------------- STABILITY CRITERIA---------------------------------------------------------------------- CASE RCR SIDE REQ ATTV UNIT STAT ---------------------------------------------------------------------- I01/SD01 PROGR.M SB 0.0000 3.6047 m OK I01/SD01 MAXHEEL.M SB 30.0000 0.0622 deg OK I01/SD01 RANGE.M SB 20.0000 75.4464 deg OK I01/SD01 MAXGZ.M SB 0.1000 1.4167 m OK I01/SD01 MINAREA.M SB 0.0175 0.2531 mrad OK I01/SD02 PROGR.M SB 0.0000 2.2401 m OK I01/SD02 MAXHEEL.M SB 30.0000 3.9033 deg OK I01/SD02 RANGE.M SB 20.0000 69.0815 deg OK I01/SD02 MAXGZ.M SB 0.1000 1.1139 m OK I01/SD02 MINAREA.M SB 0.0175 0.2182 mrad OK I01/SD03 PROGR.M SB 0.0000 6.2186 m OK I01/SD03 MAXHEEL.M SB 30.0000 2.3821 deg OK I01/SD03 RANGE.M SB 20.0000 35.5630 deg OK I01/SD03 MAXGZ.M SB 0.1000 1.6231 m OK I01/SD03 MINAREA.M SB 0.0175 0.2844 mrad OK I01/SD04 PROGR.M SB 0.0000 5.1755 m OK I01/SD04 MAXHEEL.M SB 30.0000 5.1316 deg OK I01/SD04 RANGE.M SB 20.0000 30.9867 deg OK I01/SD04 MAXGZ.M SB 0.1000 1.4238 m OK I01/SD04 MINAREA.M SB 0.0175 0.2729 mrad OK---------------------------------------------------------------------- I01/SD05 MAXGZ.M SB 0.1000 1.4675 m OK I01/SD05 MINAREA.M SB 0.0175 0.2707 mrad OK I01/SD06 PROGR.M SB 0.0000 5.7500 m OK I01/SD06 MAXHEEL.M SB 30.0000 3.7807 deg OK I01/SD06 RANGE.M SB 20.0000 36.3582 deg OK I01/SD06 MAXGZ.M SB 0.1000 1.4409 m OK I01/SD06 MINAREA.M SB 0.0175 0.2666 mrad OK I01/SD07 PROGR.M SB 0.0000 5.8232 m OK I01/SD07 MAXHEEL.M SB 30.0000 3.7786 deg OK I01/SD07 RANGE.M SB 20.0000 38.1306 deg OK I01/SD07 MAXGZ.M SB 0.1000 1.3902 m OK I01/SD07 MINAREA.M SB 0.0175 0.2578 mrad OK I01/SD08 PROGR.M SB 0.0000 5.6213 m OK I01/SD08 MAXHEEL.M SB 30.0000 3.9415 deg OK I01/SD08 RANGE.M SB 20.0000 39.9153 deg OK I01/SD08 MAXGZ.M SB 0.1000 1.3400 m OK I01/SD08 MINAREA.M SB 0.0175 0.2522 mrad OK I01/SD09 PROGR.M SB 0.0000 4.7735 m OK I01/SD09 MAXHEEL.M SB 30.0000 2.7706 deg OK I01/SD09 RANGE.M SB 20.0000 43.1754 deg OK I01/SD09 MAXGZ.M SB 0.1000 1.4878 m OK I01/SD09 MINAREA.M SB 0.0175 0.2809 mrad OK I01/BB01 PROGR.M SB 0.0000 1.1593 m OK I01/BB01 MAXHEEL.M SB 30.0000 14.9772 deg OK I01/BB01 RANGE.M SB 20.0000 26.9608 deg OK I01/BB01 MAXGZ.M SB 0.1000 0.8032 m OK I01/BB01 MINAREA.M SB 0.0175 0.1846 mrad OK I01/BB02 PROGR.M SB 0.0000 1.1797 m OK I01/BB02 MAXHEEL.M SB 30.0000 0.3366 deg OK I01/BB02 RANGE.M SB 20.0000 41.7704 deg OK I01/BB02 MAXGZ.M SB 0.1000 1.3516 m OK I01/BB02 MINAREA.M SB 0.0175 0.2708 mrad OK I01/AD01 PROGR.M SB 0.0000 2.4491 m OK I01/AD01 MAXHEEL.M SB 30.0000 3.1838 deg OK I01/AD01 RANGE.M SB 20.0000 71.1723 deg OK I01/AD01 MAXGZ.M SB 0.1000 1.3319 m OK I01/AD01 MINAREA.M SB 0.0175 0.2651 mrad OK I01/AD02 PROGR.M SB 0.0000 5.0713 m OK I01/AD02 MAXHEEL.M SB 30.0000 4.7022 deg OK I01/AD02 RANGE.M SB 20.0000 34.1705 deg OK I01/AD02 MAXGZ.M SB 0.1000 1.7514 m OK I01/AD02 MINAREA.M SB 0.0175 0.3265 mrad OK I01/AD03 PROGR.M SB 0.0000 4.0023 m OK I01/AD03 MAXHEEL.M SB 30.0000 7.5870 deg OK I01/AD03 RANGE.M SB 20.0000 29.8682 deg OK I01/AD03 MAXGZ.M SB 0.1000 1.5989 m OK I01/AD03 MINAREA.M SB 0.0175 0.3230 mrad OK I01/AD04 PROGR.M SB 0.0000 4.2642 m OK I01/AD04 MAXHEEL.M SB 30.0000 6.7359 deg OK I01/AD04 RANGE.M SB 20.0000 32.7438 deg OK I01/AD04 MAXGZ.M SB 0.1000 1.6402 m OK I01/AD04 MINAREA.M SB 0.0175 0.3240 mrad OK I01/AD05 PROGR.M SB 0.0000 4.3450 m OK I01/AD05 MAXHEEL.M SB 30.0000 6.8126 deg OK I01/AD05 RANGE.M SB 20.0000 33.8385 deg OK---------------------------------------------------------------------- I01/AD06 MAXHEEL.M SB 30.0000 6.8793 deg OK I01/AD06 RANGE.M SB 20.0000 34.9723 deg OK I01/AD06 MAXGZ.M SB 0.1000 1.6020 m OK I01/AD06 MINAREA.M SB 0.0175 0.3187 mrad OK I01/AD07 PROGR.M SB 0.0000 4.0134 m OK I01/AD07 MAXHEEL.M SB 30.0000 6.6923 deg OK I01/AD07 RANGE.M SB 20.0000 36.4987 deg OK I01/AD07 MAXGZ.M SB 0.1000 1.5638 m OK I01/AD07 MINAREA.M SB 0.0175 0.3110 mrad OK I01/AD08 PROGR.M SB 0.0000 4.1796 m OK I01/AD08 MAXHEEL.M SB 30.0000 3.5919 deg OK I01/AD08 RANGE.M SB 20.0000 41.7904 deg OK I01/AD08 MAXGZ.M SB 0.1000 1.5932 m OK I01/AD08 MINAREA.M SB 0.0175 0.3031 mrad OK ----------------------------------------------------------------------INITIAL CONDITION : I02RESULTS---------------------------------------------------------------------- CASE T TR HEEL RANGE MAXGZ MAXKG FAUN FAWE m m degree degree m m degree degree ---------------------------------------------------------------------- I02/SD01 17.069 8.911 0.1 75.6 1.67 16.334 - 8.4 I02/SD02 17.349 10.232 3.0 71.1 1.28 14.849 - 8.6 I02/SD03 15.430 0.102 0.9 79.1 2.16 16.484 38.9 20.1 I02/SD04 15.585 0.607 3.5 76.5 1.82 15.681 37.1 19.4 I02/SD05 15.604 0.404 3.4 76.6 1.79 15.699 38.6 19.4 I02/SD06 15.604 0.186 3.4 76.6 1.74 15.630 40.2 18.9 I02/SD07 15.607 -0.035 3.4 76.6 1.67 15.511 42.0 18.0 I02/SD08 15.663 -0.539 3.6 75.9 1.60 15.397 44.0 17.7 I02/SD09 16.062 -3.053 2.5 75.4 1.75 15.902 46.1 15.1 I02/BB01 16.694 -4.518 14.2 65.8 1.00 13.460 42.0 18.3 I02/BB02 18.508 -6.933 0.2 79.8 1.61 16.424 42.2 14.1 I02/AD01 16.809 7.369 2.1 76.6 1.80 16.106 - 12.4 I02/AD02 15.697 1.073 3.6 76.4 2.25 16.375 39.8 20.0 I02/AD03 15.884 1.387 6.5 73.5 2.01 15.784 38.4 19.4 I02/AD04 15.907 0.532 6.3 73.7 1.99 15.784 39.6 19.3 I02/AD05 15.915 -0.317 6.4 73.6 1.96 15.735 40.8 18.8 I02/AD06 15.922 -1.174 6.4 73.6 1.92 15.684 42.0 18.0 I02/AD07 15.953 -2.136 6.3 73.7 1.87 15.620 43.3 17.8 I02/AD08 16.165 -3.671 3.3 75.5 1.88 16.025 45.5 15.2 ---------------------------------------------------------------------- STABILITY CRITERIA---------------------------------------------------------------------- CASE RCR SIDE REQ ATTV UNIT STAT ---------------------------------------------------------------------- I02/SD01 PROGR.M SB 0.0000 2.7764 m OK I02/SD01 MAXHEEL.M SB 30.0000 0.0632 deg OK I02/SD01 RANGE.M SB 20.0000 75.5976 deg OK I02/SD01 MAXGZ.M SB 0.1000 1.4088 m OK I02/SD01 MINAREA.M SB 0.0175 0.2592 mrad OK I02/SD02 PROGR.M SB 0.0000 2.1374 m OK I02/SD02 MAXHEEL.M SB 30.0000 3.0243 deg OK I02/SD02 RANGE.M SB 20.0000 71.0840 deg OK I02/SD02 MAXGZ.M SB 0.1000 1.1374 m OK I02/SD02 MINAREA.M SB 0.0175 0.2213 mrad OK I02/SD03 PROGR.M SB 0.0000 6.9188 m OK I02/SD03 MAXHEEL.M SB 30.0000 0.8790 deg OK I02/SD03 RANGE.M SB 20.0000 38.0389 deg OK I02/SD03 MAXGZ.M SB 0.1000 1.6909 m OK I02/SD03 MINAREA.M SB 0.0175 0.2837 mrad OK I02/SD04 PROGR.M SB 0.0000 5.9294 m OK I02/SD04 MAXHEEL.M SB 30.0000 3.4957 deg OK I02/SD04 RANGE.M SB 20.0000 33.5669 deg OK I02/SD04 MAXGZ.M SB 0.1000 1.5385 m OK I02/SD04 MINAREA.M SB 0.0175 0.2786 mrad OK I02/SD05 PROGR.M SB 0.0000 5.8372 m OK I02/SD05 MAXHEEL.M SB 30.0000 3.4061 deg OK I02/SD05 RANGE.M SB 20.0000 35.2194 deg OK---------------------------------------------------------------------- CASE RCR SIDE REQ ATTV UNIT STAT ---------------------------------------------------------------------- I02/SD06 MAXHEEL.M SB 30.0000 3.4074 deg OK I02/SD06 RANGE.M SB 20.0000 36.8415 deg OK I02/SD06 MAXGZ.M SB 0.1000 1.5195 m OK I02/SD06 MINAREA.M SB 0.0175 0.2792 mrad OK I02/SD07 PROGR.M SB 0.0000 5.9505 m OK I02/SD07 MAXHEEL.M SB 30.0000 3.4133 deg OK I02/SD07 RANGE.M SB 20.0000 38.6122 deg OK I02/SD07 MAXGZ.M SB 0.1000 1.4683 m OK I02/SD07 MINAREA.M SB 0.0175 0.2704 mrad OK I02/SD08 PROGR.M SB 0.0000 5.7355 m OK I02/SD08 MAXHEEL.M SB 30.0000 3.5863 deg OK I02/SD08 RANGE.M SB 20.0000 40.3902 deg OK I02/SD08 MAXGZ.M SB 0.1000 1.4181 m OK I02/SD08 MINAREA.M SB 0.0175 0.2651 mrad OK I02/SD09 PROGR.M SB 0.0000 4.8327 m OK I02/SD09 MAXHEEL.M SB 30.0000 2.5055 deg OK I02/SD09 RANGE.M SB 20.0000 43.5737 deg OK I02/SD09 MAXGZ.M SB 0.1000 1.5638 m OK I02/SD09 MINAREA.M SB 0.0175 0.2943 mrad OK I02/BB01 PROGR.M SB 0.0000 1.4314 m OK I02/BB01 MAXHEEL.M SB 30.0000 14.2365 deg OK I02/BB01 RANGE.M SB 20.0000 27.8222 deg OK I02/BB01 MAXGZ.M SB 0.1000 0.9087 m OK I02/BB01 MINAREA.M SB 0.0175 0.2058 mrad OK I02/BB02 PROGR.M SB 0.0000 1.1376 m OK I02/BB02 MAXHEEL.M SB 30.0000 0.2173 deg OK I02/BB02 RANGE.M SB 20.0000 42.0328 deg OK I02/BB02 MAXGZ.M SB 0.1000 1.4289 m OK I02/BB02 MINAREA.M SB 0.0175 0.2855 mrad OK I02/AD01 PROGR.M SB 0.0000 3.6164 m OK I02/AD01 MAXHEEL.M SB 30.0000 2.1134 deg OK I02/AD01 RANGE.M SB 20.0000 76.5889 deg OK I02/AD01 MAXGZ.M SB 0.1000 1.5589 m OK I02/AD01 MINAREA.M SB 0.0175 0.2981 mrad OK I02/AD02 PROGR.M SB 0.0000 5.6340 m OK I02/AD02 MAXHEEL.M SB 30.0000 3.5865 deg OK I02/AD02 RANGE.M SB 20.0000 36.2347 deg OK I02/AD02 MAXGZ.M SB 0.1000 1.8507 m OK I02/AD02 MINAREA.M SB 0.0175 0.3327 mrad OK I02/AD03 PROGR.M SB 0.0000 4.5032 m OK I02/AD03 MAXHEEL.M SB 30.0000 6.4999 deg OK I02/AD03 RANGE.M SB 20.0000 31.8955 deg OK I02/AD03 MAXGZ.M SB 0.1000 1.7291 m OK I02/AD03 MINAREA.M SB 0.0175 0.3368 mrad OK I02/AD04 PROGR.M SB 0.0000 4.4394 m OK I02/AD04 MAXHEEL.M SB 30.0000 6.3000 deg OK I02/AD04 RANGE.M SB 20.0000 33.2899 deg OK I02/AD04 MAXGZ.M SB 0.1000 1.7232 m OK I02/AD04 MINAREA.M SB 0.0175 0.3370 mrad OK I02/AD05 PROGR.M SB 0.0000 4.4718 m OK I02/AD05 MAXHEEL.M SB 30.0000 6.3724 deg OK I02/AD05 RANGE.M SB 20.0000 34.3911 deg OK I02/AD05 MAXGZ.M SB 0.1000 1.7048 m OK I02/AD05 MINAREA.M SB 0.0175 0.3345 mrad OK I02/AD06 PROGR.M SB 0.0000 4.1599 m OK。
一.概要:本船为非自航半潜驳船,本次作业用于新船下水,由拖轮提供动力。
本驳船航行时为近海航区,下潜作业时局限在码头、海港附近属遮蔽航区。
本次作业的完整稳性衡准按航行状态和下潜(上升)作业两种工况进行校核。
二.主要参数:(1)总长L=111.00 m(2)型宽B=67.00 m(3)型深D=8.00m(4)设计吃水T=5.80m(5)最大下潜吃水T S=13.7 m(主甲板以上5.7 m)(7)船型系数:CB = CM = CWP = CP ≈1(8)航行状态最大排水量△航=41715t(承载货物)(9)下潜状态排水量△潜=62767 t(10)长宽比L/B =1.657(11)长度型深比L/D =13.875(12)宽度型深比B/D=8.375三.操作注意事项:1.当半潜驳船下潜至最大沉深时,主甲板下各压载舱无空舱。
2.下潜作业时应在蒲氏风级不超过6级,有义波高不超过0.5m的水域,或蒲氏风级不超过4级时,有义波高不超过1.0m的水域3.下潜时应在平衡状态下先压载中间舱,后再压载其它舱,以减小自由液面的影响。
4.下潜作业时,应将首、尾两端浮力箱距基线19m高甲板上的人孔盖打开,充当透气管。
四.工况介绍:(1)航行状态包括:A.满载出港、满载到港(本船为非自航驳船,故满载出港、满载到港可视为一种工况)B.空载出港、空载到港(本船为非自航驳船,故空载出港、空载到港可视为一种工况)(2)下潜状态包括:C.满载甲板货物准备下潜(此工况可与满载出港、满载到港视为一种工况)D.满载甲板货物在举升甲板入水或出水时E.半潜驳船下潜至最大沉深时F.无甲板货物准备下潜;(此工况可与空载出港、空载到港视为一种工况G.无甲板货物在举升甲板入水或出水时五.稳性校核标准:依据中华人民共和国船舶检验局《船舶与海上设施法定检验规则》1999 (非国际航行)和《国内航行海船法定检验技术规则》2006年修改通报。
本船为箱型海驳。
A.校核标准:(拖航状态)(1)稳性衡准数K(最小倾覆力臂/风压侧倾力臂)大于等于1,其中横摇角取13°;(2)所核算的装载情况下,复原力臂曲线的正值范围不小于30°,至最大复原力臂对应角进水角为止的(取较小者)复原力臂曲线下的面积应不小于0.08m.rad。
如有帮助,欢迎下载。
码头结构整体稳定性计算书设计:校对:审核:1、设计条件1)设计船型设计代表船型见下表。
2)结构安全等级结构安全等级为二级。
3)自然条件(1)设计水位设计高水位(高潮位累计频率10%): 1.76m设计低水位(低潮位累计频率90%):+0.0m极端高水位(重现期50年一遇):+2.66m极端低水位(重现期50年一遇):-1.71m施工水位: 1.40m(2)波浪海西湾内波高H1%=2.67m。
(3)地质资料码头基床底面全部座落在全风化花岗岩层,风化岩承载力容许值为f=340kPa。
(4)码头面荷载a.门座起重机靠海侧轨道至码头前沿20kPa,其余30kPa。
b. 起重机荷载:码头设40吨门座起重机。
轮数48,轮压垂直方向(非工作状态)200kN,(工作状态)250kN,水平轮压35kN,基距12m,轮距840-980-840-840-840-980-840-840-840 -980-840。
(5)材料重度2、作用分类及计算2.1 结构自重力计算(1)极端高水位情况:计算图示见下图。
极端高水位作用分布图(2)设计高水位情况:计算图示见下图。
设计高水作用分布图设计低水作用分布图(3)设计低水位情况:计算图示见下图。
2.2 土压力强度计算码头后方填料为积砂石(按粗砂计算),35ϕ=︒,根据《重力式码头设计与施工规范》(JTJ290—98)第3.5.1.2条规定2(45/2)an K tg ϕ=︒-则2(45/2)0.271an K tg ϕ=︒-= 沉箱顶面以下考虑3511.6733ϕδ︒===︒ 根据(JTJ290—98)表B.0.3—1,查的0.24an K =cos 0.24cos11.670.235ax an K K δ==⨯︒= sin 0.24sin11.670.0485ay an K K δ==⨯︒=土压力标准值按(JTJ290—98)3.5条计算:110cos n n i i an i e h K γα-==∑21cos n n i i an i e h K γα==∑式中:cos 1α=1)码头后方填料土压力(永久作用) (1)极端高水位情况(2.66m ):e 4.0=0e 2.66=18×1.34×0.271=6.54(kPa )e 1.4=(18×1.34+9.5×1.26)×0.271=9.78(kPa ) e ‘1.4=(18×1.34+9.5×1.26)×0.235=8.48(kPa )e -9.0=(18×1.34+9.5×1.26+9.5×10.4)×0.235=31.7(kPa ) 土压力强度分布图见 图 土压力引起的水平作用:1116.54 1.34(6.549.78) 1.26(8.4831.7)10.4222H E =⨯⨯+⨯+⨯+⨯+⨯4.38210.28208.94223.602(/)kN m =++=土压力引起的竖向作用:208.9411.6743.16(/)V E tg kN m =⨯︒=土压力引起的倾覆力矩:1(2 6.549.78) 1.344.382( 1.3411.66)10.2810.433(6.549.78)(28.4831.7)10.4208.941043.58(/)3(8.4831.7)EH M kN m m ⎡⎤⨯+⨯=⨯⨯++⨯++⎢⎥⨯+⎣⎦⨯+⨯⨯=⨯+土压力引起的稳定力矩:43.1611.02475.62(/)EV M kN m m =⨯=(2)设计高水位情况e 4.0=0e 1.76=18×2.24×0.271=10.93(kPa )e 1.4=(18×2.24+9.5×0.36)×0.271=11.85(kPa ) e ‘1.4=(18×2.24+9.5×0.36)×0.235=10.28(kPa )e -9.0=(18×2.24+9.5×0.36+9.5×10.4)×0.235=33.5(kPa ) 土压力强度分布图见 图 土压力引起的水平作用:11110.93 2.24(10.9311.85)0.36(10.2833.5)10.4222H E =⨯⨯+⨯+⨯+⨯+⨯12.24 4.1227.66244.0(/)kN m =++=土压力引起的竖向作用:227.6611.6747.02(/)V E tg kN m =⨯︒=土压力引起的倾覆力矩:1(210.9311.85)0.3612.24( 2.2410.76) 4.110.433(10.9311.85)(210.2833.5)10.4227.661158.75(/)3(10.2833.5)EH M kN m m ⎡⎤⨯+⨯=⨯⨯++⨯++⎢⎥⨯+⎣⎦⨯+⨯⨯=⨯+土压力引起的稳定力矩:47.0211.02518.16(/)EV M kN m m =⨯=(3)设计低水位情况e 4.0=0e 1.4=18×2.6×0.271=12.68(kPa ) e ‘1.4=18×2.6×0.235=11.0(kPa )e 0.0=(18×2.6+18×1.4)×0.235=16.92(kPa ) e -9.0=(18×2.6+18×1.4+9.5×9)×0.235=37.01(kPa ) 土压力强度分布图见 图 土压力引起的水平作用:11112.68 2.6(1116.92) 1.4(16.9237.01)9222H E =⨯⨯+⨯+⨯+⨯+⨯16.48419.544242.69278.72(/)kN m =++=土压力引起的竖向作用:(19.544242.69)11.6754.16(/)V E tg kN m =+⨯︒=土压力引起的倾覆力矩:1(21116.92) 1.416.484(12.8610.4)19.544933(1116.92)(216.9237.01)9242.691387.21(/)3(16.9237.01)EH M kN m m ⎡⎤⨯+⨯=⨯⨯++⨯++⎢⎥⨯+⎣⎦⨯+⨯⨯=⨯+土压力引起的稳定力矩:54.1611.02596.84(/)EV M kN m m =⨯=2)均布荷载产生的土压力(可变作用):各种水位时,均布荷载产生的土压力标准值均相同。
第11卷第4期中国水运V ol.11N o.42011年4月Chi na W at er Trans port A pri l 2011收稿日期:作者简介:肖梁()男,浙江海洋学院,轮机工程专业。
台风环境下船舶破舱稳性研究肖梁,张志斌(浙江海洋学院,浙江舟山316000)摘要:在台风中,对船舶相撞破船的稳性危害最大的倾覆当属动态作用下的倾覆,其与破船进水量、进水速度、自由液面及风、浪对船舶的作用力等紧密相关。
本文准备把这几个对船舶稳性影响较大的外界因素引入到动稳性计算中,从而对台风中的舶破船后的稳性进行近似计算,得出此时船舶稳性及残存的概率。
为船上的工作人员准确判断船舶状态及采取应有的应急措施提供帮助;为港口管理人员及海事管理人员准备施救方案提供可靠的信息。
关键词:破舱稳性;船舶;动稳性中图分类号:U 692文献标识码:A 文章编号:1006-7973(2011)04-0013-02一、引言我国东南沿海水域是世界上受台风侵袭最多的地区之一,也是船舶最为密集的区域之一。
台风一般都会引起狂风、暴雨、巨浪和风暴潮等,这些因素都严重威胁船舶自身安全和人员生命安全。
至今,由于台风的来袭引起的海难数不胜数。
台风对船舶的危害主要是因搁浅、碰撞和倾覆造成船舶破损而进水,从而最终导致船舶失去稳性而沉没。
稳性是船舶最重要性能之一,由于它直接关系到人员的生命安全和船舶的生命力,因此备受关注。
任何船舶都不能逃离台风的危害,都有可能发生破舱或倾覆。
受台风作用而破损的船舶,其受风浪、甲板上浪、自由液面、货物移动、船的航向、船舶类型等因素影响比较严重,无法用经验公式来准确描述,但对船舶的影响也最为严重。
二、船舶动稳性的有关影响因素和计算公式动稳性是船舶在台风中最需要考虑因素。
力的突然作用,使船舶倾斜加快,这就需要也必须考虑倾斜时的角速度和惯性。
在静力作用下,外力矩和附加力矩不超过船舶的最大回复力矩,船舶就不会倾覆。
但在动力作用下,由于惯性,即使达到回复力矩与外力矩相等,船舶还要继续倾斜,只有当外力矩和附加力矩所做功与回复力矩所做功相当时才能停止倾斜。
V.Moment是船舶稳性计算书中一个重要的概念,它代表了船舶载重时的纵向动态力。
它
可以通过船舶的各种参数来计算,如船舶的质量、尺寸、型号、载荷等等。
V.Moment的
计算结果是一个可以衡量船舶稳定性的重要参数,船舶设计师可以根据这个参数来设计船舶的型号,从而确保船舶在海上行驶时能够稳定地行驶。
V.Moment的计算是一个复杂的过程,需要考虑到船舶的各种参数,如船舶的质量、尺寸、型号、载荷等等。
比如,当一艘船载有质量为50吨的货物时,船舶的V.Moment就会受
到质量的影响。
而当船舶的型号发生变化时,V.Moment也会发生变化,比如当船舶的型
号变为更大的时候,V.Moment也会增加。
同时,V.Moment也受到船舶的载荷影响,比如船舶上装有大量的货物,V.Moment就会
增加,如果船舶上搭载了很多油箱,V.Moment会增加,而如果船舶上搭载了很多人,
V.Moment会减少。
由此可见,V.Moment是一个非常复杂的参数,它受到船舶的各种参数影响,可以用来衡
量船舶的稳定性。
船舶设计师需要根据V.Moment的计算结果来设计船舶的型号,以确保
船舶能够稳定地行驶。
正如英国发明家Thomas Edison所说的:“没有工作,没有进步。
”
只有正确的计算,才能确保船舶在海上行驶时能够稳定地行驶。
船载吊车作业稳定性计算书1.工程概况为辅助仁义桂江大桥桩基以及主桥上部构造施工,在桂江搭设贝雷梁钢栈桥。
栈桥桥墩采用直径529钢管桩,上部结构采用贝雷梁。
栈桥施工配备两艘船只,一艘为材料运输船,另一艘为船载吊车工具船。
工具船船名为横县海泰38,吊车为徐工25T,吊车距离船尾8m,吊车前后支腿支开,支撑在船只两侧壁上,吊车通过型钢焊接固结在船两侧壁上。
吊车日常起吊物件为钢管桩、工字钢、振捣锤以及贝雷梁,最大起吊重量为振捣锤加钢管桩,重约3.5T。
吊车作业最大臂长25m,最小角度60度。
2.计算依据(1)《起重机械安全规程》(GB6067-2010)(2)《QY25K汽车起重机操作手册》(3)《海船稳性规范》(4)横县海泰38的基础资料、数据3.计算参数1)船舶技术参数船舶名称:横县海泰38,总长41.8m,船长38.4m,满载水线长38.4m,船宽7.8m,最大船宽8.2m,型深2.85m,空载吃水0.5m,满载吃水2.35m,满载排水量601t,空载排水量98t。
2)吊车技术参数徐工25t汽车吊,自重29.2t,位于船尾,横向轮距2.074m,吊车横向在船体居中布置,纵向最外侧轮距船尾8m。
船头方向船载吊车位置示意4.稳定性计算1.纵向稳定性计算:考虑汽车吊作业最大载重25t,自重29.2t,总重54.2t,按不利情况考虑荷载全部作用于吊车臂方向最外侧轮。
偏心距按e=38.4/2-8=15.2m考虑,偏心荷载作用下船体船头和船尾吃水深度分别为:船头:54.2÷(38.4×7.8)-54.2×15.2÷(7.8×38.4×38.4÷6)=-0.25m(往上抬高)船尾:54.2÷(38.4×7.8)+54.2×15.2÷(7.8×38.4×38.4÷6)=-0.61m(往下降低)船体纵向倾斜为0.43/38.4=1.1%由此可见,汽车吊荷载纵向最不利作用下船体吃水深度和倾斜均小。
0 引言当前,随着海上风电以及海洋牧场的蓬勃发展,从陆地预制场地运输钢桩到海上安装的交通运输工作也随之增多,而运输钢桩的任务基本上通过甲板驳船进行。
通过对唐山乐亭菩提岛海上风电场300 MW 示范工程项目所采用的甲板驳船——“浙三驳203”运输钢桩过程中所涉及的船舶运输安全的封舱加固方案、绑扎加固计算以及船舶完整稳性计算进行分析,详细介绍了船舶在实施甲板货运输时所应考虑的因素以及对这些因素校核的过程,为后续不同的甲板货物安全运输提供必要的参考[1]。
1 航区及作业环境的确定本船航行及作业区域为唐山乐亭菩提岛海域,位于我国渤海距岸20 n mile 以内海域,属于沿海航区航行。
为保证钢桩运输时的安全,对航行及作业水域的限制条件为:①波高不大于1.5 m ;②阵风不大于7级。
2 甲板驳船及钢桩主要参数钢桩运输所选用的驳船为“浙三驳203”,为载重量2000 t 的有人甲板货驳,航区为沿海,本船的主要参数为总长75.80 m 、设计水线长75.80 m 、型宽15.80 m 、型深3.70 m 、设计吃水2.50 m 、结构吃水2.60 m 、满载排水量2665.50 t 。
钢管桩主要参数为直径2.0 m 、长度100.0 m 、单根重量130.0 t 。
3 钢桩运输方案以及封舱加固措施制定根据“浙三驳203”的主尺度、甲板布局以及钢管桩易翻滚的特性,运输方案选择下3根钢桩、上2根钢桩的2层布局,运输钢桩总计5×130 t=650 t ,同时为保证驳船的甲板甲板驳船封舱加固及装载稳定性计算尹 波(中交海洋建设开发有限公司,天津 300457)摘 要 :甲板驳船由于其承运的构件、货物种类繁多,配载情况千变万化,装载的稳定性关系到船舶的航行安全,为了使甲板驳船达到安全配载的标准,结合船舶工作实际需求,在甲板驳船运输钢桩时制定了封舱加固方案,并基于有限元方法对加固方案进行强度校核计算以及运载钢桩时船舶稳性校核等内容。
第一节 稳性的基本概念 一、稳性概述1. 概念:船舶稳性(Stability)是指船舶受外力作用发生倾斜,当外力消失后能够自行回复到原来平衡位置的能力。
2. 船舶具有稳性的原因1)造成船舶离开原来平衡位置的是倾斜力矩,它产生的原因有:风和浪的作用、船上货物的移动、旅客集中于一舷、拖船的急牵、火炮的发射以及船舶回转等,其大小取决于这些外界条件。
2)使船舶回复到原来平衡位置的是复原力矩,其大小取决于排水量、重心和浮心的相对位置等因素。
S M GZ =∆⋅ (9.81)kN m ⋅式中:GZ :复原力臂,也称稳性力臂,重力和浮力作用线之间的距离。
◎船舶是否具有稳性,取决于倾斜后重力和浮力的位置关系,而排水量一定时,船舶浮心的变化规律是固定的(静水力资料),因此重心的位置是主观因素。
3. 横稳心(Metacenter)M :船舶微倾前后浮力作用线的交点,其距基线的高度KM 可从船舶资料中查取。
4. 船舶的平衡状态1)稳定平衡:G 在M 之下,倾斜后重力和浮力形成稳性力矩。
2)不稳定平衡:G 在M 之上,倾斜后重力和浮力形成倾覆力矩。
3)随遇平衡:G 与M 重合,倾斜后重力和浮力作用在同一垂线上,不产生力矩。
如下图所示例如:1)圆锥在桌面上的不同放置方法;2)悬挂的圆盘5. 船舶具有稳性的条件:初始状态为稳定平衡,这只是稳性的第一层含义;仅仅具有稳性是不够的,还应有足够大的回复能力,使船舶不致倾覆,这是稳性的另一层含义。
6. 稳性大小和船舶航行的关系1)稳性过大,船舶摇摆剧烈,造成人员不适、航海仪器使用不便、船体结构容易受损、舱内货物容易移位以致危及船舶安全。
2)稳性过小,船舶抗倾覆能力较差,容易出现较大的倾角,回复缓慢,船舶长时间斜置于水面,航行不力。
二、稳性的分类1. 按船舶倾斜方向分为:横稳性、纵稳性2. 按倾角大小分为:初稳性、大倾角稳性3. 按作用力矩的性质分为:静稳性、动稳性4. 按船舱是否进水分为:完整稳性、破舱稳性三、初稳性1. 初稳性假定条件:1)船舶微倾前后水线面的交线过原水线面的漂心F;2)浮心移动轨迹为圆弧段,圆心为定点M(稳心),半径为BM(稳心半径)。
船舶稳性计算书的V.MOMENT一、船舶稳性计算书的V.MOMENT简介《船舶稳性计算书的V.MOMENT》是指船舶稳性计算书中包含的V.MOMENT模型,这是一种用于计算船舶在侧向运动时,船体垂线质心位置变化情况的船舶稳性计算模型,用于研究不同型深、吃水深度、有效载重对船舶运动力学性能、安全运行性能以及操纵性能相关的参数和安全层级的影响,是检验船舶稳性的基本模型。
二、V.MOMENT模型的数学模型V.MOMENT模型的数学模型,是把船体垂线质心位置变化情况分解为三个组成部分,分别为水平横动惯性力,竖向横动惯性力,吊锚线转动和平衡惯性力,以及尾水惯性力等5项水动力组成的V.MOMENT,以下图表示:V.MOMENT的数学表示式为:V.MOMENT = MMAX X VY + IN + ZT +ST + FL其中:MMAX:最大水平横动惯性力;VY:竖向横动惯性力;IN:吊锚线转动和平衡惯性力;ZT:尾水惯性力;FL:本船质心运动惯性力。
三、V.MOMENT模型的应用1. 用V.MOMENT模型计算最大抗侧风力。
V.MOMENT模型最重要的作用,就是用它能计算出船舶最大抗侧风力,从而判断船舶侧向运动稳定性。
2. 用V.MOMENT模型判断船舶运动稳定性。
考虑水动力的大小以及各种影响因素,通过V.MOMENT模型可以准确判断船舶的运动稳定性情况,便于做出正确的操纵决策。
3. 用V.MOMENT模型优化船舶设计。
通过V.MOMENT模型可以计算出发散角、侧风行稳角、最大抗侧风力等参数,为优化船舶设计提供重要数据,实现船舶优质化设计。
综上所述,《船舶稳性计算书的V.MOMENT》是一个使用广泛的船舶稳性计算模型,它通过上述模型可以计算出船舶的发散角、侧风行稳角,以及最大抗侧风力,判断船舶的稳定情况,同时,也可以优化船舶设计,为船舶安全运行提供重要依据。
目录1.说明本船根据中华人民共和国海事局《船舶与海上设施法定检验技术规则》国内航行海船法定检验技术规则(2004)及2006年修改通报的破损稳性有关要求进行计算。
假定破损致使一舱柜被穿透,则应假定其中的任何液体全部从该舱中流失,并被最终平衡水线深度的海水所替代。
本计算进水点取在上甲板舷窗处。
2.船舶概况一.船舶主尺度:二.计算坐标:重心纵向坐标(LCG):除非另有说明外,所有纵向坐标均以船中为原点,自船中向船首为正,单位为米;重心垂向坐标(VCG):除非另有说明外,所有垂向坐标均以基线为原点,自基线向上为正,单位为米;重心横向坐标(TCG):所有横向坐标均以船体中心线为原点,自中心线向右为正,单位为米;纵倾数值(TRIM) :尾倾为正;吃水(DRAFT):吃水从基线向上计起.3. 破损假定3.1 各假定受损处所的渗透率为:3.3 本船破损进水范围假定:01 #26~#46 机舱对称进水02 #46~#66 索具舱对称进水03 #26~#66 机舱索具舱对称进水04 #46~#77 索具舱空舱对称进水05 #66~#77 空舱对称进水4.各种装载情况及破损计算汇总表(1)拖航出港计算装载情况............ : 拖航出港破损情况............ : 01右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 3.58320.0 3.56030.0 2.98640.0 2.25550.0 1.43660.0 0.566左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -3.583-20.0 -3.560-30.0 -2.986-40.0 -2.255-50.0 -1.436-60.0 -0.566排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 1130.1 t 尾吃水................ : 1.464 m重心纵向位置.......... : -0.521 m 首吃水................ : 1.258 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.361 m重心垂向位置.......... : 3.286 m 纵倾.................. : 0.206 m初稳性高度............ : 26.528 m 横倾角................ : 0.2 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.786 m最小距离--风雨密点.... : 1.065 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 40.2最大复原力臂(m) ...... : 3.893 3.893 >= 0.100正稳性范围(deg) ...... : 60.0 40.2 >= 20.0面积(m.rad) .......... : 1.0122 1.0122 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------ER 机舱166.2进水点纵向横向垂向间距1 16.550 5.500 6.200 4.907 风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.1082 10.750 -3.000 2.500 1.1833 10.750 3.000 2.500 1.1834 -17.850 5.500 2.500 1.0655 -17.850 -5.500 2.500 1.0656 -21.100 4.200 7.860 6.4127 -21.100 -4.200 7.860 6.412装载情况............ : 拖航出港破损情况............ : 02右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 3.68020.0 3.67930.0 3.10240.0 2.36050.0 1.52560.0 0.635左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -3.680-20.0 -3.679-30.0 -3.102-40.0 -2.360-50.0 -1.525-60.0 -0.635排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 1130.1 t 尾吃水................ : 1.213 m重心纵向位置.......... : -0.521 m 首吃水................ : 1.406 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.309 m重心垂向位置.......... : 3.286 m 纵倾.................. : -0.193 m初稳性高度............ : 25.758 m 横倾角................ : 1.2 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.844 m最小距离--风雨密点.... : 1.149 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 36.1最大复原力臂(m) ...... : 4.006 4.006 >= 0.100正稳性范围(deg) ...... : 60.0 36.1 >= 20.0面积(m.rad) .......... : 1.0412 1.0412 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------FL 索具舱116.1进水点纵向横向垂向间距1 16.550 5.500 6.200 4.827风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.2192 10.750 -3.000 2.500 1.1493 10.750 3.000 2.500 1.1494 -17.850 5.500 2.500 1.2595 -17.850 -5.500 2.500 1.2596 -21.100 4.200 7.860 6.6327 -21.100 -4.200 7.860 6.632装载情况............ : 拖航出港破损情况............ : 03右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 3.16820.0 3.14330.0 2.59540.0 1.90450.0 1.14060.0 0.335左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -3.168-20.0 -3.143-30.0 -2.595-40.0 -1.904-50.0 -1.140-60.0 -0.335排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 1130.1 t 尾吃水................ : 1.431 m重心纵向位置.......... : -0.521 m 首吃水................ : 1.590 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.511 m重心垂向位置.......... : 3.286 m 纵倾.................. : -0.160 m初稳性高度............ : 25.893 m 横倾角................ : 2.7 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.660 m最小距离--风雨密点.... : 0.955 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 28.2最大复原力臂(m) ...... : 3.443 3.443 >= 0.100正稳性范围(deg) ...... : 60.0 28.2 >= 20.0面积(m.rad) .......... : 0.8949 0.8949 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------ER 机舱183.0FL 索具舱132.7进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 4.637风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.0132 10.750 -3.000 2.500 0.9553 10.750 3.000 2.500 0.9554 -17.850 5.500 2.500 1.0475 -17.850 -5.500 2.500 1.0476 -21.100 4.200 7.860 6.4177 -21.100 -4.200 7.860 6.417装载情况............ : 拖航出港破损情况............ : 04右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 3.12120.0 3.05530.0 2.49140.0 1.78550.0 1.006左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -3.121-20.0 -3.055-30.0 -2.491-40.0 -1.785-50.0 -1.006排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 1130.1 t 尾吃水................ : 1.016 m重心纵向位置.......... : -0.521 m 首吃水................ : 1.843 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.429 m重心垂向位置.......... : 3.286 m 纵倾.................. : -0.828 m初稳性高度............ : 25.147 m 横倾角................ : 2.3 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.407 m最小距离--风雨密点.... : 0.893 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 50.0 23.0最大复原力臂(m) ...... : 3.378 3.378 >= 0.100正稳性范围(deg) ...... : 50.0 23.0 >= 20.0面积(m.rad) .......... : 0.8787 0.8787 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------E5C NO.5空舱(中)104.6FL 索具舱138.8进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 4.496 风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.1942 10.750 -3.000 2.500 0.8933 10.750 3.000 2.500 0.8934 -17.850 5.500 2.500 1.3665 -17.850 -5.500 2.500 1.3666 -21.100 4.200 7.860 6.7797 -21.100 -4.200 7.860 6.779装载情况............ : 拖航出港破损情况............ : 05右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 3.70820.0 3.71530.0 3.13540.0 2.38550.0 1.54160.0 0.640左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -3.708-20.0 -3.715-30.0 -3.135-40.0 -2.385-50.0 -1.541-60.0 -0.640排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 1130.1 t 尾吃水................ : 1.141 m重心纵向位置.......... : -0.521 m 首吃水................ : 1.388 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.265 m重心垂向位置.......... : 3.286 m 纵倾.................. : -0.248 m初稳性高度............ : 25.837 m 横倾角................ : 1.7 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.862 m最小距离--风雨密点.... : 1.182 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 34.8最大复原力臂(m) ...... : 4.040 4.040 >= 0.100正稳性范围(deg) ...... : 60.0 34.8 >= 20.0面积(m.rad) .......... : 1.0498 1.0498 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------E5C NO.5空舱(中)73.9进水点纵向横向垂向间距1 16.550 5.500 6.200 4.853风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.2722 10.750 -3.000 2.500 1.1823 10.750 3.000 2.500 1.1824 -17.850 5.500 2.500 1.3245 -17.850 -5.500 2.500 1.3246 -21.100 4.200 7.860 6.7007 -21.100 -4.200 7.860 6.700(2)拖航到港计算装载情况............ : 拖航到港破损情况............ : 01右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 3.76020.0 3.72630.0 3.13240.0 2.37650.0 1.52760.0 0.623左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -3.760-20.0 -3.726-30.0 -3.132-40.0 -2.376-50.0 -1.527-60.0 -0.623排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 1090.5 t 尾吃水................ : 1.417 m重心纵向位置.......... : -0.504 m 首吃水................ : 1.214 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.316 m重心垂向位置.......... : 3.335 m 纵倾.................. : 0.203 m初稳性高度............ : 26.407 m 横倾角................ : 1.1 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.833 m最小距离--风雨密点.... : 1.112 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 42.1最大复原力臂(m) ...... : 4.081 4.081 >= 0.100正稳性范围(deg) ...... : 60.0 42.1 >= 20.0面积(m.rad) .......... : 1.0615 1.0615 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------ER 机舱160.7进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 4.952风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.1542 10.750 -3.000 2.500 1.2283 10.750 3.000 2.500 1.2284 -17.850 5.500 2.500 1.1125 -17.850 -5.500 2.500 1.1126 -21.100 4.200 7.860 6.4597 -21.100 -4.200 7.860 6.459装载情况............ : 拖航到港破损情况............ : 02右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 3.84020.0 3.83230.0 3.23740.0 2.47050.0 1.60660.0 0.685左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -3.840-20.0 -3.832-30.0 -3.237-40.0 -2.470-50.0 -1.606-60.0 -0.685排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 1090.5 t 尾吃水................ : 1.164 m重心纵向位置.......... : -0.504 m 首吃水................ : 1.367 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.266 m重心垂向位置.......... : 3.335 m 纵倾.................. : -0.203 m初稳性高度............ : 26.712 m 横倾角................ : 0.8 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.883 m最小距离--风雨密点.... : 1.191 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 37.9最大复原力臂(m) ...... : 4.178 4.178 >= 0.100正稳性范围(deg) ...... : 60.0 37.9 >= 20.0面积(m.rad) .......... : 1.0860 1.0860 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------FL 索具舱112.6进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 4.867风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.2652 10.750 -3.000 2.500 1.1913 10.750 3.000 2.500 1.1914 -17.850 5.500 2.500 1.3075 -17.850 -5.500 2.500 1.3076 -21.100 4.200 7.860 6.6807 -21.100 -4.200 7.860 6.680装载情况............ : 拖航到港破损情况............ : 03右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 3.39820.0 3.35930.0 2.78040.0 2.05950.0 1.25960.0 0.415左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -3.398-20.0 -3.359-30.0 -2.780-40.0 -2.059-50.0 -1.259-60.0 -0.415排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 1090.5 t 尾吃水................ : 1.382 m重心纵向位置.......... : -0.504 m 首吃水................ : 1.542 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.462 m重心垂向位置.......... : 3.335 m 纵倾.................. : -0.160 m初稳性高度............ : 26.842 m 横倾角................ : 2.5deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.708 m最小距离--风雨密点.... : 1.004 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 29.8最大复原力臂(m) ...... : 3.688 3.688 >= 0.100正稳性范围(deg) ...... : 60.0 29.8 >= 20.0面积(m.rad) .......... : 0.9589 0.9589 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------ER 机舱177.1FL 索具舱128.6进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 4.685风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.0622 10.750 -3.000 2.500 1.0043 10.750 3.000 2.500 1.0044 -17.850 5.500 2.500 1.0955 -17.850 -5.500 2.500 1.0956 -21.100 4.200 7.860 6.4667 -21.100 -4.200 7.860 6.466装载情况............ : 拖航到港破损情况............ : 04右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 3.31920.0 3.25330.0 2.66440.0 1.92650.0 1.112左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -3.319-20.0 -3.253-30.0 -2.664-40.0 -1.926-50.0 -1.112排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 1090.5 t 尾吃水................ : 0.975 m重心纵向位置.......... : -0.504 m 首吃水................ : 1.787 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.381 m重心垂向位置.......... : 3.335 m 纵倾.................. : -0.812 m初稳性高度............ : 26.080 m 横倾角................ : 2.7 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.463 m最小距离--风雨密点.... : 0.944 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 50.0 23.7最大复原力臂(m) ...... : 3.593 3.593 >= 0.100正稳性范围(deg) ...... : 50.0 23.7 >= 20.0面积(m.rad) .......... : 0.9347 0.9347 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------E5C NO.5空舱(中)100.5FL 索具舱134.4进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 4.550风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.2402 10.750 -3.000 2.500 0.9443 10.750 3.000 2.500 0.9444 -17.850 5.500 2.500 1.4095 -17.850 -5.500 2.500 1.4096 -21.100 4.200 7.860 6.8217 -21.100 -4.200 7.860 6.821装载情况............ : 拖航到港破损情况............ : 05右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 3.86220.0 3.86430.0 3.26640.0 2.49350.0 1.62060.0 0.689左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -3.862-20.0 -3.864-30.0 -3.266-40.0 -2.493-50.0 -1.620-60.0 -0.689排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 1090.5 t 尾吃水................ : 1.096 m重心纵向位置.......... : -0.504 m 首吃水................ : 1.347 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.221 m重心垂向位置.......... : 3.335 m 纵倾.................. : -0.251 m初稳性高度............ : 26.795 m 横倾角................ : 1.9 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.903 m最小距离--风雨密点.... : 1.225 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 36.6最大复原力臂(m) ...... : 4.205 4.205 >= 0.100正稳性范围(deg) ...... : 60.0 36.6 >= 20.0面积(m.rad) .......... : 1.0929 1.0929 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------E5C NO.5空舱(中)70.8进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 4.896风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.3162 10.750 -3.000 2.500 1.2253 10.750 3.000 2.500 1.2254 -17.850 5.500 2.500 1.3685 -17.850 -5.500 2.500 1.3686 -21.100 4.200 7.860 6.7457 -21.100 -4.200 7.860 6.745(3)空载(压载)出港计算装载情况............ : 空载(压载)到港破损情况............ : 01右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 4.48720.0 4.45630.0 3.78740.0 2.92650.0 1.95360.0 0.912左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -4.487-20.0 -4.456-30.0 -3.787-40.0 -2.926-50.0 -1.953-60.0 -0.912排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 916.0 t 尾吃水................ : 1.270 m重心纵向位置.......... : -0.894 m 首吃水................ : 0.953 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.112 m重心垂向位置.......... : 3.485 m 纵倾.................. : 0.317 m初稳性高度............ : 31.625 m 横倾角................ : 1.0 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.980 m最小距离--风雨密点.... : 1.275 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 55.2最大复原力臂(m) ...... : 4.871 4.871 >= 0.100正稳性范围(deg) ...... : 60.0 55.2 >= 20.0面积(m.rad) .......... : 1.2671 1.2671 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------ER 机舱136.4进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 5.193风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.3412 10.750 -3.000 2.500 1.4563 10.750 3.000 2.500 1.4564 -17.850 5.500 2.500 1.2755 -17.850 -5.500 2.500 1.2756 -21.100 4.200 7.860 6.6147 -21.100 -4.200 7.860 6.614装载情况............ : 空载(压载)到港破损情况............ : 02右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 4.52420.0 4.53130.0 3.86640.0 3.00050.0 2.01860.0 0.964左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -4.524-20.0 -4.531-30.0 -3.866-40.0 -3.000-50.0 -2.018-60.0 -0.964排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 916.0 t 尾吃水................ : 1.024 m重心纵向位置.......... : -0.894 m 首吃水................ : 1.108 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.066 m重心垂向位置.......... : 3.485 m 纵倾.................. : -0.084 m初稳性高度............ : 30.683 m 横倾角................ : 0.2 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 1.142 m最小距离--风雨密点.... : 1.416 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 51.1最大复原力臂(m) ...... : 4.926 4.926 >= 0.100正稳性范围(deg) ...... : 60.0 51.1 >= 20.0面积(m.rad) .......... : 1.2804 1.2804 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------FL 索具舱93.1进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 5.107风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.4472 10.750 -3.000 2.500 1.4163 10.750 3.000 2.500 1.4164 -17.850 5.500 2.500 1.4645 -17.850 -5.500 2.500 1.4646 -21.100 4.200 7.860 6.8307 -21.100 -4.200 7.860 6.830装载情况............ : 空载(压载)到港破损情况............ : 03右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 4.41220.0 4.29330.0 3.61940.0 2.77450.0 1.82660.0 0.815左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -4.412-20.0 -4.293-30.0 -3.619-40.0 -2.774-50.0 -1.826-60.0 -0.815排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 916.0 t 尾吃水................ : 1.217 m重心纵向位置.......... : -0.894 m 首吃水................ : 1.271 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.244 m重心垂向位置.......... : 3.485 m 纵倾.................. : -0.055 m初稳性高度............ : 30.719 m 横倾角................ : 0.8 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.979 m最小距离--风雨密点.... : 1.244 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 41.5最大复原力臂(m) ...... : 4.758 4.758 >= 0.100正稳性范围(deg) ...... : 60.0 41.5 >= 20.0面积(m.rad) .......... : 1.2397 1.2397 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------ER 机舱151.0FL 索具舱107.8进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 4.938风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.2642 10.750 -3.000 2.500 1.2443 10.750 3.000 2.500 1.2444 -17.850 5.500 2.500 1.2765 -17.850 -5.500 2.500 1.2766 -21.100 4.200 7.860 6.6397 -21.100 -4.200 7.860 6.639装载情况............ : 空载(压载)到港破损情况............ : 04右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 4.35120.0 4.28330.0 3.60540.0 2.74150.0 1.771左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -4.351-20.0 -4.283-30.0 -3.605-40.0 -2.741-50.0 -1.771排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 916.0 t 尾吃水................ : 0.869 m重心纵向位置.......... : -0.894 m 首吃水................ : 1.450 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.160 m重心垂向位置.......... : 3.485 m 纵倾.................. : -0.581 m初稳性高度............ : 31.280 m 横倾角................ : 1.3 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 0.800 m最小距离--风雨密点.... : 1.215 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 50.0 31.3最大复原力臂(m) ...... : 4.711 4.711 >= 0.100正稳性范围(deg) ...... : 50.0 31.3 >= 20.0面积(m.rad) .......... : 1.2262 1.2262 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------E5C NO.5空舱(中)76.7FL 索具舱110.9进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 4.848风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.4272 10.750 -3.000 2.500 1.2153 10.750 3.000 2.500 1.2154 -17.850 5.500 2.500 1.5485 -17.850 -5.500 2.500 1.5486 -21.100 4.200 7.860 6.9457 -21.100 -4.200 7.860 6.945装载情况............ : 空载(压载)到港破损情况............ : 05右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 4.52320.0 4.55330.0 3.88940.0 3.02050.0 2.03360.0 0.973左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -4.523-20.0 -4.553-30.0 -3.889-40.0 -3.020-50.0 -2.033-60.0 -0.973排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 916.0 t 尾吃水................ : 0.977 m重心纵向位置.......... : -0.894 m 首吃水................ : 1.072 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.025 m重心垂向位置.......... : 3.485 m 纵倾.................. : -0.095 m初稳性高度............ : 31.045 m 横倾角................ : 1.5 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 1.178 m最小距离--风雨密点.... : 1.455 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 50.3最大复原力臂(m) ...... : 4.934 4.934 >= 0.100正稳性范围(deg) ...... : 60.0 50.3 >= 20.0面积(m.rad) .......... : 1.2818 1.2818 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------E5C NO.5空舱(中)55.2进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 5.144风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.4892 10.750 -3.000 2.500 1.4553 10.750 3.000 2.500 1.4554 -17.850 5.500 2.500 1.5095 -17.850 -5.500 2.500 1.5096 -21.100 4.200 7.860 6.8757 -21.100 -4.200 7.860 6.875(4)空载(压载)到港计算装载情况............ : 空载(压载)到港破损情况............ : 01右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 4.64720.0 4.63430.0 3.95440.0 3.07550.0 2.07860.0 1.009左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -4.647-20.0 -4.634-30.0 -3.954-40.0 -3.075-50.0 -2.078-60.0 -1.009排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 876.4 t 尾吃水................ : 1.218 m重心纵向位置.......... : -0.889 m 首吃水................ : 0.911 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.065 m重心垂向位置.......... : 3.485 m 纵倾.................. : 0.308 m初稳性高度............ : 31.782 m 横倾角................ : 1.0 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 1.032 m最小距离--风雨密点.... : 1.326 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 58.3最大复原力臂(m) ...... : 5.052 5.052 >= 0.100正稳性范围(deg) ...... : 60.0 58.3 >= 20.0面积(m.rad) .......... : 1.3138 1.3138 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------ER 机舱130.6进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 5.237风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.3902 10.750 -3.000 2.500 1.5023 10.750 3.000 2.500 1.5024 -17.850 5.500 2.500 1.3265 -17.850 -5.500 2.500 1.3266 -21.100 4.200 7.860 6.6657 -21.100 -4.200 7.860 6.665装载情况............ : 空载(压载)到港破损情况............ : 02右倾HEEL(deg) GZ(m)------------------------------0.0 0.00010.0 4.67120.0 4.69730.0 4.02140.0 3.13850.0 2.13360.0 1.053左倾HEEL(deg) GZ(m)------------------------------0.0 0.000-10.0 -4.671-20.0 -4.697-30.0 -4.021-40.0 -3.138-50.0 -2.133-60.0 -1.053排水量及重心位置浮态------------------------------------ ------------------------------------排水量................ : 876.4 t 尾吃水................ : 0.979 m重心纵向位置.......... : -0.889 m 首吃水................ : 1.061 m重心横向位置.......... : 0.000 m 平均吃水.............. : 1.020 m重心垂向位置.......... : 3.485 m 纵倾.................. : -0.082 m初稳性高度............ : 32.180 m 横倾角................ : 0.7 deg水比重................ : 1.025 t/m3 最小距离--甲板边线.... : 1.189 m最小距离--风雨密点.... : 1.463 m项目左倾右倾衡准值-------------------------------------------------------------------------进水角(deg) .......... : 60.0 54.4最大复原力臂(m) ...... : 5.092 5.092 >= 0.100正稳性范围(deg) ...... : 60.0 54.4 >= 20.0面积(m.rad) .......... : 1.3233 1.3233 >= 0.0175标识舱名进水量(t)----------------------------------------------------------------FL 索具舱89.1进水点纵向横向垂向间距---------------------------------------------------------------------------1 16.550 5.500 6.200 5.153风雨密点纵向横向垂向间距---------------------------------------------------------------------------1 -7.450 0.000 2.500 1.4922 10.750 -3.000 2.500 1.4633 10.750 3.000 2.500 1.4634 -17.850 5.500 2.500 1.5095 -17.850 -5.500 2.500 1.5096 -21.100 4.200 7.860 6.8757 -21.100 -4.200 7.860 6.875。