准2—2型多铁性薄膜-块体复合材料磁电性能研究
- 格式:pdf
- 大小:302.26 KB
- 文档页数:5
《Bi5Ti3FeO15基薄膜的多铁性与铁电光伏效应》篇一一、引言随着现代科技的发展,多铁性材料因其独特的物理性质和潜在的应用前景,在材料科学领域中受到了广泛的关注。
Bi5Ti3FeO15基薄膜作为一种典型的多铁性材料,其具有丰富的物理性质和潜在的应用价值。
本文将重点探讨Bi5Ti3FeO15基薄膜的多铁性和铁电光伏效应,以期为相关研究提供有益的参考。
二、Bi5Ti3FeO15基薄膜的结构与性质Bi5Ti3FeO15基薄膜是一种具有钙钛矿结构的复合氧化物薄膜。
其结构中,Bi、Ti和Fe元素以特定的方式排列,形成了复杂的晶体结构。
这种结构使得Bi5Ti3FeO15基薄膜具有多铁性,即同时具有铁电性、铁磁性和可能的铁弹性。
多铁性是指材料同时具有多种铁性序参量,如铁电序参量和铁磁序参量等。
Bi5Ti3FeO15基薄膜的铁电性主要源于其晶体结构中的电偶极子,这些电偶极子在外电场的作用下可以发生取向变化,从而表现出铁电性。
而其铁磁性则与Fe离子的自旋有序排列有关。
此外,Bi5Ti3FeO15基薄膜还可能具有铁弹性,即在一定范围内可发生弹性形变。
三、Bi5Ti3FeO15基薄膜的铁电光伏效应铁电光伏效应是指铁电材料在铁电相变过程中产生的光生电压效应。
Bi5Ti3FeO15基薄膜作为一种具有铁电性的材料,也具有铁电光伏效应。
当光照射到Bi5Ti3FeO15基薄膜上时,光子被吸收并激发出电子-空穴对。
这些载流子在薄膜内部的电场作用下发生分离和迁移,从而在薄膜两端产生光生电压。
这种光生电压可以被用来实现自供电的光电器件。
Bi5Ti3FeO15基薄膜的铁电光伏效应与其晶体结构、能带结构以及缺陷态等密切相关。
首先,其晶体结构中的电偶极子在外加电场的作用下可以发生取向变化,从而影响载流子的输运行为。
其次,Bi5Ti3FeO15基薄膜的能带结构决定了光吸收和载流子产生的性质。
此外,薄膜中的缺陷态也会影响载流子的俘获和输运过程,从而影响铁电光伏效应的性能。
硅酸盐学报・ 392 ・2013年DOI:10.7521/j.issn.0454–5648.2013.03.20 Bi5FeTi3O15薄膜室温多铁性及其磁性机理孙慧,王浩,孟德欢,毛翔宇,陈小兵(扬州大学物理科学与技术学院,江苏扬州 225002)摘要:用溶胶−凝胶工艺在Pt/Ti/SiO2/Si基片上沉积了Bi5FeTi3O15(BFTO)薄膜,研究了前驱液浓度和退火升温速率对BFTO薄膜结晶的影响,前驱液浓度低于0.05mol/L时不利于4层层状钙钛矿结构的形成。
沉积BFTO薄膜的最佳制备工艺为:前驱液浓度为0.05mol/L和氧气氛中退火速率为4℃/s。
室温下,用最佳工艺制得的BFTO薄膜显示出良好的铁电性,在300kV/cm的外加电场下,样品的剩余极化强度2P r达到43.4μC/cm2;同时,BFTO 薄膜也显示出弱铁磁性。
为了研究其磁性来源,分别在氧气氛和氮气氛下对BFTO薄膜样品进行退火,分析其磁性的差异。
认为BFTO薄膜室温下的弱铁磁性主要来源于F中心交换作用。
关键词:钛酸铋铁薄膜;层状钙钛矿;铁电薄膜;磁性来源中图分类号:TQ174 文献标志码:A 文章编号:0454–5648(2013)03–0392–04网络出版时间:网络出版地址:Multiferroic Properties of Bi5FeTi3O15 Thin Film at Room TemperatureSUN Hui,WANG Hao,MENG Dehuan,MAO Xiangyu,CHEN Xiaobing(College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, Shuzhou, China)Abstract: The four layer-structured Bi5FeTiO15 (BFTO) thin films were deposited on a Pt/Ti/SiO2/Si substrates by a sol–gel method. The effects of precursor concentration and the heating rate during annealing on the crystallization were investigated. It was found that the precursor solution concentration of <0.05mol/L is not conducive to the formation of the four-layered perovskite structure films. The optimal preparation process to deposit the BFTO thin films occurred at the precursor concentration of 0.05mol/L and annealing heating rate of 4℃/s in oxygen atmosphere. At room temperature (RT), the BFTO film deposited by the optimal preparation process exhibited a good ferroelectric property with the remnant polarization 2P r about 43.4μC/cm2 under the electric field of 300kV/cm. Furthermore, the film showed a weak ferromagnetism at RT. It was indicated that the weak ferromagnetic property of the BFTO film at RT could be mainly due to the F-center exchange mechanism in the film.Key words: iron bismuth titanate film; layered perovskite; ferroelectric film; magnetism origin多铁材料不仅同时具有铁电性和磁性,而且它们之间存在耦合作用,在自旋电子学等方面具有广阔的应用前景[1–3]。
《Bi5Ti3FeO15基薄膜的多铁性与铁电光伏效应》篇一一、引言随着现代科技的发展,多铁性材料因其独特的物理性质和潜在的应用前景,已成为材料科学研究的重要领域。
Bi5Ti3FeO15基薄膜作为一种典型的多铁性材料,具有丰富的物理性质和潜在的应用价值。
本文将重点探讨Bi5Ti3FeO15基薄膜的多铁性和铁电光伏效应,以期为相关研究提供参考。
二、Bi5Ti3FeO15基薄膜的结构与性质Bi5Ti3FeO15基薄膜是一种具有钙钛矿结构的复合氧化物薄膜。
其晶体结构由Bi、Ti和Fe等元素组成,具有较高的结晶度和良好的稳定性。
该薄膜具有多铁性,即同时具有铁电、铁磁和铁弹性质,使得其在多场耦合、磁电耦合等方面具有独特的应用价值。
三、多铁性研究多铁性是指材料同时具有多种铁性性质,如铁电、铁磁等。
Bi5Ti3FeO15基薄膜的多铁性源于其特殊的晶体结构和电子结构。
在电场作用下,该薄膜的铁电性质表现为电偶极矩的可逆变化;在磁场作用下,其铁磁性质表现为磁化强度的变化。
此外,该薄膜还具有铁弹性质,即在一定条件下可发生晶格畸变。
这些性质使得Bi5Ti3FeO15基薄膜在多场耦合、磁电耦合等方面具有广泛的应用前景。
四、铁电光伏效应铁电光伏效应是指铁电材料在电场作用下产生的光生电压效应。
Bi5Ti3FeO15基薄膜具有较高的铁电性能和光响应性能,因此具有显著的铁电光伏效应。
当光照射到该薄膜表面时,光生载流子在电场作用下发生分离和迁移,从而产生光生电压。
这一现象在太阳能电池、光电传感器等领域具有潜在的应用价值。
五、实验研究为了深入研究Bi5Ti3FeO15基薄膜的多铁性和铁电光伏效应,我们开展了系列实验。
首先,通过溶胶-凝胶法制备了Bi5Ti3FeO15基薄膜,并对其晶体结构和形貌进行了表征。
其次,利用铁电测试仪和光伏测试系统,研究了该薄膜的铁电性能和光伏性能。
实验结果表明,Bi5Ti3FeO15基薄膜具有较高的剩余极化强度和良好的光响应性能,其铁电光伏效应显著。
目录摘要 (1)关键词 (1)Abstract (1)Key words (1)1引言 (1)2 BiFeO3的结构 (2)3 BiFeO3陶瓷与薄膜的制备工艺 (2)3.1 BiFeO3陶瓷的制备 (2)3.2 BiFeO3薄膜的制备 (3)4 掺杂改性 (4)4.1稀土掺杂改性 (4)4.2 BiFeO3与其他ABO3型钙钛矿结构的铁电材料固熔体系 (5)5 结论 (6)参考文献 (6)铁磁电复合材料BiFeO及研究进展3姓名:武少华学号:20075040098单位:物理电子工程学院专业:物理学指导老师:秦萍职称:副教授摘要:BiFeO3是一种室温下同时具有铁磁性和铁电性的铁磁电材料之一,在信息存储、传感器和自旋电子器件等方面都有潜在的应用前景。
本文综述了BiFeO3的结构、陶瓷与薄膜的制备工艺、掺杂改性,并展望了BiFeO3铁磁电材料今后的研究和发展趋势。
关键词:铁磁电材料;掺杂改性;磁电效应Progress in Study on Ferroelectromagnetics BiFeO3 Abstract: BiFeO3 is one of ferroelectromagnetics with ferromagnetism and ferroelec- tricity at room temperature,which has potential applications in the information storage,sensors,spin electronic devices,and other aspects.This paper not only discusses the struc- ture,ceramics and thin film technology,doped of BiFeO3,but also prospects BiFeO3 ferroelectromagnetics for future research and development trends.Keywords: Ferroelectromagnetics;Doped to change the nature;Magnetoelectric effect1 引言铁磁电材料是一种因结构参数有序而导致铁电性、磁性同时存在并具有磁电耦合性质[1]的材料,它在探索新型信息存储器、自旋电子器件和设备等方面有着潜在的应用前景。
材料与信息,能源并列称为当代文明的“三大支柱' 社会综合实力的増强和人们物质文化水平的提高都与高性能的新型材料相关•功能材料主要包括了一大类电介质和铁性材料,主要涉及电、磁、声、光,热等物理效应,是众多电子元器件的基础「基于这些材料,产生了许多电子元器件,如片式电容、片式电感、磁通门等等。
随着社会的进步及科学的发展,传统材料将会逐渐.难以满足现代技术的要求,寻觅更高性能的新材料或者开辟多功能材料将是未来功能材料的主要发展方向。
參铁性材料是一种新型功能材料"多铁性材料是指具有两种或者两种以上铁性的材料q其中铁性是指铁龟性(ferroelectricity铁磁性(足rrom篇gnetim)以及铁弾性(ferroelasticity)»多铁性材料除了具备本身的铁性外,还具有两种铁性的交叉耦合性能,如磁电、磁介电等性能,是一种具有新性能也具有多功能性的新材料。
这些特殊性能在新型传感器、换能器以及能量采集器等器件上具有潜在的应用[,^L 2022年,多铁性材料被评为(Science^杂志预测的2022年世界最值得关注的7大热点研究领域,近年来,多铁性材料的研究【2』山句已经逐渐成为当前国际材料科学领域的热点之一。
其中,具有铁电性和铁磁性的磁电复合材料受到人们越来越多的关注"」气它多样化的成份与结构以及很显著的磁电耦合性能促进了新型电子器件的开辟卩吼在自然界中惟独少数单相化合物具有多铁效应,且化合物的Curie温度和N6el温度通常远低于室温.早期科研人员花费巨大的精力去合成単相多铁材料,但结果都不够理想,因这人们开始倾向于采用复合的方法来获取磁电材料。
磁电复合材料是将铁电材料与铁磁材料经各种方法复合形成的一种新型多铁性材料点与大多数单相磁电材料相比,磁电复合材料在室温下就具有磁电構合效应且磁租转换系数较大。
因此.采用复合方式获得磁电效应受到众多研究者的重视“七基于磁电复合材料的室温磁电性能,它在微波信号传输、换能器、宽频段磁探測、磁传感器、存储器等领域具有潜在的应用卩皿%随者磁电复合材料的逐渐发展,人们的研究重点从前期的理论预測、简单体系的制备和磁电性能研究[以及刀方面逐渐延伸到复杂体系的制备以及器件开辟区応咫(比如能量采集器、换能器)等方面,各个尺度下的磁电复合材料及其器件正在得到充分的发展°磁电效应是指材料在外加破场作用下产生电极化或者占材料在外加电场作用下产生破化的现象〔列.对于磴电复合14料来讲,磁电效应可认为是压电效应和磁致伸墙效应“乘税”的体现,可義示为,观峥制讐成心峥烏譬 ------------------------------------------------ X1-1)将压电相和压磁相以一定的方式复合就可以得到较理想的磁电效应卩5■询.1.11压电效应圧电效应(piezoelectric eflect) M J. Curie 和P. Curic 兄弟于1880 年在a 石英晶体上首先发现的。
科技创新导报 Science and Technology Innovation Herald126该文采用固相反应法制备了1-xBi 0.85La 0.15FeO 3-xCoFe 2O 4,系列复合样品。
并对每批样品的物相结构、磁性能、介电性能以及部分样品的铁电性进行了研究。
复合样品中没有杂相出现,说明两相间没有发生反应,随着铁磁相逐渐增多,铁磁相的峰逐渐增强,磁特性逐渐增大。
且复合系列样品,在x=0.1时,能观测到很好的P -E曲线,饱和极化强度P s 和剩余极化强度Pr 都比单相的Bi 0.8La 0.2Fe O 3要大,介电常数ε随着x的增加而减小。
多铁性材料是一种同时具有铁电、铁磁以及铁弹中两者或是两者以上之间能够发生耦合的多功能材料,同时也包括反铁磁性和反铁电性等。
在该材料中,铁电和铁磁之间的耦合作用使得电场控制磁数据存储或磁场控制铁电数据存储成为可能[1-10]。
近些年,多铁的研究在材料界里是一个非常活跃的课题[11]。
将压磁和压电两相按照合适的组合能够产生理想的ME特性。
单相材料低的M E 耦合系数,以及磁电耦合只能在低温尤其是制冷温度范围内起作用,这就使得单相材料在实际应用中非常具有局限性。
由于实际生活的这些需要,就促使了我们对复合材料的探索。
制作陶瓷复合材料的主要优势是制作过程简单,成本低廉,而且容易控制相与相之间的摩尔比、颗粒大小以及密度。
主要问题是在烧结过程中应防止铁电相和铁磁相之间发生反应,导致弱的电特性。
在本文中,我们采用固相法制备了1-xBi 0.85L a 0.15Fe O 3-x Co Fe 2O 4,系列复合样品,并对此系列复合样品的结构、磁性能、介电性能和铁电性能性能进行了研究。
1 样品的制备过程本文主要选取了几种氧化物F e 2O 3(99%),Bi 2O 3(99%),L a 2O 3(98%),称量前先在600o C干燥5h),Co 2O 3(99%),Cu O (99%),MnO 2(85%),ZnO 2(99%)为原料,先制备出铁电相的B L F O系列样品和铁磁相得CoFe 2O 4,CuFe 2O 4,Zn 0.6Mn 0.4Fe 2O 4系列样品。
多铁磁电复合材料—功能材料领域的闪亮新星张荣芬;郭凯鑫;邓朝勇【摘要】在功能材料研究领域,人工复合的多铁磁电材料因具有室温环境下特殊的磁电性能——铁电有序和铁磁有序共存及“磁-力-电”转换特性(磁电耦合效应),在磁传感器、换能器、微波器件、存储器等方面有着十分诱人的实用价值与应用前景.本文在回顾多铁磁电复合材料背景知识的基础上,重点介绍磁电复合材料磁电耦合机理、设计原理、制备方法与研究现状、理论分析方法与磁电效应表征方法相关内容,最后总结、展望多铁磁电复合材料未来研究中的一些重要问题.【期刊名称】《贵州大学学报(自然科学版)》【年(卷),期】2015(032)005【总页数】7页(P49-54,65)【关键词】多铁磁电复合材料;磁电效应;磁电复合薄膜,功能材料【作者】张荣芬;郭凯鑫;邓朝勇【作者单位】贵州大学大数据与信息工程学院,贵州省电子功能复合材料特色重点实验室,贵州贵阳550025;贵州大学大数据与信息工程学院,贵州省电子功能复合材料特色重点实验室,贵州贵阳550025;贵州大学大数据与信息工程学院,贵州省电子功能复合材料特色重点实验室,贵州贵阳550025【正文语种】中文【中图分类】TM282今天,信息技术飞速发展,使得能源、环境及生产等对材料性能的集成或多样化提出了更高的要求。
功能材料(multifunctional materials)因此得到了快速发展,各种新型功能材料不断问世,制备工具与工艺技术也日新月异,在能源、通讯、航天航空、军事等领域发挥着越来越重要的作用。
其中,多铁性(multiferroic)磁电复合材料除了同时具有室温铁电性和铁磁性以外,还具有特殊的磁电效应(magnetoelectric effect,简称为ME effect),因此可以极大地拓展其应用范围,在磁场探测器、电磁调谐微波器件、多态存储器以及一些磁、力、电三重响应的多功能器件领域展现了独特的魅力与应用前景,在短短的10 多年里得到人们的广泛研究与关注,逐渐成为一颗耀眼的明星[1,2]。
材料磁电效应的研究及应用摘要:磁电材料具有独特的磁电效应,能实现磁场与电场的相互转换,在磁电传感器、磁记录和微波器件等领域具有广泛的应用前景。
本文阐述了磁电效应的产生机理及其研究历史,重点介绍了磁电复合材料的分类及相应的制备方法和研究状况。
文章最后简述了磁电材料的几个主要应用方向。
关键词:磁电效应;磁电材料;复合材料;铁电;铁磁Research and Application of Magnetoelectric effectAbstract:With a unique magnetoelectric effect, magnetoelectric material can achieve the mutual transformation between magnetic and electric fields, which has extensive applications in the field of magnetic sensors, magnetic recording and microwave devices.In this paper, the basic mechanism of the magnetoelectric effect and its research history were illustrated. The classification of magnetoelectric composites, the corresponding preparation methods and its research status were emphatically introduced. Finally, several main application directions of magnetoelectric material were sketched briefly.Keywords: :magnetoelectric effect;magnetoelectric Materials;composites;ferroelectric; ferromagnetic1引言作为新材料研究领域的核心,具有力、热、电、磁、声、光等特殊性能的功能材料对高新技术的发展起着重要的推动和支撑作用。
材料的铁电性能综述摘要:回顾了铁电现象的发现及发展,简述了铁电性的机理,描述了铁电材料应用现状与前景,并介绍了几类前景很好的铁电材料。
指出目前对于铁电性的还需要进行更多的和更深入全面的研究。
关键词:铁电性,电畴,铁电薄膜,存储器前言:铁电材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。
铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。
铁电材料是一类重要的功能材料,是近年来高新技术研究的前沿和热点之一。
在一些电介质晶体中,晶胞的结构使正负电荷重心不重合而出现电偶极矩,产生不等于零的电极化强度,使晶体具有自发极化,晶体的这种性质叫铁电性(ferroelectricity)。
铁电性:铁电性是某些绝缘体材料中在外加电场的作用下自发极化可以被反转的特性。
多数材料的极化是与外加电场线性成正比的,非线性效应是不显著的。
这种极化叫做电介质极化。
有些称作顺电体的材料,线性的极化效应更加显著。
于是与极化曲线斜率相对应的介电常数是以一个外加电场的函数。
除了非线性效应以外,铁电材料中还存在自发极化。
这种材料称作焦电材料。
铁电材料与其不同之处在于它的自发极化可以在外加电场作用下被反转,产生一个电滞归线。
一般来说,材料的铁电性只存在于某一相变温度以下,称为居里温度。
在这个温度以上,材料变为顺电体。
铁磁体中的原子有固定的磁偶极矩,这些磁矩自发排列起来。
自发排列的原因是固体中电子的量子力学效应。
铁磁体的居里温度指向顺磁体转变的温度,同理对铁电体,指材料不再是铁电体的温度。
对于一块未极化铁电晶体,电畴随机排列,净极化强度为零。
当外加一个电场时,电畴同时向电场方向转动,当电场足够强时,全部电畴沿电场方向排列一致,这时晶体变成一个大电畴,处于极化饱和状态。
当扭转电场时,极化反转但不回零,晶体获得一个剩余极化强度PR,当电场被扭转到矫顽场Ec时,剩余极化强度被去除。
铁电相是一个相当严格的状态,大多数材料都是顺电状态,顺电相指即使没有固有电偶极子,电场也可诱发极化。
铁电/铁磁复合材料的计算机模拟研究随着科学技术的发展和社会的进步,单一性能的材料很难满足新型器件对材料的要求,因此,研究和制备具有多重性能的复合材料已经成为当今材料领域的研究热点。
铁电材料具有铁电性、压电性、热释电效应、声光效应等一系列重要的特性,广泛应用在铁电存储器、微电子机械系统(MEMS)等领域。
铁磁材料则具有磁致伸缩、磁滞现象等特性,是另外一类非常重要的功能材料,被广泛应用在磁记录、滤波器、传感器等领域。
如果一种材料同时具有铁电性和铁磁性两种性能,无疑给传统器件的设计提供一个更大的自由度。
铁电/铁磁复合材料是一种多功能材料,它是由铁电相和铁磁相复合而成的具有磁电转换功能的新型材料,除了具有单一材料的各种性能外,由于电极化和磁化之间的耦合作用,还会出现新的性能——磁电效应。
自从Suchtelen等人于1972年制备了第一种铁电/铁磁复合材料块材(bulk composite)以来,各国科学家开展了大量具有磁电效应的铁电/铁磁复合材料的制备和研究工作。
铁电/铁磁复合薄膜材料(thin film composite)最近也已经引起了人们强烈的关注。
随着实验研究的深入和制备工艺的改善,铁电/铁磁复合材料表现出的性能也越来越好,这在传感器、微位移器、反馈系统以及微波领域、高密度信息存储器等方面具有潜在的应用价值。
如今,铁电/铁磁复合材料以其独有的特性,在微波领域、高压输电线路的电流测量、宽波段磁探测、磁场感应器等领域有着广泛而重要的用途,尤其是微波器件、高压电输送系统中电磁泄露的精确测量方面有很突出的优点。
此外,由于其滞回曲线呈现两种稳定状态,因此容易用在记录介质上。
铁电/铁磁复合材料的研究越来越引起了各国材料科学工作者的重视。
本文中铁电/铁磁复合材料采用双层结构,对铁电层施加电场(电压)时,铁电层由于压电效应发生形状改变,应变通过层间应力传递到铁磁层,由于磁致伸缩的逆效应,铁磁层的磁化强度将发生改变。
《BMT-NBT基弛豫铁电薄膜储能特性研究》篇一一、引言随着科技的不断进步,铁电材料因其独特的电学性能在许多领域中得到了广泛的应用。
BMT-NBT基弛豫铁电薄膜作为一种新型的铁电材料,其储能特性备受关注。
本文旨在研究BMT-NBT基弛豫铁电薄膜的储能特性,分析其性能参数,为实际应用提供理论支持。
二、BMT-NBT基弛豫铁电薄膜BMT-NBT基弛豫铁电薄膜是一种具有钙钛矿结构的薄膜材料,其组成元素包括Bi、Me(M为Ti或Nb)等。
该类材料具有优异的铁电性能和弛豫行为,在电场作用下能够产生显著的极化现象。
此外,BMT-NBT基薄膜还具有较高的介电常数和较低的介电损耗,使其在储能器件领域具有广阔的应用前景。
三、储能特性研究(一)实验方法本文采用脉冲激光沉积法制备BMT-NBT基弛豫铁电薄膜,并利用X射线衍射、扫描电子显微镜等手段对薄膜的微观结构进行表征。
通过电学性能测试系统,测量薄膜的电学性能参数,如介电常数、介电损耗、电滞回线等。
(二)实验结果1. 微观结构分析:BMT-NBT基弛豫铁电薄膜具有钙钛矿结构,晶粒排列紧密,无明显缺陷。
2. 电学性能参数:在室温下,BMT-NBT基薄膜的介电常数较高,介电损耗较低。
此外,该薄膜具有显著的铁电性能,表现出典型的电滞回线。
3. 储能特性:BMT-NBT基弛豫铁电薄膜在电场作用下能够产生较大的极化强度,且极化强度与外加电场之间呈现出非线性关系。
这使得该薄膜在储能器件中具有较高的储能密度和充放电效率。
(三)性能分析BMT-NBT基弛豫铁电薄膜的储能特性主要得益于其优异的铁电性能和弛豫行为。
在电场作用下,该薄膜能够产生显著的极化现象,使得电荷在薄膜内部重新排列,从而实现在电能与磁能之间的转换。
此外,该薄膜还具有较高的介电常数和较低的介电损耗,有利于提高储能器件的能量转换效率。
同时,BMT-NBT 基薄膜的制备工艺成熟,成本较低,为实际应用提供了良好的基础。
四、结论本文研究了BMT-NBT基弛豫铁电薄膜的储能特性,通过实验发现该薄膜具有较高的介电常数、较低的介电损耗和显著的铁电性能。
二维磁电多铁材料
二维磁电多铁材料是一种复合材料,其中包含了铁电(或压电)材料与铁磁性材料。
这种材料的特点在于其磁电耦合系数可以被大大提高,这是通过利用第三方序参量如应变参与耦合,并通过复合界面实现的。
在交变外场驱动下,这种材料的磁电耦合具有很强的应用性。
此外,这种复合材料对于尺寸维度上的响应,有利于人工设计和裁剪。
根据铁电性来源和磁电耦合机制的不同,多铁性材料又可以分为第I类多铁性材料和第Ⅱ类多铁性材料。
第一类多铁性材料的铁电性是本征的,其铁电机制和常规铁电体相同,这类多铁性材料有望实现电场控制磁性。
而第二类多铁性材料的铁电性是非本征的,其铁电性来自于与自旋、轨道或电荷序的耦合效应,其中以磁致多铁性材料为主,这类多铁性材料可实现磁场调控电极化。
二维MnB材料是一种MBene的代表,由锰和硼原子组成的六方对称的平面结构,属于P6/mmm空间群。
它是一种铁磁体,其铁磁性主要来源于锰原子的d轨道。
它还是一种金属导体,其费米能级附近的态密度主要由锰原子的d轨道和硼原子的p轨道贡献。
这种材料具有非常高的居里温度,也就是它失去铁磁性的临界温度。
据计算,它的居里温度为338 K,也就是65°C。
这意味着,在这个温度以下,它都可以保持强烈的铁磁性。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询相关学者。