多铁性材料BiFeO3的研究PPT课件
- 格式:ppt
- 大小:644.50 KB
- 文档页数:3
多铁性材料BiFeO3的制备及其掺杂改性的研究(可编辑)多铁性材料BiFeO3的制备及其掺杂改性的研究单位代码: 10293密级:硕士学位论文论文题目 : 多铁性材料 BiFeO 的制备及其掺杂改性研究3 1010030913学号王希望姓名李兴鳌导师光学学科专业光电子功能材料、性质和器件研究方向理学硕士申请学位类别 2013.02.26论文提交日期Imultiferroic properties of co-substituted BiFeO 3 nanoparticlesThesis Submitted to Nanjing University of Posts and Telecommunications for the Degree ofMaster of Master of ScienceByXiwang WangSupervisor: Prof. Xing’ao LiFebruary 2013II南京邮电大学学位论文原创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得南京邮电大学或其它教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
本人学位论文及涉及相关资料若有不实,愿意承担一切相关的法律责任。
研究生签名:_____________ 日期:____________南京邮电大学学位论文使用授权声明本人授权南京邮电大学可以保留并向国家有关部门或机构送交论文的复印件和电子文档;允许论文被查阅和借阅;可以将学位论文的全部或部分内容编入有关数据库进行检索;可以采用影印、缩印或扫描等复制手段保存、汇编本学位论文。
本文电子文档的内容和纸质论文的内容相一致。
论文的公布(包括刊登)授权南京邮电大学研究生院办理。
目录摘要 (1)关键词 (1)Abstract (1)Key words (1)1引言 (1)2 BiFeO3的结构 (2)3 BiFeO3陶瓷与薄膜的制备工艺 (2)3.1 BiFeO3陶瓷的制备 (2)3.2 BiFeO3薄膜的制备 (3)4 掺杂改性 (4)4.1稀土掺杂改性 (4)4.2 BiFeO3与其他ABO3型钙钛矿结构的铁电材料固熔体系 (5)5 结论 (6)参考文献 (6)铁磁电复合材料BiFeO及研究进展3姓名:武少华学号:20075040098单位:物理电子工程学院专业:物理学指导老师:秦萍职称:副教授摘要:BiFeO3是一种室温下同时具有铁磁性和铁电性的铁磁电材料之一,在信息存储、传感器和自旋电子器件等方面都有潜在的应用前景。
本文综述了BiFeO3的结构、陶瓷与薄膜的制备工艺、掺杂改性,并展望了BiFeO3铁磁电材料今后的研究和发展趋势。
关键词:铁磁电材料;掺杂改性;磁电效应Progress in Study on Ferroelectromagnetics BiFeO3 Abstract: BiFeO3 is one of ferroelectromagnetics with ferromagnetism and ferroelec- tricity at room temperature,which has potential applications in the information storage,sensors,spin electronic devices,and other aspects.This paper not only discusses the struc- ture,ceramics and thin film technology,doped of BiFeO3,but also prospects BiFeO3 ferroelectromagnetics for future research and development trends.Keywords: Ferroelectromagnetics;Doped to change the nature;Magnetoelectric effect1 引言铁磁电材料是一种因结构参数有序而导致铁电性、磁性同时存在并具有磁电耦合性质[1]的材料,它在探索新型信息存储器、自旋电子器件和设备等方面有着潜在的应用前景。
BiFeO3纳米颗粒的磁性和铁电性研究曹先胜;吉高峰;罗炳成【摘要】Based on the renormalization of Dzyaloshinskii-Moriya interaction (DMI),the multiferroic prop-erties of BiFeO3 (BFO)nanoparticles were investigated by using Green�s function technique.It was found that the magnetization (polarization)decreased and vanished continuously at the magnetic transition tem-perature TN(ferroelectric transition temperature TC)as the temperature increased.It was found that the phase-transition temperature TN(TC)shifted to higher values as the exchange coupling constants Jb and Js(Bb and Bs)increased.It was also found that the magnetization and the polarization were both enhanced as the magnetoelectric coupling constant (g)increased.For this reason,the magnetic and the ferroelectric phase coexisted in this region.In addition,it was observed that there existed a cusp around 40K,which were unique to the nanosize effect of BFO.%在重整化Dzyaloshinskii-Moriya相互作用的基础上,利用格林函数方法对 BiFeO3(BFO)纳米颗粒的多铁性能进行了微观研究。
铁酸铋基半导体陶瓷材料的电阻率与热电性能的研究赵琨2006级物理学基地班20061001179(山东大学物理学院,山东济南,250100)摘要:采用传统固相烧结法分别制备了纯铁酸铋、10%铋过量的铁酸铋半导体陶瓷材料和不同元素掺杂改性的铁酸铋基杂质半导体陶瓷材料,研究了不同的掺杂改性对铁酸铋基陶瓷材料在常温下的直流电阻的影响。
实验结果表明,少量钙的掺杂取代最大程度的减小了铁酸铋基陶瓷材料的直流电阻率。
同时可以看出,少量钙的掺杂并没有使晶格发生畸变,没有改变陶瓷的微观结构,并且对晶界势垒、电导激活能的影响较小,但是却可以使其直流电阻率大大减小,从而极大的改善了铁酸铋基陶瓷材料的热电性能。
为进一步探究其热电性能,选择(Bi0.96Ca0.04)FeO3陶瓷,研究了其物相结构、直流电阻率及热电参数随温度的变化规律,并获得了最佳的热电性能。
实验结果表明,(Bi0.96Ca0.04)FeO3陶瓷的Seebeck系数在一定的温度范围内变化很小,保持在530 μV K-1左右。
在510 ℃时,(Bi0.96Ca0.04)FeO3陶瓷的电阻率达到最小,同时功率因子达到最大值,为14.2 μW m-1K-2。
本论文中首次报道了铁酸铋基陶瓷材料的热电性能,其最佳适用温度为510 ℃,最佳的热电性能为功率因子达到14.2 μW m-1 K-2。
为进一步认识铁酸铋基陶瓷材料做出了一定的探索,填补了该领域研究的一项空白,可进一步研究扩大其应用领域,提高应用价值。
关键词:铁酸铋,半导体陶瓷,电阻率,热电性能中图分类号:O482.6Research on electrical resistivity and thermoelectric properties of bismuth ferric based semiconductiveceramic materialsZhao Kun(School of Physics, Shandong University, Jinan 250100, China) Abstract: Pure bismuth ferric, 10% excess of bismuth of the bismuth ferric semiconductor ceramic materials and different elements of the doped bismuth ferric based impurity semiconductor ceramic materials were prepared by the traditional solid-phase sintering. The effects on DC resistance at room temperature of different doping modification of the doped bismuth ferric based impurity semiconductor ceramic materials were studied. The Experimental results show that a small amount of calcium doping reduced the DC resistance at room temperature of different doping modification of the doped bismuth ferric based impurity semiconductor ceramic materials to the utmost extent. At the same time, we can see that a small amount of calcium doping does not cause the crystal lattice to have the distortion, no change in the ceramic micro-structure, and has no influence on the grain boundary barrier and the conductance activation energy, but it can substantially reduce the rateof DC resistance, which may greatly improve the thermoelectric properties of the doped bismuth ferric based impurity semiconductor ceramic materials. In order to further explore its thermoelectric properties, (Bi0.96Ca0.04)FeO3 ceramics was selected, the phase of their structure, the rule of change of resistivity and thermoelectric properties with the temperature were studied and the best thermal performance were obtained. The results show that, (Bi0.96Ca0.04)FeO3 ceramics has a Seebeck coefficient, whose change is very small of a certain range of temperature, remain at 530 μV K-1or so. At 510 ℃,the rate of resistance is the smallest, while the power factor achieves the maximum value at the same time, for 14.2 μW m-1. This paper reported in the thermoelectric properties of the bismuth ferric based semiconductor ceramic materials for the first time, the application of the best temperature is 510 ℃, the best performance of thermoelectric power factor reaches 14.2 μW m-1. This paper made a certain amount of exploration, which can be made to fill a gap in the study in this area, in order to further understand the bismuth ferric based semiconductor ceramic materials. Further study may be made in order to expand its applications and to enhance the value.Key words:bismuth ferric, semiconductive ceramics, electrical resistivity, thermoelectric properties1.引言1.1 热电材料热电材料也称为温差电材料,是一种能够实现热能和电能之间直接相互转换的功能材料。
第四章 Bi1-x A x FeO3 (A= La, Nd; 0≤x<0.3)系列陶瓷通过对BiFeO3掺杂La,在~0.01≤x≤~0.2的范围内Bi1La x FeO3增强了电极化-x(P s>15µC/cm2),在x≥~0.1时候,螺旋磁结构的反铁磁已经被破坏;因此,在~0.1≤x≤~0.2区域,同时具有较大的电极化和空间均匀的反铁磁,较大的磁电耦合效应可能出现。
在~0.2≤x≤~0.25区域,Bi1-x La x FeO3的P s忽然降到小于6µC/cm2,这说明此区域可能存在一个二级相变。
此外,我们发现Bi1Nd x FeO3和Bi1-x La x FeO3的性质类似。
-x§4.1 引言Ps明显增大的区域饱和极化 Ps反铁磁结构空间不均匀的反铁磁空间均匀的反铁磁La、Nd和Sm等A位掺杂元素的百分比较大的磁电耦合效应可能出现的局域图4-1 通过掺杂 La、Nd和Sm,可以增强电极化和破坏螺旋磁结构的反铁磁,存在一个区域,电极化被增大同时反铁磁空间均匀,这就是较大的磁电耦合效应可能存在的区域。
在典型的铁电存储材料中,Bi3.25La0.75Ti4O12、Bi3.15Nd0.85Ti4O12是最著名的两种,它们是通过掺杂抗疲劳性能不佳的Bi4Ti4O12后得到的。
研究人员受到前者的鼓舞,希望通过对BiFeO3掺杂La、Nd、Sm等获得优越的磁电性能[1-3]。
La3+、Nd3+和Sm3+三种离子103与Bi3+离子相近,容易掺入BiFeO3的晶格并在A位取代Bi3+,从而引起晶格常数的变化,是BiFeO3的A位掺杂材料中的最佳选择之一。
但是,当前最根本和最需要解决的问题不是选择哪一种掺杂材料,而是制备出高绝缘性,能够测到饱和P-V回线的材料。
因此,A x FeO3 (A=La, Nd; 0≤x<0.3)我们研究工作的重点在于制备条件。
我们成功制备了Bi1-x系列陶瓷,它们在室温至140o C的电阻率都能达到~109Ω⋅cm,击穿电场大于150kV/cm。
Gd掺杂的多铁性陶瓷BiFeO铁酸铋论文导读::是少数在室温下同时具有铁电性和铁磁性的多铁性材料之一。
是用稀土元素对A、B位进行离子掺杂,用La3+。
论文关键词:铁酸铋,多铁性材料,掺杂1 引言BiFeO3是一种具有扭曲钙钛矿结构(R3c空间群)的单相磁电材料,室温下同时具有铁电(T C=830℃)与G型反铁磁(T N=370℃)有序,是少数在室温下同时具有铁电性和铁磁性的多铁性材料之一。
BiFeO3中铁电性和铁磁性的共存使其在信息存储、磁电传感器等领域具有广阔的应用前景。
科学家虽然很早就发现了BiFeO3中铁电与铁磁性的共存态,但在传统固相反应法制备的样品中易出现Bi2Fe4O9和Bi25FeO39等杂相,致使样品的漏导增大,铁电性能降低,大大限制了其应用前景。
此外,从磁性与晶体对称性关系考虑,BiFeO3特有的自旋螺旋G型反铁磁结构,只允许弱铁磁性的产生,而同时具有较强的铁电性与铁磁性是作为新型记忆材料和电容电感一体化的关键所在,纯的BiFeO3显然不能满足这一要求,因此要BiFeO3走向应用,就必须增强其铁电性与铁磁性,同时减少其高漏导。
为了改善BiFeO3陶瓷的多铁性能,学者们主要从两个方面进行了研究:一是将BiFeO3陶瓷与其他具有强铁电性的钙钛矿材料复合(与PbTiO3、BaTiO3等[1-3]复合,形成二元或三元固溶体体系),从而破坏其特有的自旋螺旋反铁磁结构,增强其多铁性;二是用稀土元素对A、B位进行离子掺杂,用La3+,Nd3+铁酸铋,Sm3+等[4-6]离子替代晶体中的A位Bi3+离子,或用Co3+,Ti4+,Zr4+等[7-9]磁性或非磁性离子替代B位Fe3+以抑制氧空位的生成,同时破坏其反铁磁结构,改善多铁性能。
关于Gd掺杂的BiFeO3陶瓷研究已有报道,Khomchenko等[10-13]研究发现随着掺杂量的增大,其发生了由三角钙钛矿结构向正交钙钛矿结构的转变,并给出了Bi1-x Gd x FeO3陶瓷随着掺杂量变化的磁电相图论文的格式。
在L10FePt(100)/玻璃基底上的BiFeO3(001)的溅射制备在玻璃基底和工业Pt/Ti/SiO2/Si(001)基底上,温度为450℃的BFO薄膜的制备已经被研究过了。
有不同取向的衬底也已经在玻璃基底上制备了,其中包括Pt(111)和经迅速退火过程诱发的FePt(001)。
各向同性的钙钛矿BFO在工业基底上形成约200nm的尺寸,显现出大的表面粗糙度。
Pt(111)抑制了BiFeO3相,单晶相有强的(001)结构的钙钛矿BFO,能够减少表面粗糙度和在L10-FePt(001)缓冲层形成良好的尺寸。
铁性钙钛矿化合物BiFeO有高的铁电居里温度(830)和反铁磁性的奈尔温度(370)最近几年获得了基础呀酒的价值并且在自旋电子学装置应用也有了潜力。
是基于电子和磁性极化的耦合。
室温下大的极化在BFO期待,是因为大的晶格变形和高的Tc,但BFo单晶沿(001)和(111)显现出小的极化,分别为3.5lC/cm2和6.1 lC/cm2,然而BFO薄膜有很强的铁电极化和弱的铁磁性能。
BFO薄膜的铁电性能依赖于结构和薄膜取向。
BFO(001)薄膜显现出一些优点,包括低的电矫顽场。
抗疲劳强度和更高的压电系数,但是与(111)和(110)取向的BFO薄膜样品比较,有一较低的剩余极化强度。
因此,综合研究已经在各种基底上生长出BFO(001)薄膜,包括SrRuO3, LaNiO3, or Pt作为电极和SrTiO (100), MgO(100), TbScO (110), and Si(100)单晶基底。
从加工理论的观点看,大多数关于BFO薄膜的生长研究都是在激光镭射沉积(PLD)取得的。
然而,溅射BFO的研究相当少,源于很难获得高质量的样品,虽然被广泛用于工业。
更重要的是,目前很少有在玻璃基地上生长BFO薄膜的报道,虽然玻璃作为基底材料被采用。
在这项工作中,我们试图采取射频磁控溅射在在玻璃基底上制造出BFO薄膜。