用“夹逼法”巧解初一难题
- 格式:doc
- 大小:393.50 KB
- 文档页数:2
巧用方程、方程组,妙解拼图和密铺拼图、密铺问题是中考的热点。
要解答这类问题,同学们不仅要有很强的图形观察能力,还要借助一种强有利的工具……方程或方程组。
这样问题就会获得完美的解答。
下面就试举几例,供学习时参考。
一 、用长方形、正方形密铺成正方形例1、如图1,是用四个完全相同的小长方形和一个小的正方形镶嵌而成的正方形图案。
已知该图案的面积为49,小正方形的面积为4,如果用x 、y 表示小长方形的长和宽,(x >y ),请你仔细观察图案,指出下列关系式中不正确的一个是:( )。
A ) x+y=7B )x-y=2C )4xy+4=49D )x 2+y 2=25分析:通过仔细观察图案,我们不难发现这个图案中,大正方形的边长是小长方形的长与宽的和,也就是x+y ;小正方形的边长是小长方形的长与宽的差,也就是x-y ,由于大正方形的面积为49 ,小正方形的面积为4,所以,(x+y )2=49,(x-y )2=4,即x+y=7(另一个舍去了,你知道是为什么吗);x-y=2,(另一个舍去了,你知道是为什么吗);再回头审视一下题目的选择支,就知道选项A 、B 都是正确的;把x+y=7 、x-y=2,联立成方程组⎩⎨⎧=-=+27y x y x ,解这个方程组,得x=29,y=25,所以xy=29×25=445,所以4xy=445×4=45,所以4xy+4=49,所以选项C 也是正确的,分析到这里,答案就已经凸现出来了,对,就是选项D 。
解:选D 。
二、用直角三角形、正方形拼成正方形例2、如图2,是用四个全等的直角三角形和一个小的正方形拼成的正方形图案。
已知该图案的面积为13,小正方形的面积为1,直角三角形较短的直角边长为a ,较长的直角边长为b ,那么(a+b )2的值是( )。
A ) 13 B )19 C )25 D )169分析:通过仔细观察图案,我们不难发现这个图案中,大正方形的边长是直角三角形的斜边,也就是22b a +;小正方形的边长是直角三角形较长的直角边长与较短的直角边长的差,也就是b-a ,由于大正方形的面积为13 ,小正方形的面积为1,所以22b a +=13,(b-a )2=1,我们联想到两个数的差的完全平方公式(b-a )2=22b a +-2ab ,所以2ab=12,所以(a+b )2=22b a ++2ab=13+12=25, 所以,选项C 是正确的,分析到这里,答案就已经凸现出来了,对,就是选项C 。
第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上;能根据法则、公式等正确、迅速地进行运算.不仅如此;还要善于根据题目条件;将推理与计算相结合;灵活巧妙地选择合理的简捷的算法解决问题;从而提高运算能力;发展思维的敏捷性与灵活性.1.括号的使用在代数运算中;可以根据运算法则和运算律;去掉或者添上括号;以此来改变运算的次序;使复杂的问题变得较简单.例1计算:分析中学数学中;由于负数的引入;符号“+”与“-”具有了双重涵义;它既是表示加法与减法的运算符号;也是表示正数与负数的性质符号.因此进行有理数运算时;一定要正确运用有理数的运算法则;尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中;常常把小数变成分数;把带分数变成假分数;这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦;根据运算规则;添加括号改变运算次序;可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=211×555+211×445+445×789+555×789=211×555+445+445+555×789=211×1000+1000×789=1000×211+789=1000000.说明加括号的一般思想方法是“分组求和”;它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+-1n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项;第三、第四项;…;分别配对的方式计算;就能得到一系列的“-1”;于是一改“去括号”的习惯;而取“添括号”之法.解S=1-2+3-4+…+-1n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时;上式是n/2个-1的和;所以有当n为奇数时;上式是n-1/2个-1的和;再加上最后一项-1n+1·n=n;所以有例4在数1;2;3;…;1998前添符号“+”和“-”;并依次运算;所得可能的最小非负数是多少分析与解因为若干个整数和的奇偶性;只与奇数的个数有关;所以在1;2;3; (1998)前任意添加符号“+”或“-”;不会改变和的奇偶性.在1;2;3;…;1998中有1998÷2个奇数;即有999个奇数;所以任意添加符号“+”或“-”之后;所得的代数和总为奇数;故最小非负数不小于1.现考虑在自然数n;n+1;n+2;n+3之间添加符号“+”或“-”;显然n-n+1-n+2+n+3=0.这启发我们将1;2;3;…;1998每连续四个数分为一组;再按上述规则添加符号;即1-2-3+4+5-6-7+8+…+1993-1994-1995+1996-1997+1998=1.所以;所求最小非负数是1.说明本例中;添括号是为了造出一系列的“零”;这种方法可使计算大大简化.有这种竞赛讲义一整套小学初中的含答案最新的需要的可以联系我46~8453~607微信13699~77~10742.用字母表示数我们先来计算100+2×100-2的值:100+2×100-2=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算;若用字母a代换100;用字母b代换2;上述运算过程变为a+ba-b=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式a+ba-b=a2-b2;①这个公式叫平方差公式;以后应用这个公式计算时;不必重复公式的证明过程;可直接利用该公式计算.例5计算3001×2999的值.解3001×2999=3000+13000-1=30002-12=8999999.例6计算103×97×10009的值.解原式=100+3100-310000+9=1002-91002+9=1004-92=99999919.例7计算:分析与解直接计算繁.仔细观察;发现分母中涉及到三个连续整数:12345;12346;12347.可设字母n=12346;那么12345=n-1;12347=n+1;于是分母变为n2-n-1n+1.应用平方差公式化简得n2-n2-12=n2-n2+1=1;即原式分母的值是1;所以原式=24690.例8计算:2+122+124+128+1216+1232+1.分析式子中2;22;24;…每一个数都是前一个数的平方;若在2+1前面有一个2-1;就可以连续递进地运用a+ba-b=a2-b2了.解原式=2-12+122+124+128+1×216+1232+1=22-122+124+128+1216+1×232+1=24-124+128+1216+1232+1=……=232-1232+1=264-1.例9计算:分析在前面的例题中;应用过公式a+ba-b=a2-b2.这个公式也可以反着使用;即a2-b2=a+ba-b.本题就是一个例子.通过以上例题可以看到;用字母表示数给我们的计算带来很大的益处.下面再看一个例题;从中可以看到用字母表示一个式子;也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下;请计算他们的总分与平均分.87;91;94;88;93;91;89;87;92;86;90;92;88;90;91;86;89;92;95;88.分析与解若直接把20个数加起来;显然运算量较大;粗略地估计一下;这些数均在90上下;所以可取90为基准数;大于90的数取“正”;小于90的数取“负”;考察这20个数与90的差;这样会大大简化运算.所以总分为90×20+-3+1+4+-2+3+1+-1+-3+2+-4+0+2+-2+0+1+-4+-1+2+5+-2=1800-1=1799;平均分为90+-1÷20=89.95.例12计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中;从第二项开始;后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000;于是可有如下解法.解用字母S表示所求算式;即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①;②两式左右分别相加;得2S=1+1999+3+1997+…+1997+3+1999+1=2000+2000+…+2000+2000500个2000=2000×500.从而有S=500000.说明一般地;一列数;如果从第二项开始;后项减前项的差都相等本题3-1=5-3=7-5=…=1999-1997;都等于2;那么;这列数的求和问题;都可以用上例中的“倒写相加”的方法解决.例13计算1+5+52+53+…+599+5100的值.分析观察发现;上式从第二项起;每一项都是它前面一项的5倍.如果将和式各项都乘以5;所得新和式中除个别项外;其余与原和式中的项相同;于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100;①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1;说明如果一列数;从第二项起每一项与前一项之比都相等本例中是都等于5;那么这列数的求和问题;均可用上述“错位相减”法来解决.例14计算:分析一般情况下;分数计算是先通分.本题通分计算将很繁;所以我们不但不通分;反而利用如下一个关系式来把每一项拆成两项之差;然后再计算;这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项;这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:1-1+3-5+7-9+11-…-1997+1999;211+12-13-14+15+16-17-18+…+99+100;31991×1999-1990×2000;44726342+4726352-472633×472635-472634×472636;61+4+7+ (244)2.某小组20名同学的数学测验成绩如下;试计算他们的平均分.81;72;77;83;73;85;92;84;75;63;76;97;80;90;76;91;86;78;74;85.。
实数难题汇编含解析一、选择题1.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是()A.1 B.3 C.4 D.9【答案】D【解析】∵一正数的两个平方根分别是2a−1与−a+2,∴(2a−1)+(−a+2)=0,解得a=−1.∴−a+2=1+2=3,∴这个正数为32=9.故选:D.2.1的值在( )A.1到2之间B.2到3之间C.3到4之间D.4到5之间【答案】C【解析】分析:根据平方根的意义,由16<17<25的近似值进行判断.详解:∵16<17<25∴4<5∴3-1<4-1在3到4之间.故选:C.点睛:此题主要考查了无理数的估算,根据平方根的被开方数的大小估算是解题关键. 3.下列各数中最小的数是( )A.1-B.0 C.D.2-【答案】D【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得-2<-1<0,∴各数中,最小的数是-2.故选D.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.4.把1aa--中根号外的因式移到根号内的结果是( )A.a-B.a-C.a--D.a 【答案】A【解析】【分析】由二次根式1aa--知a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴1aa-->0,∴1aa--=22)11(a aa a-⋅-=-⋅=a-,故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a的取值范围是解题的关键.5.估计的值在()A.0到1之间B.1到2之间C.2到3之间D.3到4之间【答案】B【解析】【分析】利用“夹逼法”估算无理数的大小.【详解】=﹣2.因为9<11<16,所以3<<4.所以1<﹣2<2.所以估计的值在1到2之间.【点睛】本题考查估算无理数的大小.估算无理数大小要用逼近法.6.下列各数中比3大比4小的无理数是( )A B C .3.1 D .103【答案】A【解析】【分析】由于带根号的且开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【详解】>4,3<4∴选项中比3大比4.故选A .【点睛】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.7.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③2a 的算术平方根是a ;④算术平方根不可能是负数;⑤()24π-的算术平方根是4π-,其中不正确的个数是( )A .2个B .3个C .4个D .5个 【答案】B【解析】【分析】根据算术平方根的定义判断即可.【详解】负数没有算术平方根,①错误;0的算术平方根是0,②错误;2a 的算术平方根是a ,③错误;算术平方根不可能是负数,④正确;()24π-的算术平方根是4-π,⑤正确.所以不正确的个数为3个,选B .【点睛】掌握算术平方根的定义.注意:0的算术平方根是0、负数没有算术平方根.8.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( )A .45B 52C 51D .35【答案】C【解析】【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB === ∴22521AC =+=∴AE 5∵A 点表示的数是1-∴E 51【点睛】掌握勾股定理;熟悉圆弧中半径不变性.9.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是2,除数是2,则q 与r 的和( ) A .724B .226C .624D .424 【答案】A【解析】【分析】 根据722492=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】 ∵722=74922÷=4492<<5, 492的整数部分是4, ∴商q =4,∴余数r =a ﹣bq =2×4=8,∴q +r =4+8=4.故选:A .【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q 即2的整数部分.10.( )A .3B .3-C .3±D .4.5【答案】A【解析】分析:本题只需要根据算术平方根的定义,求9的算术平方根即可..故选A .点睛:本题考查了算术平方根的运算,比较简单.11.设2a =.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】<<56<<,进而可得出a 的范围,即可求得答案.【详解】<<∴56<<∴52262-<<-,即324<<,∴a 在3和4之间,故选:C .【点睛】此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.下列运算正确的是( )A =-2B .|﹣3|=3C =± 2 D【答案】B【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 2=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.13.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a 为实数,则0a <是不可能事件;④16的平方根是4±4=±;其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.14.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.15.计算2|=( )A . 1B .1﹣C .﹣1D .3【答案】D【解析】【分析】根据绝对值的性质去掉绝对值的符号后进行合并即可.【详解】原式=+2=3,故选D .【点睛】本题考查了实数的运算,熟练掌握绝对值的性质是解本题的关键.16.已知甲、乙、丙三个数,甲2=,乙3=,丙2=,则甲、乙、丙之间的大小关系,下列表示正确的是( ). A .甲<乙<丙B .丙<甲<乙C .乙<甲<丙D .甲<丙<乙 【答案】C【解析】【分析】由无理数的估算,得到324<<,132<<,425<<,然后进行判断,即可得到答案.【详解】解:∵12<,∴324<<,即3<甲<4,∵45<<,∴132<<,即1<乙<2,∵67<<,∴425<<,即4<丙<5,∴乙<甲<丙;故选:C.【点睛】本题考查了实数比较大小,以及无理数的估算,解题的关键是熟练掌握无理数的估算,以及比较大小的法则.17.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .或1B .1或﹣1C .1或1D .或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max{x,﹣x}=x2﹣x﹣1,∴x=x2﹣x﹣1,解得:x=(1<0,不符合舍去);②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,解得:x=﹣1(1>0,不符合舍去),即方程max{x,﹣x}=x2﹣x﹣1的解为或﹣1,故选:D.【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.18.估计值应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:2=∵91216<<<<∴34<<∴估计值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.实数a、b+4a2+4ab+b2=0,则b a的值为()A.2 B.12C.﹣2 D.﹣12【答案】B 【解析】【分析】【详解】+(2a+b )2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2, 所以,b a =2﹣1=12. 故选:B .【点睛】本题考查非负数的性质.20.下列式子中,计算正确的是( )A 0.6B 13C ±6D 3【答案】D【解析】A 选项中,因为2(0.6)0.36-=,所以0.6-=A 中计算错误;B 13==,所以B 中计算错误;C 6=,所以C 中计算错误;D 选项中,因为3=-,所以D 中计算正确;故选D.。
实数难题汇编及答案一、选择题1.如图,数轴上表示实数3的点可能是( )A.点P B.点Q C.点R D.点S【答案】A【解析】【分析】根据图示,判断出3在哪两个整数之间,即可判断出数轴上表示实数3的点可能是哪个.【详解】∵1<3<2,∴数轴上表示实数3的点可能是点P.故选A.【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.2.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示15﹣1的点是()A.点M B.点N C.点P D.点Q【答案】D【解析】【分析】15151的范围,即可得出答案.【详解】<<,解:∵3.5154<<,∴2.51513151的点是Q点,故选D.【点睛】本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.3.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定+1]的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】【详解】解:根据91016<<,则34<<,即415<<,根据题意可得:14⎤=⎦. 考点:无理数的估算4.估计65的立方根大小在( )A .8与9之间B .3与4之间C .4与5之间D .5与6之间 【答案】C【解析】【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案. 【详解】解:∵3464=,35125=∴6465125<<∴45<<.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.5.在3.14,237,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选:B.【点睛】 考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个【答案】D【解析】【详解】①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误;③负数没有立方根,错误;④16的平方根是±4,用式子表示是,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.错误的一共有3个,故选D .7.1,0( )AB .﹣1C .0D 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:10-<<<则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.8.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间【答案】C【解析】【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】 56﹣24=562636=54-=,∵49<54<64,∴7<54<8,∴56﹣24的值应在7和8之间,故选C .【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.9.估计22462-的值应在( ) A .2.5和3之间B .3和3.5之间C .3.5和4之间D .4和4.5之间 【答案】C【解析】【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【详解】224646636222--===13.5. ∵3.52=12.25,42=16,12.25<13.5<16,∴3.5<13.5<4.故选:C.【点睛】本题考查了估算无理数的大小,正确进行二次根式的运算是解题的关键.10.如图,数轴上的A 、B 、C 、D 四点中,与数﹣3表示的点最接近的是( )A .点AB .点BC .点CD .点D【答案】B【解析】【分析】 3 1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】3 1.732≈-,()---≈,1.7323 1.268()---≈,1.73220.268()---≈,1.73210.732因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.11.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a、b中的较大的数,如:max{2,4}=4,按照这个规定,方程max{x,﹣x}=x2﹣x﹣1的解为()A.或1B.1或﹣1 C.1或1 D.或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x的分式方程求解,结合x的取值范围确定方程max{x,﹣x}=x2﹣x﹣1的解即可.【详解】解:①当x≥﹣x,即x≥0时,∵max{x,﹣x}=x2﹣x﹣1,∴x=x2﹣x﹣1,解得:x=(1<0,不符合舍去);②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,解得:x=﹣1(1>0,不符合舍去),即方程max{x,﹣x}=x2﹣x﹣1的解为或﹣1,故选:D.【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.12.362+在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】+== 1.41436222≈,即可解答.【详解】36222+== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.13.下列说法中,正确的是( )A .-2是-4的平方根B .1的立方根是1和-1C .-2是(-2)2的算术平方根D .2是(-2)2的算术平方根【答案】D【解析】【分析】根据平方根、算术平方根、立方根的定义进行解答即可.【详解】A . -4没有平方根,故A 错误;B . 1的立方根是1,故B 错误;C . (-2)2的算术平方根是2,故C 错误;D . 2是(-2)2的算术平方根,故D 正确故选:D【点睛】本题主要考查的是算术平方根与平方根\立方根,掌握算术平方根与平方根\立方根的定义是解题的关键.14.在-1.414,0,π,227,3.14, 3.212212221…,这些数中,无理数的个数为( )A .5B .2C .3D .4 【答案】C【解析】 【分析】根据无理数的概念解答即可.【详解】-1.414,0,π,227,3.14,3.212212221…,这些数中,无理数有:π,3.212212221…,无理数的个数为:3个故选:C【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.实数a,b,c,d在数轴上的对应点的位置如图所示,则下列结论正确的是()A.|a|>|b| B.a>﹣3 C.a>﹣d D.11 c<【答案】A【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】由数轴可知,﹣4<a<﹣3,b=﹣1,0<c<1,d=3,∴|a|>|b|,A正确;a<﹣3,B错误;a<﹣d,C错误;11c>,D错误,故选A.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义等,熟练掌握是解题的关键.16.若x使(x﹣1)2=4成立,则x的值是( )A.3 B.﹣1 C.3或﹣1 D.±2【答案】C【解析】试题解析:∵(x-1)2=4成立,∴x-1=±2,解得:x1=3,x2=-1.故选C.17.10( ).A.3 B.4 C.5 D.6【答案】A【解析】【分析】由于91016<<<10与9的距离小于16与10的距离,可得答案.【详解】由于91016<<<10与9的距离小于16与10的距离,可得答案.解:∵2239,416==,∴34<<,10与9的距离小于16与10的距离,最接近的是3.故选:A .【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.18.已知甲、乙、丙三个数,甲2=,乙3=,丙2=,则甲、乙、丙之间的大小关系,下列表示正确的是( ). A .甲<乙<丙B .丙<甲<乙C .乙<甲<丙D .甲<丙<乙 【答案】C【解析】【分析】由无理数的估算,得到324<<,132<<,425<<,然后进行判断,即可得到答案.【详解】解:∵12<,∴324<<,即3<甲<4,∵45<<,∴132<<,即1<乙<2,∵67<<,∴425<<,即4<丙<5,∴乙<甲<丙;故选:C.【点睛】本题考查了实数比较大小,以及无理数的估算,解题的关键是熟练掌握无理数的估算,以及比较大小的法则.19.下列说法正确的是( )A .无限小数都是无理数B.1125-没有立方根C.正数的两个平方根互为相反数D.(13)--没有平方根【答案】C【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A、无限循环小数是有理数,故不符合题意;B、1125-有立方根是15-,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.20的算术平方根为()A.B C.2±D.2【答案】B【解析】的值,再继续求所求数的算术平方根即可.=2,而2,,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.。
初一数学拐角问题及解决方法嘿,咱今儿就来聊聊初一数学里的拐角问题呀!这拐角问题啊,就好像是数学世界里的一个个小迷宫,得动点脑筋才能走得出来呢。
你看啊,那些线条在纸上拐来拐去,有时候真能把人绕晕乎了。
就好比你在一个陌生的小巷子里,七拐八弯的,不仔细找路还真容易迷路呢!那面对这些拐角问题,咱得有啥办法呢?首先呢,要仔细观察图形。
别小看这一步哦,这就像是在迷宫门口先打量打量,找找线索。
看看那些拐角是怎么形成的,线条之间有啥关系。
就跟咱找宝藏似的,得先看清地形不是?然后呢,要善于利用一些定理和性质。
这可都是咱的秘密武器呀!比如同位角相等啦,内错角相等啦,这些可都是解决问题的关键钥匙呢。
想象一下,它们就像是一把把能打开门锁的钥匙,有了它们,那些难题不就迎刃而解啦?再说说具体的解题方法。
比如可以通过作辅助线呀,这辅助线一加,嘿,有时候那感觉就像是一下子找到了出路,眼前豁然开朗。
就好比你在黑暗中突然点亮了一盏灯,路就清楚多啦。
还有啊,要多做练习题。
这就跟练功一样,练得多了,自然就熟练了,遇到啥样的拐角问题都不怕啦。
可别偷懒哦,不然到时候遇到难题可就傻眼咯。
比如说有这么一道题,两条直线相交,形成了好多拐角,让你求其中一个角的度数。
这时候你就得运用前面说的那些方法啦,观察图形,找到相关的角,利用定理性质来求解。
是不是挺有意思的?其实啊,初一数学的拐角问题并不可怕,只要咱有耐心,有方法,那都不是事儿。
就像爬山一样,一步一步往上爬,总能爬到山顶,看到美丽的风景。
咱面对这些拐角问题,也要有这种勇往直前的精神呀!所以啊,同学们,别被那些拐角给吓住啦。
勇敢地去挑战它们,用我们的智慧和勇气去攻克一个又一个的难关。
相信自己,一定能在初一数学的拐角世界里游刃有余,找到属于我们的乐趣和成就!加油吧!。
七年级数学上册有理数难题巧算方法讲解归纳【知识要点】1.乘法分配律法2.约分法3.倒写相加法4.裂项相消法有些求若干个分数之和的计算题,我们可以把其中的每个加数,根据()11111+-=+n n n n 的原理,分裂为两个分数之差,这样算式中除首、尾两项之外,其余各分数均加、减相消,可巧妙求出整个算式的和,这种巧解思路,称为裂项相消法.下面给出五类常见的裂项公式:(1)()11+n n 型裂项公式:()11111+-=+n n n n . (2))(1k n n +型裂项公式:⎪⎭⎫ ⎝⎛+-=+k n n k k n n 111)(1 (3))(k n n k +型裂项公式:kn n k n n k +-=+11)(. (4))2)((1k n k n n ++型裂项公式: )2)((1k n k n n ++=⎥⎦⎤⎢⎣⎡++-+)2)((1)(121k n k n k n n k (5))2)((2k n k n n k ++型裂项公式:()()()k n k n k n n k n k n n k 211)2)((2++-+=++ 5.错位相减法6.整体换元法【典型例题】1.乘法分配律法例1 计算:① .21825.3825.325.0825.141825.3⨯+⨯+-⨯② 103451194911994199411949145199414511949+⎪⎭⎫ ⎝⎛+⨯-⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫⎝⎛-⨯2.约分法 * 例2 ()()⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯+⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯+1719116191319121911911917118171317121711713.倒写相加法例3 设n 为正整数,计算:43424131323332312122211+++++++++++.1112141424344nn n n n n n n n ++-++-+++++++++4.裂项相消法例4 计算201120081191611613113101⨯--⨯-⨯-⨯-* 例51111232349899100+++=⨯⨯⨯⨯⨯⨯* 例6:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++199911411311211199914113112114131121131211215.错位相减法* 例7 200843220081200812008120081200811++++++6.整体换元法例8 计算)20071......3121()20081......31211()20081......3121()20071......31211(+++⨯-----+++⨯----1.1436.171464.8295135159513518⨯+⨯+⨯-⨯2.求和19993222221+++++= S3201918143213211⨯⨯++⨯⨯+⨯⨯4.计算:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++99113112119914113112114131121131211215.计算:.311212311999212000312001212002-++-+-1.填空题(1)4213012011216121-----=________________ (2) 20÷(0.30+0.31+0.32+…+0.69)的值的整数部分是_________(3) 111111123456761220304256++++++=__________________ (4) ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--++-+-10001141131121110201970198019902000 =_____________(5) ()()_____________1541957.0154329417.0=-⨯+⨯+-⨯+⨯; (6)____________19197676767676191919=-;2.计算:(1) 445211789555789445555211⨯+⨯+⨯+⨯(2) ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-110031120021120031120041(3).1051011171311391951⨯++⨯+⨯+⨯(4)⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯751517315151537319315151537319751517537319751517315151(5) 311021983278%12541153881568825.1⨯-⨯⨯-⨯⨯+⨯⨯(6) 200020001999199919992000⨯-⨯2)6543187(36-+-⨯-(7) 求和20083277771+++++= S3.已知+21+51+81+111+201+411+110116401=1, 求--21-51+81+111+201+411+110116401的值4.若n=7217561542133011209127311+-+-+-,求n 的负倒数5.217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++ ⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-766554433276655443322116.2001200420002004200120012001200120012001200020002000200020002000个个+++++7.n n n n n n 93186293142842421⋅⋅++⨯⨯+⨯⨯⋅⋅++⨯⨯+⨯⨯ ** 8.求 ++++3227252321共2008项的和.。
初一不等式难题,经典题训练(附答案)1.已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______2.已知关于x 的不等式组无解,则a 的取值范围是_________521x a x ->⎧⎨-≥-⎩3.若关于x 的不等式(a-1)x-+2>0的解集为x<2,则a 的值为( )2a A 0 B 2 C 0或2 D -14.若不等式组的解集为,则=_________220x a b x ->⎧⎨->⎩11x -<<2006()a b +5.已知关于x 的不等式组的解集为x<2,那么a 的取值范围是_________41320x xx a +⎧>+⎪⎨⎪+<⎩6.若方程组的解满足条件,则k 的取值范围是( )4143x y k x y +=+⎧⎨+=⎩01x y <+<A. B. C. D. 41k -<<40k -<<09k <<4k >-7.不等式组的解集是,则m 的取值范围是( )9511x x x m +<+⎧⎨>+⎩2x >A. B. C. D. 2m ≤2m ≥1m ≤1m 8.不等式的解集是_________()()20x xx +-<9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______10.已知a,b 为常数,若ax+b>0的解集是,则的解集是( )13x <0bx a -<A.BC. D. 3x >-3x <-3x >3x <11.如果关于x 的不等式组的整数解仅为1,2,3,那么适合不等式组的整数(m,n)对共7060x m x n -≥⎧⎨-⎩有( )对A 49B 42C 36D 1312.已知非负数x,y,z 满足,设,求的最大值与最小值123234x y z ---==345x y z ω=++ω12.不等式A 卷1.不等式2(x + 1) -的解集为_____________。
第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+"与“—”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和",它是有理数巧算中的常用技巧.例3计算:S=1—2+3-4+…+(-1)n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“—1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“—1”,于是一改“去括号”的习惯,而取“添括号”之法.解S=(1-2)+(3-4)+…+(—1)n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时,上式是n/2个(-1)的和,所以有当n为奇数时,上式是(n—1)/2个(-1)的和,再加上最后一项(—1)n+1·n=n,所以有例4在数1,2,3,…,1998前添符号“+"和“—”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“—”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1—2—3+4)+(5—6-7+8)+…+(1993-1994—1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零",这种方法可使计算大大简化.有这种竞赛讲义一整套小学初中的含答案最新的需要的可以联系我46~8453~607微信13699~77~10742.用字母表示数我们先来计算(100+2)×(100—2)的值:(100+2)×(100—2)=100×100-2×100+2×100—4=1002—22.这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a—b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a—b)=a2—b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例5计算3001×2999的值.解3001×2999=(3000+1)(3000-1)=30002—12=8 999 999.例6计算103×97×10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例7计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n—1,12 347=n+1,于是分母变为n2—(n-1)(n+1).应用平方差公式化简得n2—(n2—12)=n2—n2+1=1,即原式分母的值是1,所以原式=24 690.例8计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a—b)=a2-b2了.解原式=(2—1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24—1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1)=264—1.例9计算:分析在前面的例题中,应用过公式(a+b)(a—b)=a2—b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子.通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(—3)+1+4+(—2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(—1)+2+5+(—2)=1800-1=1799,平均分为90+(—1)÷20=89。
用“夹逼法”巧解初一难题
作者:史又成
来源:《教育周报·教研版》2017年第16期
“夹逼法”是从已知条件出发,通过转化、变形和数形估计,把需要考察的量限制在某两个数值之间,从而获得符合题意的答案. “夹逼法”是解决数学问题的一种思维方法.下面举例说明“夹逼法”在解题中的应用.
【例1】已知,求的平方根.
【解析】由隐含的条件得,且,∴,即可求出的值.
【解】由题意得:,且,∴,且,∴,当时,,∴,的平方根为.
【例2】已知是的整数部分,是它的小数部分.
(1)求、的值;(2)求的立方根.
【解析】确定开方开不尽的无理数的问题,可以用“夹逼法”,先确定这个无理数夹在哪两个相邻的整数之间,然后减去无理数的整数部分,剩下的为小数部分.
【解】(1)∵,∴,即:,∴
(2)当时,,∴所求数的立方根是.
【例3】实数适合关系式:,试求的算术平方根.
【解析】由算术平方根中被开方数的非负性及“夹逼法”可求得,再利用非负数的性质和解方程的知识可求得的值,从而求出的算术平方根.
【解】根据题意得:且,∴且,∴,把代入已知等式并化简,得:,由非负数的性质得:①且②,由②得:代入①得:,解得:,∴,∴的算术平方根是3.
【例4】已知实数,,求的平方根.
【解析】因为用绝对值和平方表示的数都是非负数,把已知等式移项后,左边均为非负数,所以右边必也是非负数,再由“夹逼法”求出数b,进而求出数a、c.
【解】由已知变形得:,,∵,,∴且,∴且,故,从而可得:,当时,,所以,所求数的平方根为.“夹逼法”在今后的学习中经常会遇到,同学们要多加体会.下面几道题供同学们练一练.①已知,则= .②若为的整数部分,为的小数部分,求的值.③已知,求的平方根.④若实数适合关系式:,则 .。