专题12 函数的单调性的研究(解析版)
- 格式:docx
- 大小:198.17 KB
- 文档页数:13
2023高考一轮复习讲与练12 函数与方程练高考 明方向1.(2022·新高考Ⅰ卷T10)(多选题)已知函数3()1f x x x =-+,则( ) A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线 【答案】AC 【解析】【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D.【详解】由题,()231f x x '=-,令()0f x '>得3x >或3x <-,令()0f x '<得x <<,所以()f x 在(上单调递减,在(,-∞,)+∞上单调递增,所以x =是极值点,故A 正确;因(10f =+>,10f =>,()250f -=-<,所以,函数()f x 在,⎛-∞ ⎝⎭上有一个零点,当x ≥时,()03f x f ⎛≥> ⎝⎭,即函数()f x 在3⎛⎫∞ ⎪ ⎪⎝⎭上无零点,综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心, 将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误. 2.(2022·全国乙(文)T20) 已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围. 【答案】(1)1- (2)()0,+∞ 【解析】【分析】(1)由导数确定函数的单调性,即可得解; (2)求导得()()()211ax x f x x --'=,按照0a ≤、01a <<及1a >结合导数讨论函数的单调性,求得函数的极值,即可得解. 【小问1详解】 当0a =时,()1ln ,0f x x x x =-->,则()22111x f x x x x-'=-=, 当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 11f x f ==-; 【小问2详解】()()11ln ,0f x ax a x x x =--+>,则()()()221111ax x a f x a x x x--+'=+-=, 当0a ≤时,10-≤ax ,所以当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 110f x f a ==-<,此时函数无零点,不合题意; 当01a <<时,11a >,在()10,1,,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在11,a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;又()110f a =-<,当x 趋近正无穷大时,()f x 趋近于正无穷大,所以()f x 仅在1,a ⎛⎫+∞ ⎪⎝⎭有唯一零点,符合题意;当1a =时,()()2210x f x x -'=≥,所以()f x 单调递增,又()110f a =-=, 所以()f x 有唯一零点,符合题意;当1a >时,11a <,在()10,,1,a ⎛⎫+∞ ⎪⎝⎭上,0f x ,()f x 单调递增;在1,1a ⎛⎫⎪⎝⎭上,0fx,()f x 单调递减;此时()110f a =->,又()1111ln n n n f a n a a aa -⎛⎫=-++ ⎪⎝⎭,当n 趋近正无穷大时,1n f a⎛⎫⎪⎝⎭趋近负无穷,所以()f x在10,a ⎛⎫ ⎪⎝⎭有一个零点,在1,a ⎛⎫+∞ ⎪⎝⎭无零点,所以()f x 有唯一零点,符合题意;综上,a 的取值范围为()0,+∞.【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.3.(2022·全国乙(理)T21)已知函数()()ln 1e xf x x ax -=++(1(当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2(若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围. 【答案】(1)2y x = (2)(,1)-∞- 【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【小问1详解】()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0ex xf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x ''-=+=+,所以切线斜率为2,所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =。
专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。
抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2.二次函数y=ax 2 +bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=- (2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c )(4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大;当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。
3.二次函数的解析式三种形式。
(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式 2()y a x h k =-+ 224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。
(3)交点式 12()()y a x x x x =--专题知识回顾y x O已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。
4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。
(2)b ——对称轴与a 左同右异。
(3)抛物线与y 轴交点坐标(0,c )5.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点;24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点;24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。
专题12函数与方程--2022年(新高考)数学高频考点+重点题型一、关键能力学生应掌握函数的零点、方程的解、图象交点(横坐标)三者之间的灵活转化,以实现快速解决问题.二、教学建议从近三年高考情况来看,本讲一直是高考的热点,尤其是函数零点(方程的根)个数的判断及由零点存在性定理判断零点是否存。
常常以基本初等函数为载体,结合函数的图象,判断方程根的存在性及根的个数,或利用函数零点确定参数的取值范围等.也可与导数结合考查.题目的难度起伏较大.三、自主梳理1.函数的零点(1)函数零点的定义对于函数y=f(x) (x∈D),把使f(x)=0的实数x叫做函数y=f(x) (x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c (a>0)的图象与零点的关系(☆☆☆)(x0),(x0)(x0)无交点四、高频考点+重点题型考点一、求解函数零点例1-1(直接求解函数零点)(2019·全国卷⇔)函数f(x)=2sin x-sin 2x在[0,2π]所有零点之和为【答案】3π【解析】由f(x)=2sin x-sin 2x=2sin x-2sin x cos x=2sin x·(1-cos x)=0得sin x=0或cos x =1,⇔x=kπ,k⇔Z,又⇔x⇔[0,2π],⇔x=0,π,2π,即零点有3个.例1-2(二分法求零点)用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:据此数据,可得方程3x-x-4=0的一个近似解为________(精确到0.01)【答案】1.56【解析】注意到f(1.5562)=-0.029和f(1.5625)=0.003,显然f(1.5562)f(1.5625)<0,故区间的端点四舍五入可得1.56.对点训练1.(天津高考真题)已知函数,函数,则函数的所有零点之和为()A.2 B.3 C.4 D.5【答案】A【解析】当x<0时2−x>2,所以f(x)=2−|x|=2+x,f(2−x)=x2,此时函数f(x)−g(x)=f(x)+f(2−x)−3=x2+x−1的小于零的零点为x=−1+√5;当0≤x≤2时f(x)=2−2|x|=2−x,f(2−x)=2−|2−x|=x,函数f(x)−g(x)=2−x+x−3=−1无零点;当x>2时,f(x)=(x−2)2,f(2−x)=2−|2−x|=4−x,函数f(x)−g(x)=(x−2)2+4−x−3=x2−5x+5大于2的零点为x=5+√5,综上可得.故选A.2对点训练2.(2020·郸城县实验高中高一月考)如图是函数f(x)的图象,它与x轴有4个不同的公共点.给出的下列四个区间之中,存在不能用二分法求出的零点,该零点所在的区间是( )A .[-2.1,-1]B .[4.1,5]C .[1.9,2.3]D .[5,6.1]【答案】C 【解析】结合图象可得:ABD 选项每个区间的两个端点函数值异号,可以用二分法求出零点, C 选项区间两个端点函数值同号,不能用二分法求零点. 故选:C对点训练3.用二分法求函数()y f x =在区间()2,4上的近似解,验证()()240f f <,给定精度为0.1,需将区间等分__________次. 【答案】5 【解析】因为区间()2,4的长度为2,所以第一次等分后区间长度为1,第二次等分后区间长度为0.5,……第四次等分后区间长度为0.125<0.2,第五次等分区间后区间长度为0.0625<0.1,所以需要将区间等分5次. 故答案为5.考点二、判断函数零点个数 例2-1(直接求解零点)(2020·江苏省高三其他)设表示不超过实数的最大整数(如,),则函数的零点个数为_______.[]t t [ 1.3]2-=-[2.6]2=[]()21f x x x =--【答案】2 【解析】函数的零点即方程的根,函数的零点个数,即方程的根的个数..当时,. 当时,或或(舍). 当时,,方程无解. 综上,方程的根为,1. 所以方程有2个根,即函数有2个零点. 故答案为:2.例2-2(零点存在定理+单调性)(2021·北京清华附中高三其他模拟)函数()ln 6f x x x =+-的零点一定位于区间( ) A .()2,3 B .()3,4C .()4,5D .()5,6【答案】C 【解析】根据零点存在性定理,若在区间(,)a b 有零点,则()()0f a f b ⋅<,逐一检验选项,即可得答案. 【详解】由题意得()ln 6f x x x =+-为连续函数,且在(0,)+∞单调递增,(2)ln 240,(3)ln330f f =-<=-<,2(4)ln 42ln 20f e =-<-=,(5)ln 51ln 10f e =->-=,根据零点存在性定理,(4)(5)0f f ⋅<,[]()21f x x x =--[]21x x -=∴()f x []21x x -=[]210,0,0x x x -≥∴≥∴≥01x ≤<[]10,210,2x x x =∴-=∴=1x =[]1,211,211x x x =∴-=∴-=211,1x x -=-∴=0x =1x >[]2121x x x x -=->≥∴[]21x x -=[]21x x -=12[]21x x -=[]()21f x x x =--所以零点一定位于区间()4,5. 故选:C例2-3(2021·山东烟台市·高三二模)已知函数()f x 是定义在区间()(),00,-∞+∞上的偶函数,且当()0,x ∈+∞时,()()12,0221,2x x f x f x x -⎧<≤⎪=⎨-->⎪⎩,则方程()2128f x x +=根的个数为( ) A .3 B .4 C .5 D .6【答案】D 【解析】将问题转化为()f x 与228xy =-的交点个数,由解析式画出在(0,)+∞上的图象,再结合偶函数的对称性即可知定义域上的交点个数. 【详解】要求方程()2128f x x +=根的个数,即为求()f x 与228xy =-的交点个数,由题设知,在(0,)+∞上的图象如下图示,∴由图知:有3个交点,又由()f x 在()(),00,-∞+∞上是偶函数,∴在,0上也有3个交点,故一共有6个交点.故选:D.对点训练1.(2020·开原市第二高级中学高三)函数21()f x x x=+,(0,)x ∈+∞的零点个数是( ). A .0 B .1C .2D .3【答案】A 【解析】根据函数定义域,结合零点定义,即可容易判断和求解. 【详解】 由于20x >,10x>, 因此不存在(0,)x ∈+∞使得21()0f x x x=+=, 因此函数没有零点. 故选:A .对点训练2-1.(2020·海丰县彭湃中学高一期末)函数的零点所在的大致区间为( ) A . B . C . D .【答案】D 【解析】因为函数在R 上单调递减, ,,所以零点所在的大致区间为 故选:D对点训练2-2【多选题】(2021·湖北荆州市·荆州中学高三其他模拟)在下列区间中,函数()43x f x e x =--一定存在零点的区间为( )A .11,2⎛⎫- ⎪⎝⎭B .(,3)e -C .10,2⎛⎫ ⎪⎝⎭D .11,e ⎛⎫- ⎪⎝⎭31()102f x x x =--+(1,0)-(0,1)(1,2)(2,3)31()102f x x x =--+(2)10f =>(3)0f <(2,3)【答案】ABD 【解析】本题首先可通过求导得出函数()f x 在()ln 4,+∞上是增函数、在(),ln 4-∞上是减函数以及()ln 40f <,然后通过函数()f x 的单调性以及零点存在性定理对四个选项依次进行判断,即可得出结果. 【详解】()43x f x e x =--,()4x f x e '=-,当()0f x '>时,ln 4x >,函数()f x 在()ln 4,+∞上是增函数; 当()0f x '<时,ln 4x <,函数()f x 在(),ln 4-∞上是减函数,()ln4ln 44ln 4314ln 40f e =--=-<,A 项:()1114310f e e--=-=+>+,1211435022f e ⎛⎫=-⨯-=< ⎪⎝⎭,因为()1102f f ⎛⎫-⨯< ⎪⎝⎭,所以函数()f x 在11,2⎛⎫- ⎪⎝⎭内存在零点,A 正确;B 项:()430ef e e e -+-=->,()333123150f e e =--=>-,因为ln 43e,()ln 40f <,所以函数()f x 在(,3)e -内存在零点,B 正确;C 项:()00320f e =-=-<,102f ⎛⎫<⎪⎝⎭,()1002f f ⎛⎫⨯> ⎪⎝⎭, 因为1ln 42,所以函数()f x 在10,2⎛⎫⎪⎝⎭内不存在零点,C 错误; D 项:()10f ->,11430e f e e e ⎛⎫=--< ⎪⎝⎭,()110f f e ⎛⎫-⨯< ⎪⎝⎭, 则函数()f x 在11,e ⎛⎫- ⎪⎝⎭内存在零点,D 正确, 故选:ABD.对点训练3.(2018·全国卷⇔)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)【答案】C【解析】令h (x )=-x -a ,则g (x )=f (x )-h (x ).在同一坐标系中画出y =f (x ),y =h (x )的示意图,如图所示.若g (x )存在2个零点,则y =f (x )的图象与y =h (x )的图象有2个交点,平移y =h (x )的图象,可知当直线y =-x -a 过点(0,1)时,有2个交点,此时1=-0-a ,a =-1.当y =-x -a 在y =-x +1上方,即a <-1时,仅有1个交点,不符合题意.当y =-x -a 在y =-x +1下方,即a >-1时,有2个交点,符合题意.综上,a 的取值范围为[-1,+∞).故选C.考点三、已知零点求参 例3-1(已知零点个数求参)(2021·广东茂名市·高三二模)已知函数()()12log 1,0,(1),0,x x f x f x x ⎧+≥⎪=⎨⎪+<⎩若函数()()g x f x x a =--有且只有两个不同的零点,则实数a 的取值可以是( )A .-1B .0C .1D .2【答案】B 【解析】作出函数()f x 的图象如下图所示,将原问题转化为函数()f x 的图象与直线+y =x a 有两个不同的交点,根据图示可得实数a 的取值范围. 【详解】作出函数()f x 的图象如下图所示,令()()0g x f x x a =--=,即()+f x x a =, 所以要使函数()()g x f x x a =--有且只有两个不同的零点,则需函数()f x 的图象与直线+y =x a 有两个不同的交点,根据图示可得实数a 的取值范围为(]10-,,故选:B.例3-2(已知零点所在区间求参)函数f (x )=2x-2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)【答案】C【解析】因为f (x )在(0,+∞)上是增函数,则由题意得f (1)·f (2)=(0-a )(3-a )<0,解得0<a <3,故选C 。
专题12 一次函数知识网络重难突破一. 一次函数的认识一般地,形如y=kx+b(k、b为常数,且k≠0)的函数叫做一次函数.正比例函数也是一次函数,是一次函数的特殊形式.典例1.(2018春•青龙县期末)下列关系式中:y=﹣3x+1、y、y=x2+1、y x,y是x的一次函数的有()A.1个B.2个C.3个D.4个【答案】B【解析】解:函数y=﹣3x+1,y,y=x2+1,y x中,是一次函数的是:y=﹣3x+1、y x,共2个.故选:B.【点睛】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.典例2.(2018春•颍东区期末)已知函数y=(m﹣1)x|m|+5m是一次函数,则m的值为()A.1 B.﹣1 C.0或﹣1 D.1或﹣1【答案】B【解析】解:由题意可知:解得:m =﹣1 故选:B .典例3.(2018秋•浦东新区期末)已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =____. 【答案】﹣1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1, 故答案为:﹣1.【点睛】由正比例函数的定义可得m 2﹣1=0,且m ﹣1≠0.本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y =kx 的定义条件是:k 为常数且k ≠0,自变量次数为1. 典例4.(2017秋•沙坪坝区校级期末)若函数y =(k ﹣2)x |k|﹣1是正比例函数,则k =____.【答案】-2【解析】解:∵函数y =(k ﹣2)x |k|﹣1是正比例函数,∴,解得k =﹣2, 故答案为:﹣2.【点睛】根据正比例函数的定义可得|k|﹣1=1,且k ﹣2≠0,再解方程即可.此题主要考查了正比例函数的定义,关键是掌握形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数.二. 一次函数的图象与性质1.一次函数y =kx +b(k≠0)的图象是一条经过点(0,b )、()的直线,一次函数y =kx +b 的图象也称为直线y =kx +b. 2.一次函数y =kx +b 的性质(1)增减性⎩⎪⎨⎪⎧k >0,y 随x 的增大而增大k <0,y 随x 的增大而减小(2)图象所过象限⎩⎪⎨⎪⎧k >0,b >0:第一、二、三象限k >0,b <0:第一、三、四象限k <0,b >0:第一、二、四象限k <0,b <0:第二、三、四象限(3)倾斜度⎩⎪⎨⎪⎧|k|越大,直线越接近y 轴|k|越小,直线越远离y 轴典例1.(2017秋•太仓市期末)如图,三个正比例函数的图象分别对应函数关系式:①y =ax ,②y =bx ,③y =cx ,将a ,b ,c 从小到大排列并用“<”连接为( )A .a <b <cB .c <a <bC .c <b <aD .a <c <b【答案】D【解析】解:根据三个函数图象所在象限可得a <0,b >0,c >0, 再根据直线越陡,|k|越大,则b >c . 则b >c >a , 即a <c <b . 故选:D .【点睛】根据直线所过象限可得a <0,b >0,c >0,再根据直线陡的情况可判断出b >c ,进而得到答案.此题主要考查了正比例函数图象,关键是掌握:当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小.同时注意直线越陡,则|k|越大典例2 .(2018秋•雅安期末)直线l 1:y =kx+b 与直线l 2:y =bx+k 在同一坐标系中的大致位置是( )A .B .C.D.【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选:C.【点睛】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.典例3.(2018春•武昌区期末)已知一次函数y=(m﹣4)x+2m+1的图象不经过第三象限,则m的取值范围是()A.m<4 B.m<4 C.m≤4 D.m【答案】B【解析】解:根据题意得,解得m<4.故选:B.【点睛】依据一次函数y=(m﹣4)x+2m+1的图象不经过第三象限,可得函数表达式中一次项系数小于0,常数项不小于0,进而得到m的取值范围.本题考查了一次函数与系数的关系:对于一次函数y =kx+b(k≠0),k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.典例4.(2018春•德阳期末)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象一定不经过()A.第四象限B.第三象限C.第二象限D.第一象限【答案】C【解析】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一、三、四象限.故选:C.【点睛】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.典例5.(2018春•大余县期末)下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn <0)图象的是()A.B.C.D.【答案】B【解析】解:A、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;B、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项正确;C、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;D、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项错误;故选:B.【点睛】根据正比例函数的图象确定n的符号,然后由“两数相乘,同号得正,异号得负”判断出n的符号,再根据一次函数的性质进行判断.本题综合考查了正比例函数、一次函数图象与系数的关系.一次函数y=kx+b(k≠0)的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.典例6.(2018春•镇原县期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【答案】见解析【解析】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m.【点睛】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.典例7.(2018春•确山县期末)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:(1)函数y=|x﹣1|的自变量x的取值范围是______;(2)列表,找出y与x的几组对应值.其中,b=___;(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:__________.【答案】见解析【解析】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点睛】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.三. 待定系数法求一次函数解析式用待定系数法时需要根据两个条件列二元一次方程组(以k和b为未知数),解方程组后就能具体写出一次函数的解析式.用待定系数法求一次函数解析式的步骤如下:①设一次函数解析y=kx+b(k≠0);②代入两个已知点的坐标,得到关于k、b的方程组;③解方程组得到k、b的值;④写出一次函数的解析式.若一次函数为正比例函数,则b=0,只需代入一个点的坐标,求出系数k即可.典例1.(2018秋•蚌埠期末)已知y与(x﹣2)成正比例,当x=1时,y=﹣2.则当x=3时,y的值为()A.2 B.﹣2 C.3 D.﹣3【答案】A【解析】解:∵y与(x﹣2)成正比例,∴设y=k(x﹣2),由题意得,﹣2=k(1﹣2),解得,k=2,则y=2x﹣4,当x=3时,y=2×3﹣4=2,故选:A.【点睛】本题考查的是待定系数法求一次函数解析式,掌握待定系数法求一次函数解析式一般步骤是解题的关键.典例2.(2018春•泸县期末)如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.【答案】y x或y x【解析】解:直线l的解析式为:y=kx,对于直线y=x+4的解析式,当x=0时,y=4,y=0时,x=﹣4,∴A(﹣4,0)、B(0,4),∴OA=4,OB=4,∴S△AOB4×4=8,当直线l把△AOB的面积分为S△AOC:S△BOC=2:3时,S△AOC,作CF⊥OA于F,CE⊥OB于E,∴AO•CF,即4×CF,∴CF.当y时,x,则k,解得,k,∴直线l的解析式为y x;当直线l把△ABO的面积分为S△AOC:S△BOC=3:2时,同理求得CF,解得直线l的解析式为y x.故答案为y x或y x.【点睛】根据直线y=x+4的解析式可求出A、B两点的坐标,当直线l把△ABO的面积分为S△AOC:S=2:3时,作CF⊥OA于F,CE⊥OB于E,可分别求出△AOB与△AOC的面积,再根据其面积△BOC公式可求出两直线交点的坐标,从而求出其解析式;当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,同(1).本题考查的是待定系数法求一次函数的解析式,掌握待定系数法求一次函数解析式的一般步骤是解题的关键,涉及到三角形的面积公式及分类讨论的方法.典例3.(2018春•茌平县期末)已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)求一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.【答案】见解析【解析】解:(1)设y与x的函数关系式为y=kx+b,把A(﹣1,﹣1)B(1,﹣3)带入得:﹣k+b=﹣1,k+b=﹣3,解得:k=﹣1,b=﹣2,∴一次函数表达式为:y=﹣x﹣2;(2)设直线与x轴交于C,与y轴交于D,把y=0代入y=﹣x﹣2,解得x=﹣2,∴OC=2,把x=0代入y=﹣x﹣2,解得:y=﹣2,∴OD=2,∴S△COD OC×OD2×2=2;(3)作A与A1关于x轴对称,连接A1B交x轴于P,则P即为所求,由对称知:A1(﹣1,1),设直线A1B解析式为y=ax+c,得﹣k+b=1,k+b=﹣3,解得:k=﹣2,b=﹣1,∴y=﹣2x﹣1,另y=0得﹣2x﹣1=0,解得:x,∴P(,0).【点睛】(1)设y=kx+b,把A与B坐标代入求出k与b的值,即可确定出一次函数解析式;(2)分别令x与y为0求出y与x的值,确定出OC与OD的长,即可求出三角形COD面积;(3)作A与A1关于x轴对称,连接A1B交x轴于P,则P即为所求,利用待定系数法求出直线A1B 解析式,确定出P点坐标即可.此题考查了待定系数法求一次函数解析式,一次函数图象上的点的坐标特征,以及轴对称﹣最短线路问题,熟练掌握待定系数法是解本题的关键.典例4.(2018春•郾城区期末)如图,过点A(3,0)的两条直线l1,l2分别交y轴于点B,C,其中点B 在原点上方,点C在原点下方,已知AB=5.(1)求点B的坐标;(2)若△ABC的面积为9,求直线l2的解析式.【答案】见解析【解析】解:(1)∵点A(3,0),AB=5∴BO 4∴点B的坐标为(0,4);(2)∵△ABC的面积为9∴BC×AO=9∴BC×3=9,即BC=6∵BO=4∴CO=2∴C(0,﹣2)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y x﹣2.【点睛】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为9,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.本题主要考查了两条直线的交点问题,解题的关键是掌握勾股定理以及待定系数法.注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,反之也成立.四. 一次函数的图象变换1.一次函数平移的方法:左加右减,上加下减.2.一次函数图象的常见对称变换:对于直线y=kx+b(k≠0,且k,b为常数),①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b(关于x轴对称,横坐标不变,纵坐标是原来的相反数);②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b(关于y轴对称,纵坐标不变,横坐标是原来的相反数);③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b(关于原点对称,横、纵坐标都变为原来的相反数).典例1.(2018春•永清县期末)若一次函数y=kx+b(x≠0)(k≠0)与一次函数y的图象关于x 轴对称,则一次函数y=kx+b的解析式为_____.【答案】y x﹣1【解析】解:∵y=kx+b与y x+1关于x轴对称,∴b=﹣1,∴k,∴y x﹣1.故答案为:y x﹣1.【点睛】根据一次函数y=kx+b(k≠0)与函数y x+1的图象关于x轴对称,解答即可.本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.典例2.(2018春•松滋市期末)在同一直角坐标系中,将一次函数y=x﹣3(x>1)的图象,在直线x=2(横坐标为2的所有点构成该直线)的左侧部分沿直线x=2翻折,图象的其余部分保持不变,得到一个新图象.若关于x的函数y=2x+b的图象与此图象有两个公共点,则b的取值范围是()A.8>b>5 B.﹣8<b<﹣5 C.﹣8≤b≤﹣5 D.﹣8<b≤﹣5【答案】B【解析】解:在y=x﹣3(x>1)中,令x=2,则y=﹣1,若直线y=2x+b经过(2,﹣1),则﹣1=4+b,解得b=﹣5;在y=x﹣3(x>1)中,令x=1,则y=﹣2,点(1,﹣2)关于x=2对称的点为(3,﹣2),若直线y=2x+b经过(3,﹣2),则﹣2=6+b,解得b=﹣8,∵关于x的函数y=2x+b的图象与此图象有两个公共点,∴b的取值范围是﹣8<b<﹣5,故选:B.【点睛】根据直线y=2x+b经过(2,﹣1),可得b=﹣5;根据直线y=2x+b经过(3,﹣2),即可得到b=﹣8,依据关于x的函数y=2x+b的图象与此图象有两个公共点,即可得出b的取值范围是﹣8<b<﹣5.解决问题给的关键是掌握一次函数图象上点的坐标特征:直线上任意一点的坐标都满足函数关系式y=kx+b.巩固练习1.(2017秋•简阳市期末)下列函数关系中表示一次函数的有()①y=2x+1 ②③④s=60t⑤y=100﹣25x.A.1个B.2个C.3个D.4个【答案】D【解析】解:①y=2x+1是一次函数;②y自变量次数不为1,不是一次函数;③y x是一次函数;④s=60t是正比例函数,也是一次函数;⑤y=100﹣25x是一次函数.故选:D.2.(2018春•柳林县期末)已知一次函数y=kx+b,若k•b<0,则该函数的图象可能()A.B.C.D.【答案】A【解析】解:∵在一次函数y=kx+b中k•b<0,∴y=kx+b的图象在一、三、四象限或一、二、四象限.故选:A.3.(2018春•德阳期末)对于函数y下列说法正确的是()A.当x<3时,y随x的增大而增大B.当x>3时,y随x的增大而减小C.当x<0时,y随x的增大而减小D.当x=4时,y=﹣2【答案】C【解析】解:A、当x<3时,y随x的增大而减小,错误;B、当x>3时,y随x的增大而增大,错误;C、当x<0时,y随x的增大而减小,正确;D、当x=4时,y=1,错误;故选:C.4.(2018春•遵义期末)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A.B.C.D.【答案】B【解析】解:分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选:B.5.(2018春•诸城市期末)若一次函数y=(3﹣m)x+5的函数值y随x的增大而减小,则()A.m>0 B.m<0 C.m>3 D.m<3【答案】C【解析】解:根据题意得3﹣m<0,解得m>3.故选:C.6.(2017秋•蜀山区期末)已知n>m,在同一平面直角坐标系内画出一次函数y=nx+m与y=mx+n的图象,则有一组m,n的取值,使得下列4个图中的一个为正确的是()A.B.C.D.【答案】B【解析】解:A、m<0,n>0,则y=mx+n过第一、二、四象限,y=nx+m经过第一、三、四象限;所以A错误;B、m>0,n>0,则y=mx+n过第一、二、三象限,y=nx+m经过第一、二、三象限;所以B正确;C、两直线与x轴的交点坐标为(,0)和(,0),所以C错误;D、m>0,n>0,则y=mx+n过第一、二、三象限,y=nx+m经过第一、二、三象限;所以D错误.故选:B.7.(2018春•繁昌县期末)八个边长为1的正方形如图所示的位置摆放在平面直角坐标系中,经过原点的直线l将这八个正方形分成面积相等的两部分,则这条直线的解析式是___.【答案】y x【解析】解:设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x 轴于点C,如图所示.∵正方形的边长为1,∴OB=3.∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB,∴OC,∴点A的坐标为(,3).设直线l的解析式为y=kx,∵点A(,3)在直线l上,∴3k,解得:k,∴直线l解析式为y x.故答案为:y x.8.(2018春•营山县期末)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B 的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,线段BC 扫过的面积为()A.80 B.88 C.96 D.100【答案】B【解析】解:∵点A、B的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10,∴CA8,∴C点纵坐标为:8,∵将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,∴y=8时,8=x﹣5,解得:x=13,即A点向右平移13﹣2=11个单位,∴线段BC扫过的面积为:11×8=88.故选:B.9.(2018春•廉江市期末)已知:如图,正比例函数y=kx的图象经过点A,(1)请你求出该正比例函数的解析式;(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;(3)请你判断点P(,1)是否在这个函数的图象上,为什么?12 【答案】见解析【解析】解:(1)由图可知点A(﹣1,2),代入y=kx得:﹣k=2,k=﹣2,则正比例函数解析式为y=﹣2x;(2)将点B(m,m+3)代入y=﹣2x,得:﹣2m=m+3,解得:m=﹣1;(3)当x时,y=﹣2×()=3≠1,所以点P不在这个函数图象上.。
专题12 一次函数【专题目录】技巧1:一次函数常见的四类易错题技巧2:一次函数的两种常见应用技巧3:一次函数与二元一次方程(组)的四种常见应用【题型】一、正比例函数的定义【题型】二、正比例函数的图像与性质【题型】三、一次函数的定义求参数【题型】四、一次函数的图像【题型】五、一次函数的性质【题型】六、求一次函数解析式【题型】七、一次函数与一元一次方程【题型】八、一次函数与一元一次不等式【题型】九、一次函数与二元一次方程(组)【题型】十、一次函数的实际应用【考纲要求】1、理解一次函数的概念,会画一次函数的图象,掌握一次函数的基本性质.2、会求一次函数解析式,并能用一次函数解决实际问题.【考点总结】一、一次函数和正比例函数的定义【考点总结】二、一次函数的图象与性质【注意】1、确定一次函数表达式用待定系数法求一次函数表达式的一般步骤:(1)由题意设出函数的关系式;(2)根据图象所过的已知点或函数满足的自变量与因变量的对应值列出关于待定系数的方程组;(3)解关于待定系数的方程或方程组,求出待定系数的值;(4)将求出的待定系数代回到原来设的函数关系式中即可求出.2、y=kx+b与kx+b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x 轴交点的横坐标.3、y=kx+b与不等式kx+b>0从函数值的角度看,不等式kx+b>0的解集为使函数值大于零(即kx+b>0)的x的取值范围;从图象的角度看,由于一次函数的图象在x轴上方时,y>0,因此kx+b>0的解集为一次函数在x 轴上方的图象所对应的x的取值范围.4、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点. 【技巧归纳】技巧1:一次函数常见的四类易错题【类型】一、忽视函数定义中的隐含条件而致错1.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值. 2.已知关于x 的函数y =kx-2k +3-x +5是一次函数,求k 的值.【类型】二、忽视分类或分类不全而致错3.已知一次函数y =kx +4的图像与两坐标轴围成的三角形的面积为16,求这个一次函数的表达式. 4.一次函数y =kx +b ,当-3≤x≤1时,对应的函数值的取值范围为1≤y≤9,求k +b 的值. 5.在平面直角坐标系中,点P(2,a)到x 轴的距离为4,且点P 在直线y =-x +m 上,求m 的值. 【类型】三、忽视自变量的取值范围而致错6.若等腰三角形的周长是80 cm ,则能反映这个等腰三角形的腰长y(cm )与底边长x(cm )的函数关系的图像是( )7.若函数y =⎩⎪⎨⎪⎧x 2+6(x≤3),5x (x>3),则当y =20时,自变量x 的值是( )A .±14B .4C .±14或4D .4或-148.现有450本图书供给学生阅读,每人9本,求余下的图书本数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围. 【类型】四、忽视一次函数的性质而致错9.若正比例函数y =(2-m)x 的函数值y 随x 的增大而减小,则m 的取值范围是( )A .m<0B .m>0C .m<2D .m>210.下列各图中,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 是常数,且mn≠0)的大致图像的是( )11.若一次函数y =kx +b 的图像不经过第三象限,则k ,b 的取值范围分别为k________0,b________0. 参考答案1.解:因为关于x 的函数y =(m +3)x |m +2|是正比例函数,所以m +3≠0且|m +2|=1, 解得m =-1.2.解:若关于x 的函数y =kx-2k +3-x +5是一次函数,则有以下三种情况:①-2k +3=1,解得k =1, 当k =1时,函数y =kx -2k +3-x +5可化简为y =5,不是一次函数.②x-2k +3的系数为0,即k =0,则原函数化简为y =-x +5,是一次函数,所以k =0.③-2k +3=0,解得k =32,原函数化简为y =-x +132,是一次函数,所以k =32.综上可知,k 的值为0或32.3.解:设函数y =kx +4的图像与x 轴、y 轴的交点分别为A ,B ,坐标原点为O.当x =0时,y =4,所以点B 的坐标为(0,4).所以OB =4.因为S △AOB =12OA·OB =16,所以OA =8.所以点A 的坐标为(8,0)或(-8,0).把(8,0)代入y =kx +4,得0=8k +4,解得k =-12.把(-8,0)代入y =kx +4,得0=-8k +4,解得k =12.所以这个一次函数的表达式为y =-12x +4或y =12x +4.4.解:①若k>0,则y 随x 的增大而增大,则当x =1时y =9,即k +b =9. ②若k<0,则y 随x 的增大而减小, 则当x =1时y =1,即k +b =1. 综上可知,k +b 的值为9或1. 5.解:因为点P 到x 轴的距离为4,所以|a|=4,所以a =±4,当a =4时,P(2,4), 此时4=-2+m ,解得m =6. 当a =-4时,同理可得m =-2. 综上可知,m 的值为-2或6.6.D 7.D8.解:余下的图书本数y(本)与学生人数x(人)之间的函数表达式为y =450-9x ,自变量x 的取值范围是0≤x≤50,且x 为整数. 9.D 10.A 11.<;≥技巧2:一次函数的两种常见应用 【类型】一、利用一次函数解决实际问题 题型1:行程问题1.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距离y(km )与甲车行驶的时间t(h )之间的函数关系如图所示,则下列结论:①A ,B 两城相距300 km ;②乙车比甲车晚出发1 h ,却早到1 h ; ③乙车出发后2.5 h 追上甲车;④当甲、乙两车相距50 km 时,t =54或154.其中正确的结论有( )A .1个B .2个C .3个D .4个2.甲、乙两地相距300 km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y(km )与时间x(h )之间的函数关系,折线BCDE 表示轿车离甲地的距离y(km )与时间x(h )之间的函数关系,根据图像,解答下列问题:(1)线段CD 表示轿车在途中停留了________h ; (2)求线段DE 对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.题型2:工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h )之间的函数图像如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?题型3:实际问题中的分段函数4.某种铂金饰品在甲、乙两个商场销售.甲标价为477元/g,按标价出售,不优惠;乙标价为530元/g,但若买的铂金饰品质量超过3 g,则超出部分可打八折.(1)分别写出到甲、乙两个商场购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一个质量不少于4 g且不超过10 g的此种铂金饰品,到哪个商场购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10 t以内(包括10 t)的用户,每吨收水费a元;一个月用水超过10 t的用户,10 t水仍按每吨a元收费,超过10 t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8 t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.【类型】二、利用一次函数解决几何问题题型4:利用图像解几何问题6.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D 运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图像如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,△APD的面积S的最大值为________cm2;(2)求出点P 在CD 上运动时S 与t 之间的函数表达式; (3)当t 为何值时,△APD 的面积为10 cm 2?题型5:利用分段函数解几何问题(分类讨论思想、数形结合思想)7.在长方形ABCD 中,AB =3,BC =4,动点P 从点A 开始按A→B→C→D 的方向运动到点D.如图,设动点P 所经过的路程为x ,△APD 的面积为y.(当点P 与点A 或D 重合时,y =0)(1)写出y 与x 之间的函数表达式; (2)画出此函数的图像.参考答案 1.B 2.解:(1)0.5(2)设线段DE 对应的函数表达式为y =kx +b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y =kx +b 可得⎩⎪⎨⎪⎧80=2.5k +b ,300=4.5k +b.解得⎩⎪⎨⎪⎧k =110,b =-195.所以y =110x -195(2.5≤x≤4.5).(3)设线段OA 对应的函数表达式为y =k 1x(0≤x≤5). 将A(5,300)的坐标代入y =k 1x 可得300=5k 1, 解得k 1=60.所以y =60x(0≤x≤5). 令60x =110x -195,解得x =3.9.故轿车从甲地出发后经过3.9-1=2.9(h )追上货车.3.解:(1)设甲组加工零件的数量y 与时间x 之间的函数表达式为y =kx ,因为当x =6时,y =360,所以k =60,即甲组加工零件的数量y 与时间x 之间的函数表达式为y =60x(0≤x≤6). (2)a =100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8 h 时共加工零件100+60×2.8=268(件), 所以装满第1箱的时刻在2.8 h 后. 设经过x 1 h 恰好装满第1箱.则60x 1+100÷2×2(x 1-2.8)+100=300,解得x 1=3.从x =3到x =4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件), 所以x>4.8时,才能装满第2箱,此时只有甲组继续加工. 设装满第1箱后再经过x 2 h 装满第2箱. 则60x 2+(4.8-3)×100÷2×2=300,解得x 2=2.故经过3 h 恰好装满第1箱,再经过2 h 恰好装满第2箱. 4.解:(1)y 甲=477x ,y 乙=⎩⎪⎨⎪⎧530x (0≤x≤3),424x +318(x >3).(2)当477x =424x +318时, 解得x =6,即当x =6时,到甲、乙两个商场购买所需费用相同; 当477x<424x +318时,解得x<6,又x≥4,于是当4≤x <6时,到甲商场购买合算; 当477x>424x +318时,解得x>6,又x≤10,于是当6<x≤10时,到乙商场购买合算.5.解:(1)当x≤10时,由题意知y =ax.将x =10,y =15代入,得15=10a ,所以a =1.5.故当x≤10时,y =1.5x.当x =8时,y =1.5×8=12. 故应交水费12元.(2)当x >10时,由题意知y =b(x -10)+15.将x =20,y =35代入,得35=10b +15,所以b =2.故当x >10时,y 与x 之间的函数表达式为y =2x -5.点拨:本题解题的关键是从图像中找出有用的信息,用待定系数法求出表达式,再解决问题. 6.解:(1)6;2;18(2)PD =6-2(t -12)=30-2t ,S =12AD·PD =12×6×(30-2t)=90-6t ,即点P 在CD 上运动时S 与t 之间的函数表达式为S =90-6t(12≤t≤15).(3)当0≤t≤6时易求得S =3t ,将S =10代入,得3t =10,解得t =103;当12≤t≤15时,S =90-6t ,将S =10代入,得90-6t =10,解得t =403.所以当t 为103或403时,△APD 的面积为10 cm 2.7.解:(1)点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,故应分段求出相应的函数表达式.①当点P 在边AB 上运动,即0≤x <3时, y =12×4x =2x ; ②当点P 在边BC 上运动,即3≤x <7时, y =12×4×3=6; ③当点P 在边CD 上运动,即7≤x≤10时, y =12×4(10-x)=-2x +20. 所以y 与x 之间的函数表达式为 y =⎩⎪⎨⎪⎧2x (0≤x <3),6 (3≤x <7),-2x +20 (7≤x≤10). (2)函数图像如图所示.点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,分段求出相应的函数表达式,再画出相应的函数图像.技巧3:一次函数与二元一次方程(组)的四种常见应用 【类型】一、利用两直线的交点坐标确定方程组的解1.已知直线y =-x +4与y =x +2如图所示,则方程组⎩⎪⎨⎪⎧y =-x +4,y =x +2的解为( )A .⎩⎪⎨⎪⎧x =3y =1B .⎩⎪⎨⎪⎧x =1y =3C .⎩⎪⎨⎪⎧x =0y =4D .⎩⎪⎨⎪⎧x =4y =02.已知直线y =2x 与y =-x +b 的交点坐标为(1,a),试确定方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解和a ,b 的值.3.在平面直角坐标系中,一次函数y =-x +4的图像如图所示.(1)在同一坐标系中,作出一次函数y =2x -5的图像;(2)用作图像的方法解方程组⎩⎪⎨⎪⎧x +y =4,2x -y =5;(3)求一次函数y =-x +4与y =2x -5的图像与x 轴所围成的三角形的面积.【类型】二、利用方程(组)的解求两直线的交点坐标4.已知方程组⎩⎪⎨⎪⎧-mx +y =n ,ex +y =f 的解为⎩⎪⎨⎪⎧x =4,y =6,则直线y =mx +n 与y =-ex +f 的交点坐标为( ) A .(4,6) B .(-4,6) C .(4,-6) D .(-4,-6)5.已知⎩⎪⎨⎪⎧x =3,y =-2和⎩⎪⎨⎪⎧x =2,y =1是二元一次方程ax +by =-3的两组解,则一次函数y =a x +b 的图像与y轴的交点坐标是( )A .(0,-7)B .(0,4)C .⎝⎛⎭⎫0,-37D .⎝⎛⎭⎫-37,0 【类型】三、方程组的解与两个一次函数图像位置的关系6.若方程组⎩⎪⎨⎪⎧x +y =2,2x +2y =3没有解,则一次函数y =2-x 与y =32-x 的图像必定( )A .重合B .平行C .相交D .无法确定7.直线y =-a 1x +b 1与直线y =a 2x +b 2有唯一交点,则二元一次方程组⎩⎪⎨⎪⎧a 1x +y =b 1,a 2x -y =-b 2的解的情况是( )A .无解B .有唯一解C .有两个解D .有无数解 【类型】四、利用二元一次方程组求一次函数的表达式8.已知一次函数y =kx +b 的图像经过点A(1,-1)和B(-1,3),求这个一次函数的表达式. 9.已知一次函数y =kx +b 的图像经过点A(3,-3),且与直线y =4x -3的交点B 在x 轴上.(1)求直线AB 对应的函数表达式;(2)求直线AB 与坐标轴所围成的△BOC(O 为坐标原点,C 为直线AB 与y 轴的交点)的面积.参考答案 1.B2.解:将(1,a)代入y =2x ,得a =2.所以直线y =2x 与y =-x +b 的交点坐标为(1,2),所以方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解是⎩⎪⎨⎪⎧x =1,y =2.将(1,2)代入y =-x +b ,得2=-1+b ,解得b =3. 3.解:(1)画函数y =2x -5的图像如图所示.(2)由图像看出两直线的交点坐标为(3,1),所以方程组的解为⎩⎪⎨⎪⎧x =3,y =1.(3)直线y =-x +4与x 轴的交点坐标为(4,0),直线y =2x -5与x 轴的交点坐标为⎝⎛⎭⎫52,0,又由(2)知,两直线的交点坐标为(3,1),所以三角形的面积为12×⎝⎛⎭⎫4-52×1=34. 4.A5.C6.B7.B8.解:依题意将A(1,-1)与B(-1,3)的坐标分别代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =-1,-k +b =3,解得⎩⎪⎨⎪⎧k =-2,b =1.所以这个一次函数的表达式为y =-2x +1.9.解:(1)因为一次函数y =kx +b 的图像与直线y =4x -3的交点B 在x 轴上,所以将y =0代入y =4x -3中,得x =34,所以B ⎝⎛⎭⎫34,0, 把A(3,-3),B ⎝⎛⎭⎫34,0的坐标分别代入y =kx +b 中,得⎩⎪⎨⎪⎧3k +b =-3,34k +b =0,解得⎩⎪⎨⎪⎧k =-43,b =1. 则直线AB 对应的函数表达式为y =-43x +1.(2)由(1)知直线AB 对应的函数表达式为y =-43x +1,所以直线AB 与y 轴的交点C 的坐标为(0,1), 所以OC =1,又B ⎝⎛⎭⎫34,0,所以OB =34.所以S △BOC =12OB·OC =12×34×1=38.即直线AB 与坐标轴所围成的△BOC 的面积为38.【题型讲解】【题型】一、正比例函数的定义例1、若一次函数y=(m ﹣3)x+m 2﹣9是正比例函数,则m 的值为_______. 【答案】m=﹣3 【解析】∵y=(m ﹣3)x+m 2﹣9是正比例函数, ∵29030m m -⎧⎨-≠⎩=解得m=-3. 故答案是:-3.【题型】二、正比例函数的图像与性质 例2、若正比例函数12y x =经过两点(1,1y )和(2,2y ),则1y 和2y 的大小关系为( ) A .12y y < B .12y y >C .12y y =D .无法确定【答案】A【分析】分别把点(1,1y ),点(2,2y )代入函数12y x =,求出点1y ,2y 的值,并比较出其大小即可.【详解】∵点(1,1y ),点(2,2y )是函数12y x =图象上的点, ∵112y =,21y =, ∵112<, ∵12y y <. 故选:A .【题型】三、一次函数的定义求参数例3、已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可. 【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小, ∵k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【题型】四、一次函数的图像例4、若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可. 【详解】解:∵m <﹣2, ∵m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限, 故选:D .【题型】五、一次函数的性质例5、设k 0<,关于x 的一次函数2y kx =+,当12x ≤≤时的最大值是( ) A .2k + B .22k +C .22k -D .2k -【答案】A【分析】利用一次函数的性质可得当x=1时,y 最大,然后可得答案. 【详解】∵一次函数2y kx =+中0k <, ∵y 随x 的增大而减小, ∵12x ≤≤,∵当1x =时,122y k k =⨯+=+最大, 故选:A .【题型】六、求一次函数解析式例6、直线y kx b =+在平面直角坐标系中的位置如图所示,则不等式2kx b +≤的解集是( )A .2x -≤B .4x ≤-C .2x ≥-D .4x ≥-【答案】C【分析】先根据图像求出直线解析式,然后根据图像可得出解集. 【详解】解:根据图像得出直线y kx b =+经过(0,1),(2,0)两点,将这两点代入y kx b =+得120b k b =⎧⎨+=⎩,解得112b k =⎧⎪⎨=-⎪⎩,∵直线解析式为:112y x =-+, 将y=2代入得1212x =-+,解得x=-2,∵不等式2kx b +≤的解集是2x ≥-, 故选:C .【题型】七、一次函数与一元一次方程例7、一次函数3y kx =+(k 为常数且0k ≠)的图像经过点(-2,0),则关于x 的方程()530k x -+=的解为( ) A .5x =- B .3x =-C .3x =D .5x =【答案】C【分析】根据一次函数图象的平移即可得到答案.【详解】解:∵()53y k x =-+是由3y kx =+的图像向右平移5个单位得到的,∵将一次函数3y kx =+的图像上的点(-2,0)向右平移5个单位得到的点的坐标为(3,0) ∵当y=0时,方程()530k x -+=的解为x=3, 故选:C .【题型】八、一次函数与一元一次不等式例8、如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为( )A .1x ≤B .1≥xC .1x <D .1x >【答案】A【分析】将(1,1)P 代入(0)y kx b k =+<,可得1k b -=-,再将kx b x +≥变形整理,得0bx b -+≥,求解即可.【详解】解:由题意将(1,1)P 代入(0)y kx b k =+<,可得1k b +=,即1k b -=-, 整理kx b x +≥得,()10k x b -+≥, ∵0bx b -+≥, 由图像可知0b >, ∵10x -≤, ∵1x ≤, 故选:A .【题型】九、一次函数与二元一次方程(组)例9、在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则∵AOB 的面积为( ) A .2 B .3C .4D .6【答案】B 【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.【详解】解:在y=x+3中,令y=0,得x=﹣3,解32y xy x=+⎧⎨=-⎩得,12xy=-⎧⎨=⎩,∵A(﹣3,0),B(﹣1,2),∵∵AOB的面积=12⨯3×2=3,故选:B.【题型】十、一次函数的实际应用例10、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【答案】(1)y=80x﹣128(1.6≤x≤3.1);(2)货车乙返回B地的车速至少为75千米/小时【分析】(1)先设出函数关系式y=kx+b(k≠0),观察图象,经过两点(1.6,0),(2.6,80),代入求解即可得到函数关系式;(2)先求出货车甲正常到达B地的时间,再求出货车乙出发回B地时距离货车甲比正常到达B地晚1个小时的时间以及故障地点距B地的距离,然后设货车乙返回B地的车速为v千米/小时,最后列出不等式并求解即可.【详解】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y =kx+b ,得 0 1.680 2.6k bk b =+⎧⎨=+⎩,解得: 80128k b =⎧⎨=-⎩,∵y 关于x 的函数表达式为y =80x ﹣128(1.6≤x≤3.1); (2)根据图象可知:货车甲的速度是80÷1.6=50(km/h ) ∵货车甲正常到达B 地的时间为200÷50=4(小时), 18÷60=0.3(小时),4+1=5(小时), 当y =200﹣80=120 时, 120=80x ﹣128, 解得x =3.1,5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时, ∵1.6v≥120, 解得v≥75.答:货车乙返回B 地的车速至少为75千米/小时.一次函数(达标训练)一、单选题1.已知一次函数4y kx =+经过()11,y ,()22,y ,且12y y <,它的图象可能是( )A .B .C .D .【答案】B【分析】根据一次函数的增减性,可知它的图象可能为B 、C 选项,结合一次函数y=kx +4的图象经过点(0,4),即可得到答案.【详解】∵一次函数y=kx +4经过(1,y 1),(2,y 2)且y 1<y 2, ∵y 随x 的增大而增大,又∵一次函数y =kx +4的图象经过点(0,4), ∵它的图象可能是B 选项, 故选B .【点睛】本题主要考查一次函数的系数与函数图象之间的关系,掌握一次函数系数的几何意义,是解题的关键.2.已知一次函数1y kx =-经过()11,A y -,()22,B y 两点,且12y y >,则k 的取值范围是( ) A .0k > B .0k = C .0k < D .不能确定【答案】C【分析】根据一次函数的增减性可得出结论. 【详解】∵1212,y y -<>, ∵函数y 随x 的增大而减小. ∵k <0, 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的性质是解答此题的关键. 3.一次函数2y x m =-+的图象经过第一、二、四象限,则m 可能的取值为( ) A.-1 B .34C .0D .1【答案】B【分析】根据一次函数的图象和性质,即可求解.【详解】解:∵一次函数2y x m =-+的图象经过第一、二、四象限, ∵0m >,∵m 可能的取值为34.故选:B【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数()0y kx b k =+≠,当0,0k b >>时,一次函数图象经过第一、二、三象限;当0,0k b ><时,一次函数图象经过第一、三、四象限;当0,0k b <>时,一次函数图象经过第一、二、四象限;当0,0k b <<时,一次函数图象经过第二、三、四象限是解题的关键.4.一次函数31y x =-+的图象经过( )A .一、二、四象限B .一、三、四象限C .一、二、三象限D .二、三、四象限【答案】A【分析】根据一次函数关系中系数符号k <0,b >0解答即可. 【详解】解:∵31y x =-+中0k <, ∵一次函数图象经过第二、四象, ∵ 0b >,∵ 一次函数图象经过一、二、四象限. 故选:A .【点睛】此题考查了一次函数的图象,根据k 和b 的符号进行判断是解题的关键. 5.若23y x b =+-,y 是x 的正比例函数,则b 的值是( ) A .0 B .23-C .23D .32【答案】C【分析】根据y 是x 的正比例函数,可知23=0b -,即可求得b 值. 【详解】解:∵y 是x 的正比例函数, ∵23=0b -, 解得:23b =, 故选:C .【点睛】本题主要考查的是正比例函数的定义,掌握其定义是解题的关键.二、填空题6.请写出一个图象经过点()2,0A 的函数的解析式:______. 【答案】24y x =-(答案不唯一)【分析】写出一个经过点(2,0)的一次函数即可.【详解】解:经过点()2,0A 的函数的解析式可以为24y x =-, 故答案为:24y x =-(答案不唯一).【点睛】本题主要考查了函数图象上点的坐标特征,熟知函数图象上的点一定满足其函数解析式是解题的关键.7.将直线y =2x -1向下平移3个单位后得到的直线表达式为________. 【答案】24y x =-【分析】根据一次函数平移的规律解答.【详解】解:直线y =2x -1向下平移3个单位后得到的直线表达式为y =2x -1-3=2x -4, 即y =2x -4, 故答案为y =2x -4.【点睛】此题考查了一次函数平移的规律:左加右减,上加下减,熟记平移的规律是解题的关键.三、解答题8.某中学积极响应“双减”政策,为了丰富学生的课外活动,激发学生参加体育活动的兴趣,准备购买一批新的羽毛球拍.已知甲、乙两商店销售同一种羽毛球拍,但两个商店的原价和销售方式均不同.在甲商店,无论一次性购买多少支羽毛球拍,一律按原价出售;在乙商店,一次性购买羽毛球拍的数量不超过20支,按原价销售,若一次性购买球拍数量超过20支,超出的部分打八折.设该学校购买了x 支羽毛球拍,在甲商店购买所需的费用为1y 元,在乙商店购买所需的费用为2y 元,1y ,2y 关于x 的函数图像如图所示.(1)分别求出1y ,2y 关于x 的函数解析式. (2)请求出m 的值,并说明m 的实际意义.(3)若该学校一次性购买羽毛球拍的数量超过80支,但不超过120支,到哪家商店购买更优惠? 【答案】(1)142y x =;()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)m =100,m 的实际意义是当一次性购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元(3)当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算【分析】(1)根据函数图像设出表达式,利用待定系数法解得即可;(2)根据图像交点,当x >20时,令12y y =,解得x ,y 的值即可;(3)由m 的意义,结合图像,谁的图像靠下谁更合算.(1)由题意,甲商店设11y k x =, ∵184020k =, ∵142k =, ∵1142y x =;乙商店:当0<x≤20时,设22y k x =, ∵2100020k =, ∵250k =, ∵250y x =,当x >20时,()2100020500.84020y x x =+-⨯⨯=+, ∵()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)当x>20时,令12y y =,即4020042x x +=, ∵x =100,y =4200, ∵m =100,∵m 的实际意义是当一次购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元; (3)由m 的意义,结合图像可知,谁的图像在下谁更合算,当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算.【点睛】本题考查了一次函数的实际应用,解题的关键是掌握一次函数图像的性质.一次函数(提升测评)一、单选题1.一次函数()32y k x k =++-的图象如图所示,()01k -有意义的k 的值可能为( )A .-3B .-1C .-2D .2【答案】B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意. 故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底数的范围.熟练掌握以上知识点,是解决此题的关键.2.已知直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点,若将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,若∵ABC 的面积为6,则m 的值为( ) A .1 B .2C .3D .4【答案】C【分析】先求出点B (0,4),可得OB =4,再根据平移的性质,可得AC =m ,再根据∵ABC 的面积为6,即可求解.【详解】解:∵直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点, 当x =0时,y =4, ∵点B (0,4), ∵OB =4,∵将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点, ∵AC =m ,∵∵ABC 的面积为6, ∵1462m , 解得:m =3. 故选:C .【点睛】本题主要考查了一次函数的性质,一次函数的平移问题,熟练掌握一次函数的图象和性质是解题的关键.3.已知一次函数y =-kx +k ,y 随x 的增大而减小,则在直角坐标系内大致图象是( )A .B .C .D .【答案】C【分析】由于一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,可得-k <0,然后,判断一次函数y =-kx +k 的图象经过的象限即可.【详解】解:∵一次函数y =-kx +k (k ≠0),y 随x 的增大而减小, ∵-k <0,即k >0,∵一次函数y =-kx +k 的图象经过一、二、四象限. 故选:C .【点睛】本题主要考查了一次函数的图象,掌握一次函数y =kx +b 的图象性质: ∵当k >0,b >0时,图象过一、二、三象限; ∵当k >0,b <0时,图象过一、三、四象限; ∵当k <0,b >0时,图象过一、二、四象限; ∵当k <0,b <0时,图象过二、三、四象限.4.在平而直角坐标系中,一次函数32y x m =-+的图像关于直线1y =对称后经过坐标原点,则m 的值为( ) A .1 B .2C .1-D .2-【答案】A【分析】由题意一次函数32y x m =-+与y 轴的交点为(0,2m ),根据点(0,2m )与原点关于直线1y =对称,即可求出答案.【详解】解:根据题意,在一次函数32y x m =-+中, 令0x =,则2y m =,∵一次函数32y x m =-+与y 轴的交点为(0,2m ), ∵点(0,2m )与原点关于直线1y =对称, ∵22m =, ∵1m =; 故选:A .【点睛】本题考查了一次函数的性质,轴对称的性质,解题的关键是掌握一次函数的性质进行解题. 5.甲、乙两自行车运动爱好者从A 地出发前往B 地,匀速骑行.甲、乙两人离A 地的距离y (单位:km )与乙骑行时间x (单位:h )之间的关系如图所示.下列说法正确的是( )A .乙骑行1h 时两人相遇B .甲的速度比乙的速度慢C .3h 时,甲、乙两人相距15kmD .2h 时,甲离A 地的距离为40km 【答案】C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题. 【详解】解:由图象可知,甲乙骑行1.5h 时两人相遇,故选项A 不合题意; 甲的速度比乙的速度快,故选项B 不合题意;甲的速度为:30÷(1.5-1)=30(km/h ),乙的速度为:30÷1.5=20(km/h ), 3h 时,甲、乙两人相距:30×(3-0.5)-20×3=15(km ),故选项C 符合题意;。
函数的单调性知识点1、增函数定义、减函数的定义:(1)设函数y f (x) 的定义域为A,区间M A ,如果取区间M 中的任意两个值x1, x2 , 当改变量 x x2 x1 0 时,都有y f ( x2 ) f ( x1 ) 0 ,那么就称函数 y f (x) 在区间 M 上是增函数,如图( 1)当改变量x x2 x1 0 时,都有y f (x2 ) f ( x1 ) 0 ,那么就称函数 y f (x) 在区间M上是减函数,如图(2)注意:单调性定义中的x1、 x2有什么特征:函数单调性定义中的x1,x2有三个特征 ,一是任意性,二是有大小,三是同属于一个单调区间.1、根据函数的单调性的定义思考:由f(x)是增 (减 )函数且 f(x1)<f(x2)能否推出x1<x2( x1>x2)2、我们来比较一下增函数与减函数定义中x, y 的符号规律,你有什么发现没有?3、如果将增函数中的“当x x2 x1 0 时,都有y f ( x2 ) f ( x1 ) 0 ”改为当x x2 x1 0 时,都有y f ( x2 ) f ( x1 ) 0 结论是否一样呢?4、定义的另一种表示方法如果对于定义域 I 内某个区间 D 上的任意两个自变量x ,x f ( x1 ) f ( x2 )1 2x1 x2y,则函数 y=f(x) 是增函数,若f ( x1 ) f ( x2 )即y0 ,则函数y=f(x) 为减x1 0xx x2 函数。
判断题:①已知 f (x) 11) f (2) ,所以函数 f ( x) 是增函数.因为 f (x②若函数 f ( x) 满足 f (2) f (3) 则函数 f ( x) 在区间2,3上为增函数.③若函数 f ( x) 在区间 (1,2] 和 (2,3) 上均为增函数,则函数f ( x) 在区间 (1,3) 上为增函数.1 在 区 间, 0), (0,1在④ 因 为 函 数 f ( x)上) 都是 减 函 数 , 所 以 f ( x)xx( ,0) (0, ) 上是减函数 .通过判断题,强调几点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.②对于某个具体函数的单调区间,可以是整个定义域( 如一次函数 ) ,可以是定义域内某个区间 ( 如二次函数 ) ,也可以根本不单调(如常函数 ).③单调性是对定义域的某个区间上的整体性质,不能用特殊值说明问题。
专题12(5.2 函数的基本性质)一、单选题1.(2020·上海高一课时练习)对于定义域是R 的任意奇函数()f x ,都有( ) A .()()0f x f x --> B .()()0f x f x --≤ C .()()0f x f x ⋅-≤ D .()()0f x f x ⋅->【答案】C【分析】根据()f x 为奇函数,可得()()f x f x -=-,再对四个选项逐一判断即可得正确答案.【详解】∵()f x 为奇函数, ∴()()f x f x -=-,∴()()()()()2=0f x f x f x f x f x ⎡⎤⎡⎤⋅-⋅-=-≤⎣⎦⎣⎦, 又()0=0f ,∴()20f x -≤⎡⎤⎣⎦, 故选:C【点睛】本题主要考查了奇函数的定义和性质,属于基础题.2.(2020·上海高一课时练习)下列函数中在区间(1,)+∞单调递增的是( )A .2(2)y x =-B .13y x=- C .|4|y x =+ D .y =【答案】C【分析】结合基本初等函数的图象与性质,逐项判定,即可求解.【详解】根据二次函数的图象与性质,可得函数2(2)y x =-在(2,)+∞单调递增,不符合题意; 由函数1133y x x ==---,可得函数在(,3),(3,)-∞+∞上单调递增,不符合题意; 由函数4,444,4x x y x x x +≥-⎧=+=⎨--<-⎩,可得函数在[4,)-+∞上单调递增,所以在区间(1,)+∞单调递增,符合题意;由函数y =10x -≥,解得1≥x ,即函数的定义域为[1,)+∞,结合幂函数的性质,可得函数y =[1,)+∞上单调递减,不符合题意. 故选:C.【点睛】本题主要考查了函数的单调性的判定,其中解答中熟记基本初等函数的图象与性质是解答的关键,着重考查推理与运算能力.3.(2017·上海徐汇·南洋中学高一月考)已知定义在R 上的偶函数()f x ,对任意不相等的(]120x x ∈-∞,,,有()()()21210x x f x f x -->⎡⎤⎣⎦,当*n N ∈时,有( )A .()()()11f n f n f n -<-<+B .()()()11f n f n f n -<-<+ C .()()()11f n f n f n +<-<- D .()()()11f n f n f n +<-<- 【答案】C【分析】由已知不等式得函数在(,0]-∞上的单调性,再由偶函数性质得在[0,)+∞上的单调性,结合偶函数性质得距离y 轴越远的自变量的函数值越小,从而可得结论.【详解】由题意,函数在区间(]0-∞,上单调递增,函数图象关于y 轴对称,所以函数在()0+∞,上单调递减;又*n N ∈,11n n n +>->-,距离y 轴越远的自变量的函数值越小,则()()()11f n f n f n +<-<-, 故选:C.【点睛】本题考查的奇偶性与单调性,利用奇偶性性质得函数在关于y 轴对称区间上的单调性,从而可比较函数值大小.4.(2019·宝山·上海交大附中高一期中)已知函数(1)y f x =+为偶函数,则下列关系一定成立的是( ) A .()()f x f x =- B .(1)(1)f x f x +=-+ C .(1)(1)f x f x +=-- D .(1)()f x f x -+=【答案】B【分析】函数(1)y f x =+为偶函数,可得函数()y f x =的图像关于1x =对称,在四个选项中选择能表示函数()y f x =的图像关于1x =对称的,得到答案. 【详解】函数(1)y f x =+为偶函数,可得()y f x =的图像向左平移1个单位后关于y 轴对称, 所以()y f x =的图像关于1x =对称,在所给四个选项中,只有选项B. (1)(1)f x f x +=-+也表示()y f x =的图像关于1x =对称, 故选B.【点睛】本题考查函数的奇偶性和对称性,属于简单题.5.(2018·上海杨浦·复旦附中高一期末)函数223y x x =-+在闭区间[0,]m 上有最大值3,最小值为2, m 的取值范围是 A .(,2]-∞ B .[0,2] C .[1,2] D .[1,)+∞【答案】C【分析】本题利用数形结合法解决,作出函数()f x 的图象,如图所示,当1x =时,y 最小,最小值是2,当2x =时,3y =,欲使函数2()23=-+f x x x 在闭区间[0,]m 上的上有最大值3,最小值2,则实数m 的取值范围要大于等于1而小于等于2即可.【详解】解:作出函数()f x 的图象,如图所示,当1x =时,y 最小,最小值是2,当2x =时,3y =,函数2()23=-+f x x x 在闭区间[0,]m 上上有最大值3,最小值2, 则实数m 的取值范围是[1,2]. 故选:C .【点睛】本题考查二次函数的值域问题,其中要特别注意它的对称性及图象的应用,属于中档题.6.(2018·上海市敬业中学高一期末)关于函数()232f x x =-的下列判断,其中正确的是( )A .函数的图像是轴对称图形B .函数的图像是中心对称图形C .函数有最大值D .当0x >时,()y f x =是减函数【答案】A【分析】判断函数为偶函数得到A 正确,B 错误 ,取特殊值,排除C 和D 得到答案.【详解】()232f x x =-定义域为:{x x ≠ ,()23()2f x f x x -==-函数为偶函数,故A 正确,B 错误当x →且x >时,()f x →+∞ ,C 错误3(1)3,(2)2f f =-=,不满足()y f x =是减函数,D 错误 故选A【点睛】本题考查了函数的性质,意在考查学生对于函数性质的灵活运用. 7.(2019·上海宝山·高一期末)设函数()f x 是定义在R 上的奇函数,当0x <时,2()5f x x x =--,则不等式()(1)0f x f x --<的解集为( )A .(1,2)-B .(1,3)-C .(2,3)-D .(2,4)-【答案】C【分析】根据题意,结合函数的奇偶性分析可得函数的解析式,作出函数图象,结合不等式和二次函数的性质以及函数图象中的递减区间,分析可得答案. 【详解】根据题意,设0x >,则0x -<,所以2()5f x x x -=-+,因为()f x 是定义在R 上的奇函数,所以2()5()f x x x f x -=-+=-,所以2()5f x x x =-,即0x ≥时,当0x <时,2()5f x x x =--,则()f x 的图象如图:在区间55(,)22-上为减函数,若()(1)0f x f x --<,即(1)()f x f x ->,又由1x x -<,且(3)(2),(2)(3)f f f f -=-=,必有133x x ->-⎧⎨<⎩时,()(1)0f x f x --<,解得23x -<<,因此不等式的解集是(2,3)-,故选C.【点睛】本题主要考查了函数奇偶性的应用,利用函数的奇偶性求出函数的解析式,根据图象解不等式是本题的关键,属于难题.8.(2019·上海虹口·高一期末)一次函数()()f x 3a 2x 1a =-+-,在[﹣2,3]上的最大值是()f 2-,则实数a 的取值范围是( )A .2a 3≥B .2a 3>C .2a 3≤D .2a 3<【答案】D【分析】根据函数的最值和函数单调性的关系即可求出a 的范围.【详解】因为一次函数()()f x 3a 2x 1a =-+-,在[﹣2,3]上的最大值是()f 2-,则函数f (x )在[﹣2,3]上为减函数,则3a ﹣2<0,解得2a 3<, 故选D .【点睛】本题考查了一次函数的单调性和最值的关系,考查了转化与化归思想,属于基础题. 9.(2019·上海外国语大学附属大境中学高一期末)下列函数在(0,)+∞上是增函数的是( )A .12()f x x =- B .1()()2xf x =C .1()1f x x x =++ D .21()f x x=【答案】C【分析】根据已知的函数模型,得到AB 的正误,再由,当x 值变大时,y 值变小,得到D 的单调性;C 选项通过换元得到熟悉的对勾函数的模型,根据内外层函数的单调性得到结果.【详解】函数()12f x x =-=()0,+∞上是减函数,()12xf x ⎛⎫= ⎪⎝⎭在()0,+∞上是减函数,()11f x x x =++,设t=x+1,故得到11y t t=+-在()1,+∞上单调增,内层也是增函数,故函数在()0,+∞上是增函数;()21f x x=在()0,+∞上是减函数. 故答案为C.【点睛】这个题目考查了函数单调性的判断,判断函数的单调性,方法一:可以由定义证明单调性,方法二,可根据熟悉的函数模型得到函数的单调性;方法三,可根据函数的性质,例如增函数加增函数还是增函数,减函数加减函数还是减函数来判断.二、填空题10.(2020·上海高一课时练习)如图所示,已知奇函数()y f x =在y 轴右边部分的图像,则()0f x >的解集为_________.【答案】[)()5,30,3--【分析】根据奇函数的图象关于原点对称,画出()y f x =在y 轴左边部分的图像,即得()0f x >的解集.【详解】由()y f x =是奇函数,其图象关于原点对称,根据()y f x =在y 轴右边部分的图像, 画出()y f x =在y 轴左边部分的图像,如图所示则()0f x >的解集为[)()5,30,3--.故答案为:[)()5,30,3--.【点睛】本题考查函数的奇偶性,属于基础题.11.(2020·上海高一课时练习)已知下列各命题:①若在定义域内存在12x x <使得()()12f x f x <成立,则函数()f x 是增函数;②函数3y x =-在其定义域内是减函数;③函数1y x=在其定义域内是增函数.其中是真命题的是___________(填写序号).【答案】②【分析】由函数单调性的定义可判断①,由一次函数的单调性可判断②,由反比例函数的性质可判断③,即可得解.【详解】对于①,由函数单调性的定义可知,若在定义域内任意的12x x <,均有()()12f x f x <成立,则函数()f x 是增函数,故①错误;对于②,由一次函数的单调性可知函数3y x =-在其定义域内是减函数,故②正确; 对于③,函数1y x=的单调递减区间为(),0-∞,()0,∞+,故③错误.故答案为:②.【点睛】本题考查了函数单调性定义的应用,考查了常见函数单调性的判断,属于基础题. 12.(2020·上海市大同中学)已知函数()f x 的定义域为R ,则下列命题中: ①若()2f x -是偶函数,则函数()f x 的图象关于直线2x =对称; ②若()()22f x f x +=--,则函数()f x 的图象关于原点对称; ③函数()2y f x =+与函数()2y f x =-的图象关于直线2x =对称; ④函数()2f x -与函数()2y f x =-的图象关于直线2x =对称. 其中正确的命题序号是________. 【答案】④【分析】结合函数图象的平移变换规律,及函数图象的对称性,对四个命题逐个分析,可得出答案.【详解】对于①,函数()2f x -的图象向左平移2个单位,得到函数()f x 的图象, 因为()2f x -是偶函数,其图象关于0x =对称, 所以()f x 的图象关于2x =-对称,故①错误;对于②,由()()22f x f x +=--,可得()()62f x f x +=-+,则()()()622f x f x f x +=-+=-,所以()()8f x f x +=, 即函数()f x 是周期函数,周期为8,不能得出()f x 的图象关于原点对称,故②错误;对于③,()f x 的图象向左平移2个单位,得到()2y f x =+的图象,()f x -的图象向右平移2个单位,得到()2y f x =-的图象.因为函数()y f x =和()y f x =-的图象关于0x =对称,所以函数()2y f x =+与函数()2y f x =-的图象关于0x =对称,故③错误; 对于④,()f x 的图象向右平移2个单位,得到()2y f x =-的图象,()f x -的图象向右平移2个单位,得到()2y f x =-的图象.因为函数()y f x =和()y f x =-的图象关于0x =对称,所以函数()2y f x =-与函数()2y f x =-的图象关于2x =对称,故④正确. 故答案为:④.【点睛】本题考查函数图象的平移变换规律,及函数图象的对称性,考查学生的推理能力,属于中档题.13.(2020·上海市大同中学)已知2()y f x x =+是奇函数,且()11f =,若()()2g x f x =+,则(1)g -=___.【答案】-1【分析】由题意,可先由函数是奇函数求出(1)3f -=-,再将其代入(1)g -求值即可得到答案【详解】由题意,2()y f x x =+是奇函数,且f (1)1=,所以f (1)21(1)(1)0f ++-+-=解得(1)3f -=- 所以(1)(1)2321g f -=-+=-+=- 故答案为:1-.【点睛】本题考查函数奇偶性的性质,利用函数奇偶性求值,解题的关键是根据函数的奇偶性建立所要求函数值的方程,基本题型.14.(2019·上海浦东新·华师大二附中高一月考)已知()f x x x =,若对任意[]2,2x a a ∈-+,()()2f x a f x +<恒成立,则实数a 的取值范围是______.【答案】a <【分析】通过分类讨论分析得到1)a x <恒成立,再求函数()1)g x x =,[]2,2x a a ∈-+的最值得解.【详解】(1)当0x ≥时,2()f x x =,222()2))f x x f ===;当0x <时,222(),2()2))f x x f x x f =-=-=-=,所以在R 上,2()),())f x f f x a f =∴+<,因为在R 上,函数()f x 单调递增,,1)x a a x ∴+<∴<恒成立,(2)记()1)g x x =,[]2,2x a a ∈-+,min ()(2)1)(2),1)(2),g x g a a a a a ∴=-=-∴<-∴<.故答案为a <【点睛】本题主要考查函数的单调性和应用,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.15.(2018·上海市第八中学高一月考)函数()f x =【答案】[)3,+∞【分析】求出函数()y f x =的定义域,然后利用复合函数法可求出函数()f x =.【详解】令2230x x --≥,解得1x ≤-或3x ≥,函数()f x =(][),13,-∞-+∞.内层函数223u x x =--的减区间为(],1-∞-,增区间为[)3,+∞.外层函数y =[)0,+∞上为增函数,由复合函数法可知,函数()f x =[)3,+∞.故答案为[)3,+∞.【点睛】本题考查函数单调区间的求解,常用的方法有复合函数法、图象法,另外在求单调区间时,首先应求函数的定义域,考查分析问题和解决问题的能力,属于中等题. 16.(2018·上海市七宝中学高一月考)若幂函数3(*)my x m N -=∈是奇函数,则实数m 的最小值是__________ 【答案】1【分析】由幂函数3(*)my x m N -=∈是奇函数,得到m 是奇数,再由*m N ∈,能求出实数m 的最小值.【详解】幂函数3(*)m y xm N -=∈是奇函数,m ∴是奇数,*m N ∈,∴实数m 的最小值是1.【点睛】本题考查幂函数的定义、奇偶性,考查运算求解能力,是基础题.17.(上海普陀·曹杨二中高一期中)定义在R 上的奇函数()f x 在[)0,+∞上的图像如图所示,则不等式()0xf x <的解集是______.【答案】()(),22,-∞-+∞【分析】解不等式组00()0()0x x f x f x ><⎧⎧⎨⎨<>⎩⎩或得解.【详解】因为函数f(x)是奇函数, 所以函数的图像为因为()0xf x <,所以函数的第二、四象限的图像满足题意,所以x >2或x <-2.所以不等式的解集为()(),22,-∞-+∞.故答案为()(),22,-∞-+∞【点睛】本题主要考查奇函数的图像和性质,意在考查学生对这些知识的理解掌握水平.18.(2020·徐汇·上海中学高一期末)已知函数23()4f x ax =+,()ag x x x =+,对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,则a 的取值范围为__________. 【答案】5,42⎡⎤⎢⎥⎣⎦【分析】对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,等价于min max ()()f x g x ≥在区间[1,2]上恒成立,对a 的取值进行分类讨论,利用单调性求出min ()f x 和min ()g x ,列出关于a 的不等式组求得答案.【详解】当0a <时,23()4f x ax =+在区间[1,2]上单调递减,min 3()(2)44f x f a ==+,()ag x x x=+在区间[1,2]上单调递增,min ()1g x a =+, 所以3414a a +≥+,解得112a ≥,因为0a <,所以无解; 当0a ≥时,可知min 3()(1)4f x f a ==+, 当01a ≤≤时,()ag x x x=+在区间[1,2]上单调递增,其最小值为(1)1g a =+, 所以有01314a a a ≤≤⎧⎪⎨+≥+⎪⎩,无解,当14a <<时,()ag x x x=+在区间上单调减,在4]上单调增,其最小值为g =所以有1434a a <≤⎧⎪⎨+≥⎪⎩,解得542a ≤≤, 所以a 的取值范围是5[,4]2,故答案为:5[,4]2.【点睛】该题考查的是有关根据恒成立求参数的取值范围的问题,涉及到的知识点有根据题意将恒成立问题向最值转化,求含参的函数在给定区间上的最值,属于中档题目.19.(2019·徐汇·上海中学高一期末)若函数()()2log 2a f x x ax =-+(0a >且1a ≠)满足:对任意1x ,2x ,当122ax x <≤时,()()120f x f x ->,则a 的取值范围为______.【答案】(【分析】确定函数为单调减函数,利用复合函数的单调性:知道1a >且真数恒大于0,求得a 的取值范围.【详解】解:令2222()224a a y x ax x =-+=-+-在对称轴左边递减,∴当122ax x <时,12y y > 对任意的1x ,2x 当122ax x <时,21()()0f x f x -<,即12()()f x f x > 故应有1a >又因为22y x ax =-+在真数位置上所以须有2204a ->∴a -<综上得1a <<故答案为(【点睛】本题考查了复合函数的单调性.复合函数的单调性的遵循原则是单调性相同复合函数为增函数,单调性相反复合函数为减函数.20.(2019·上海市高桥中学高一期末)设m R ∈,若函数()()2311f x m x mx =+++是偶函数,则()f x 的单调递增区间是_________. 【答案】[0,)+∞【分析】由()()f x f x -=,化简得所以()()22331111m x mx m x mx +-+=+++,即可求解,得到答案.【详解】由题意,函数()()2311f x m x mx =+++是偶函数,所以()()f x f x -=,即()()()22331()()111f x m x m x m x mx -=+-+-+=+-+, 所以()()22331111m x mx m x mx +-+=+++,可得0m =, 所以函数的解析式为()231f x x =+,根据幂函数的性质,可得函数()f x 的单调递增区间为[0,)+∞. 故答案为[0,)+∞.【点睛】本题主要考查了利用函数的奇偶性求解参数问题,其中解答中熟记函数的奇偶性的定义,根据多项式相等求得m 的值,再根据幂函数的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题21.(2019·上海市曹杨中学高一期末)已知函数()224422f x x ax a a =-+-+在区间[0,2]上的最小值为3,求a 的值.【答案】1a =5a =.【分析】将f (x )转化为顶点式,求得对称轴,讨论区间和对称轴的关系,结合函数单调性,得最小值所对应方程,解方程可得a 的值【详解】函数()f x 的表达式可化为()()24222a f x x a ⎛⎫=-+- ⎪⎝⎭.① 当022a<<,即04a <<时,()f x 有最小值22a -,依题意应有223a -=,解得12a =-,这个值与04a ≤≤相矛盾.②当2a 0≤,即a 0≤时,()2022f a a =-+是最小值,依题意应有2223a a -+=,解得1a =a 0≤,∴1a =③当2a 2≥ ,即a 4≥时,()2216822f a a a =-+-+是最小值,依题意应有2168223a a a -+-+=,解得5a =±,又∵a 4≥,∴5a =综上所述,1a =-5a =.【点睛】本题考查了二次函数求最值,解题中要注意对称轴和区间的关系,考查分类讨论的思想方法和运算能力.22.(2017·上海徐汇·南洋中学高一月考)已知函数()f x 对于任意的,x y 都有()()()f x y f x f y +=+,当0x >时,则()0f x <且(1)2f =-(1)判断()f x 的奇偶性;(2)求()f x 在[3,3]-上的最大值;(3)解关于x 的不等式2()2()()4f ax f x f ax -<+.【答案】(1) 函数f (x )为奇函数.(2)6.(3)见解析.分析:(1)取x=y=0可得f (0)=0;再取y=﹣x 代入即可; (2)先判断函数的单调性,再求函数的最值;(3)由于f (x )为奇函数,整理原式得 f (ax 2)+f (﹣2x )<f (ax )+f (﹣2);即f (ax 2﹣2x )<f (ax ﹣2);再由函数的单调性可得ax 2﹣2x >ax ﹣2,从而求解. 详解:(1)取x=y=0, 则f (0+0)=f (0)+f (0); 则f (0)=0;取y=﹣x ,则f (x ﹣x )=f (x )+f (﹣x ), ∴f (﹣x )=﹣f (x )对任意x ∈R 恒成立 ∴f (x )为奇函数;(2)任取x 1,x 2∈(﹣∞,+∞)且x 1<x 2,则x 2﹣x 1>0; ∴f (x 2)+f (﹣x 1)=f (x 2﹣x 1)<0; ∴f (x 2)<﹣f (﹣x 1), 又∵f (x )为奇函数 ∴f (x 1)>f (x 2);∴f (x )在(﹣∞,+∞)上是减函数;∴对任意x ∈[﹣3,3],恒有f (x )≤f (﹣3)而f (3)=f (2+1)=f (2)+f (1)=3f (1)=﹣2×3=﹣6; ∴f (﹣3)=﹣f (3)=6;∴f (x )在[﹣3,3]上的最大值为6; (3)∵f (x )为奇函数,∴整理原式得 f (ax 2)+f (﹣2x )<f (ax )+f (﹣2); 即f (ax 2﹣2x )<f (ax ﹣2); 而f (x )在(﹣∞,+∞)上是减函数, ∴ax 2﹣2x >ax ﹣2; ∴(ax ﹣2)(x ﹣1)>0. ∴当a=0时,x ∈(﹣∞,1); 当a=2时,x ∈{x|x≠1且x ∈R}; 当a <0时,2{|1}x x x a∈<<; 当0<a <2时,2{|1}x x x x a∈>或<当a >2时,2{|1}x x x x a∈<或>. 点睛:根据抽象函数的单调性解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成()()()()f g x f h x ≥ 后再利用单调性和定义域列不等式组.23.(2020·浦东新·上海师大附中高一期中)已知函数()1()||3,,0m f x x m R x x-=+-∈≠.(1)判断函数()y f x =的奇偶性,并说明理由;(2)若对于任意的[]()1,4,1x f x ∈≥-恒成立,求满足条件的实数m 的最小值M . (3)对于(2)中的M ,正数a ,b 满足22a b M +=,证明: 2a b ab +≥.【答案】(1) 当1m =时,()f x 为偶函数, 当1m ≠时,既不是奇函数也不是偶函数,理由见解析;(2)2;(3) 证明见解析.【分析】(1)对m 分类讨论,结合奇偶性的定义进行判断可得;(2)将不等式转化为212m x x -≥-+对任意的[1,4]x ∈都成立,再构造函数,利用单调性求出最大值即可得到答案;(3)由(2)知2M =,所以1ab ≤,2a b+≤变形可证. 【详解】(1)(i)当m=1时,()||3f x x =-,(,0)(0,)x ∈-∞⋃+∞, 因为()||3||3()f x x x f x -=--=-=, 所以()f x 为偶函数;(ii)当1m ≠时,(1)3f m =-,(1)1f m -=-,(1)(1)f f ≠-,(1)(1)f f ≠--, 所以既不是奇函数也不是偶函数. (2) 对于任意的[]()1,4,1x f x ∈≥-,即131m x x-+-≥-恒成立, 所以212m x x -≥-+对任意的[1,4]x ∈都成立, 设2()2,[1,4]g x x x x =-+∈, 则()g x 为[1,4]上的递减函数, 所以1x =时,()g x 取得最大值1, 所以11m -≥,即2m ≥.所以2M =.(3)证明: 由(2)知2M =,222a b ab +≥,所以22ab ≥,1ab ∴≤,1≤,当且仅当a b =时取等号,①又1,22a b ab +≤≤2ab a b ∴≤+,当且仅当a b =时取等号,② 由①②得,12ab a b ≤+, 所以2a b ab +≥,【点睛】本题考查了函数奇偶性的讨论,不等式恒成立问题,不等式的证明问题,属于中档题.24.(2017·上海市七宝中学高一期中)已知函数2()log (41)xf x ax =+-.(1)若函数()f x 是R 上的偶函数,求实数a 的值; (2)若4a =,求函数()f x 的零点.【答案】(1)1a =;(2)4log x =【分析】(1)由题意得()()f x f x -=,即()()0f x f x --=,根据函数解析式整理可得21log 22204xax x ax +=-+=,故得1a =.(2)当4a =时得到函数的解析式,然后根据指数与对数的关系可得4412x x +=,整理得()24410xx --=,求得142x +=,于是可得41log 2x +=. 【详解】(1)∵()f x 是R 上的偶函数, ∴()()f x f x -=,即()()0f x f x --=,∴()()][()22log 41log 410x xa x ax -⎡⎤+---+-=⎣⎦,整理得241log 2041x x ax -++=+,∴21log 22204xax x ax +=-+=, ∴1a =.(2)当4a =时,()()2log 414xf x x =+-令()0f x =,可得()2log 414xx +=,∴4412x x += 整理得()24410xx --=,解得4x =或4x =(舍去)∴4log x = 【点睛】本题考查函数的性质及函数与方程的关系,考查计算能力和转化能力,解题的关键是根据相关概念及所求将问题进行转化,逐步达到求解的目的.另外,由于题目中涉及到大量的计算,所以在求解过程中要注意运算的准确性,合理进行指数和对数间的转化. 25.(2019·上海市建平中学高一期末)已知()()x x mf x e m R e=-∈是定义在[]1,1-上的奇函数.(1)求实数m 的值;(2)求证:()f x 在[]1,1-上是单调递减函数;(3)若()()2120f a f a -+≤,求实数a 的取值范围.【答案】(1)1;(2)证明见解析;(3)122a ≤≤【分析】(1)根据奇函数性质得()00=f ,代入求实数m 的值; (2)根据单调性定义证明;(3)根据单调性与奇偶性化简不等式,再解一元二次不等式得结果. 【详解】(1)因为()()xx m f x e m R e=-∈是定义在[]1,1-上的奇函数, 所以()001011mf m =∴-=∴= 当1m =时()()111,(),x x xx x xf x e f x e e f x e e e --=-∴-=-=-=- 所以1m =;(2)设12,x x 为[]1,1-上任意两数,且12x x < 所以()()1212121212111()(1)x x x x x x x x f x f x e e e e e e e e -=-+-=-++ 因为12x x <,所以120x x e e <<∴()()12f x f x > 即()f x 在[]1,1-上是单调递减函数;(3)因为()f x 是定义在[]1,1-上的奇函数,且在[]1,1-上是单调递减函数;()()()()()()2221202121f a f a f a f a f a f a -+≤∴≤--∴≤-所以21211a a ≥≥-≥-,211122222a a a a a ⎧⎪≤⎪⎪∴≥≤-∴≤≤⎨⎪⎪-≤≤⎪⎩或 【点睛】本题考查奇偶性、单调性证明、利用单调性解不等式,考查综合分析求解能力,属中档题.26.(2019·上海市第八中学高一期末)已知函数f (x )=22x x ax++,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值; (2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.【答案】(1)72;(2)(-3,+∞). 【分析】(1)1()22f x x x=++,利用作差法判断[1,+∞)上的单调性,即可求得;(2)f (x )>0恒成立,等价于f (x )的最小值大于零,令y =x 2+2x +a ,求y 的最小值即可.【详解】(1)当a =12时,1()22f x x x=++, 设1≤x 1<x 2,则122121212112(21)11()()2(2)()222x x f x f x x x x x x x x x --=++-++=-, ∵1≤x 1<x 2,∴2x 1x 2>2,2x 1x 2-1>0,21x x ->0, ∴21()()0f x f x ->,∴f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=72, (2)在区间[1,+∞)上f (x )>0恒成立⇔x 2+2x +a >0恒成立,设y =x 2+2x +a ,x ∈[1,+∞),则函数y =x 2+2x +a =(x +1)2+a -1在区间[1,+∞)上是增函数,∴当x =1时,y 取最小值,即y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )>0恒成立, 故a >-3,实数a 的取值范围为(-3,+∞).【点晴】(1)判断函数单调性的方法有:(1)定义法;(2)图像法;(3)四则运算法;(4)复合函数法;(5)导数法;此题也可以利用对勾函数的图像解决; (2)()f x a >恒成立等价于min ()f x a >.27.(2020·上海市控江中学高一期末)已知函数()f x ,()g x 的定义域分别为12,D D ,若存在常数C R +∈,满足:①对任意01x D ∈,恒有01x C D +∈,且()()00f x f x C ≤+.②对任意01x D ∈,关于x 的不等式组()()0f x g x ≤≤()()0g x C f x C +≤+恒有解,则称()g x 为()f x 的一个“C 型函数”.(1)设函数()1103113x f x x ⎧-≤≤⎪⎪=⎨⎪>⎪⎩和()1102102x g x x ⎧≤≤⎪⎪=⎨⎪>⎪⎩,求证:()g x 为()f x 的一个“12型函数”; (2)设常数a R ∈,函数()()31f x x ax a =+≥-,()()21g x x x =≥-.若()g x 为()f x 的一个“1型函数”,求a 的取值范围;(3)设函数()()240f x x x x =-≥.问:是否存在常数t R +∈,使得函数()()220t x x g x x=+>为()f x 的一个“t 型函数”?若存在,求t 的取值范围;若不存在,说明理由.【答案】(1)证明见解析;(2)7,4⎡⎫+∞⎪⎢⎣⎭;(3)[)7,+∞.【分析】(1)由()1103113x f x x ⎧-≤≤⎪⎪=⎨⎪>⎪⎩,()00112f x f x ⎛⎫+=≥ ⎪⎝⎭恒成立,①成立,根据()g x 解析式,0x =为不等式组()()0011()()22f xg x g x f x ≤≤+≤+的一个解,得②成立,即可证明结论;(2)()g x 为()f x 的一个“1型函数”,满足①对任意0001,()(1)x f x f x ≥-≤+,求出a 的范围,②对任意01x ≥-,关于x 的不等式组00()()(1)(1)f x g x g x f x ≤≤+≤+恒有解, 转化为求函数的最值,可求出a 的范围,即可求解;(3)由()()220t x x g x x=+>为()f x 的一个“t 型函数”,与(2)同理,将同时满足①②条件的参数t 求出,即可求解. 【详解】(1)①00000115[0,],()1,[,],()1()2211623x f x x f x f x ∈=-∈>++=, 当000015(,),(),()()1361122x x f x f x ∈+∞∈++∞+==, 任意0[0,)x ∈+∞,且()0012f x f x ⎛⎫≤+⎪⎝⎭, ②()1102102x g x x ⎧≤≤⎪⎪=⎨⎪>⎪⎩,1(0)()12f f ==,因为()()00110()()22f xg g f x ≤≤≤+,0x =为不等式()()0011()()22f xg x g x f x ≤≤+≤+的一个解,所以()g x 为()f x 的一个“12型函数”; (2)①对任意0001,()(1)x f x f x ≥-≤+,22000113313()024x x a x a +++=+++≥,20min 1111[3()]0,2444x a a a ∴+++=+≥≥-;②对任意01x ≥-,关于x 的不等式组00()()(1)(1)f x g x g x f x ≤≤+≤+恒有解,()()()()30030022122111x x ax x x x x a x ⎧≥+⎪⎪+≥⎨⎪+≤+++⎪⎩,即300320002231x x ax x x ax x a ⎧≥+⎨≤+++-⎩, 因为关于x 的不等式组恒有解,所以323000000331x ax x x a x ax ++++-≥+,22000173313()024x x a x a ∴++-=++-≥恒成立,74a ∴≥;综上,74a ∴≥; (3)①对任意对任意0000,()()x f x f x t ≥≤+,222000004()4(),420x x x t x t t t x t -≤+-+-+≥,00min ,420,(42)40,4t R t x t x t t +∈∴-+≥-+=-≥∴≥;②对任意00x ≥,关于x 的不等式组00()()()()f x g x g x t f x t ≤≤+≤+恒有解,()()220022222200242220224t x x x x t t x t x x tx t x t x t x t x t x t x t x t ⎧+≥-⎪⎪⎪++≥+⇒+-≥⇒≥⎨+⎪⎪++≤+-+⎪+⎩, 考虑22min 002()()4(),t x t x t x t x t x t++≤+-+≥+,令(2)x t m m t +=≥,则2222min 00022()23()4()(2)42t t m t t x t x t x t m t+=+=≤+-+=+--,由于204,(2)4t y x t ≥=+--在00x ≥时,单调递增,220min 3[(2)4](2)4,7t x t t t ≤+--=--∴≥或0t ≤(舍去),由()(2)3g t g t t ==,记方程()3f x t =的根为1x , 若010x x ≤≤,则00()3()(2)()f x t g t g t f x t ≤==≤+, 即x t =为不等式组的一个解, 若01x x >,取2x t >且0()()g x f x =,220022()()()()t t g x t x t x t g x t f x t f x t x t x+=++<++=+=+≤++,综上,7t ≥.【点睛】本题考查函数新定义问题,要充分理解题意,考查不等式恒成立和能成立问题,熟练利用二次函数求最值是解题的关键,着重考查了转化思想,以及分析问题和解决问题的能力,属于难题.28.(2019·上海宝山·高一期末)对于三个实数a 、b 、k ,若22(1)(1)1a b k a b ab ++≥⋅-⋅-成立,则称a 、b 具有“性质k ”.(1)试问:①()x x ∈R ,0是否具有“性质2”;②tan y (124y ππ<<),0是否具有“性质4”;(2)若存在03[,2]4x ππ∈及01[,2]2t ∈,使得00001sin 22sin 0x x t m t ----≤成立,且0sin x ,1具有“性质2”,求实数m 的取值范围;(3)设1x ,2x ,⋅⋅⋅,2019x 为2019个互不相同的实数,点(,)m n x x ({},1,2,,2019m n ∈⋅⋅⋅) 均不在函数1y x=的图象上,是否存在(),i j i j ≠,且{},1,2,,2019i j ∈⋅⋅⋅,使得i x 、j x具有“性质2018”,请说明理由.【答案】(1)①具有“性质2”,②不具有“性质4”;(2)52m ≥-;(3)存在.【分析】(1)①根据题意需要判断212||x x +≥的真假即可② 根据题意判断21tan 4|tan |y y +≥是否成立即可得出结论;(2)根据具有性质2可求出0x 的范围,由存在性问题成立转化为00max (sin 22sin )x x -≤ 0max 01()t m t ++,根据函数的性质求最值即可求解. 【详解】(1)①因为212x x +≥,212x x +≥-成立,所以212||x x +≥,故()x x ∈R ,0具有“性质2”②因为124y ππ<<,设tan t y =,则316t <<设2()41f t t t =-+,对称轴为2t =,所以函数2()41f t t t =-+在t ∈上单调递减,当1t →时,min ()20f t →-<, 所以当124y ππ<<时,21tan 4tan 0y y +-≥不恒成立,即21tan 4|tan |y y +≥不成立,故tan y (124y ππ<<),0不具有“性质4”.(2)因为0sin x ,1具有“性质2”所以22000(1sin )(1+12|sin 1||1sin |x x x +≥--)化简得2200(1sin )(1sin )x x +≥-解得034x ππ≤≤或02x π= . 因为存在03[,2]4x ππ∈及01[,2]2t ∈,使得00001sin 22sin 0x x t m t ----≤成立,所以存在03[,]4x ππ∈{2}π 及01[,2]2t ∈使00max (sin 22sin )x x -≤ 0max 01()t m t ++即可. 令00sin 22sin y x x =-,则200002cos 22cos 2(2cos cos 1)y x x x x '=-=--,当03[,]4x ππ∈时,0y '>, 所以00sin 22sin y x x =-在03[,]4x ππ∈上是增函数, 所以0x π=时,0max 00(sin 22si )n x x =-,当02x π=时,00sin 22sin =0x x -,故03[,]4x ππ∈{2}π时,0max 00(sin 22si )n x x =-因为1y x m x=++在1[,1]2上单调递减,在[1,2] 上单调递增,所以0max 015()=2t m m t +++, 故只需满足502m ≤+即可,解得52m -≤. (3)假设具有“性质2018”,则22(1)(1)20181i j i j i j x x x x x x ++≥⋅-⋅-, 即证明在任意2019个互不相同的实数中,一定存在两个实数,i j x x ,满足:22(1)(1)20181i j i j i j x x x x x x ++≥⋅-⋅-.证明:由()()()22111122222221111|111j j j j jj i i ji jijx x x x x x x x x x x x x x x x x x --+-⋅-==-++++++, 令tan i x α=,由万能公式知2111sin 2,1222i i x x α⎡⎤=∈-⎢⎥+⎣⎦, 将11,22⎡⎤-⎢⎥⎣⎦等分成2018个小区间,则1220191i ,,11s n 2sin 2,sin 2222a a a 这2019个数必然有两个数落在同一个区间,令其为:11sin 2,sin 222ϕγ,即111sin 2sin 2222018ϕγ-≤, 也就是说,在1x ,2x ,⋅⋅⋅,2019x 这2019个数中,一定有两个数满足221112018i i i i x x x x -≤++, 即一定存在两个实数,i j x x ,满足22(1)(1)20181i j i j i j x x x x x x ++≥⋅-⋅-, 从而得证.【点睛】本题主要考查了不等式的证明,根据存在性问题求参数的取值范围,三角函数的单调性,万能公式,考查了创新能力,属于难题.29.(2018·上海嘉定·高一期末)已知x ∈R ,定义:()f x 表示不小于x 的最小整数,例如:2f =,(0.6)0f -=.(1)若()2018f x =,求实数x 的取值范围; (2)若0x >,且1(3())(6)31xf x f x f +=++,求实数x 的取值范围; (3)设()()2f x g x x a x =+⋅-,2242022()57x x h x x x -+-=-+,若对于任意的123(2,4]x x x ∈、、,都有123()()()g x h x h x >-,求实数a 的取值范围.【答案】(1)(2017,2018](2)45(,]33(3)(5,)+∞试题分析:⑴由()2018f x =及已知条件,可以得到20172018x <≤,即可得出答案;⑵先求出16731x f ⎛⎫+= ⎪+⎝⎭,得到()637x f x <+≤,然后分类讨论01x <≤、 12x <≤、2x >时的取值,从而得出结果;⑶对于任意的(]1224x x ∈,,,,都有()()()123g x h x h x >-,即有()()()max min g x h x h x ⎡⎤⎡⎤>-⎣⎦⎣⎦对任意的(]2,4x ∈恒成立.讨论(]23x ∈,,(]34x ∈,时,结合新定义和分离参数,由二次函数的最值的求法,即可解得实数a 的取值范围解析:(1)解:由()2018f x =及题意得20172018x <≤. 所以所求实数x 的取值范围是(]2017,2018. (2)解:因为()30,x∈+∞,则()311,x+∈+∞,()10,131x ∈+,()166,731x +∈+, 所以16731xf ⎛⎫+= ⎪+⎝⎭. 由题意得当0x >,且()()37f x f x +=,所以()637x f x <+≤.若()1f x =,即01x <≤时,6317x <+≤,解得523x <≤,所以x ∈∅; 若()2f x =,即12x <≤时,6327x <+≤.解得4533x <≤,所以45,33x ⎛⎤∈ ⎥⎝⎦; 若()3f x ≥,即2x >时,36x >,()39x f x +>,不符合题意.所以x ∈∅.综上,所求实数x 的取值范围是45,33⎛⎤⎥⎝⎦.(3)解:对于任意的(]123,,2,4x x x ∈,都有()()()123g x h x h x >-. 只需()()()max min g x h x h x ⎡⎤⎡⎤>-⎣⎦⎣⎦对任意的(]2,4x ∈恒成立.又()224202257x x h x x x -+-=-+ 2645324x =-+⎛⎫-+ ⎪⎝⎭. 因为(]2,4x ∈,所以当52x =时,()max 4h x ⎡⎤=⎣⎦;当4x =时,()min2h x ⎡⎤=-⎣⎦. 因此()6g x >对任意的(]2,4x ∈恒成立. ①当(]2,3x ∈时,()326ag x x x=+->恒成立. 即238a x x >-恒成立,所以()2max3815a x x>-=,解得5a >;②当(]3,4x ∈时,()426ag x x x=+->恒成立. 即248a x x >-恒成立,所以()2max4816a x x>-=,解得4a >.综上,所求实数a 的取值范围是()5,+∞.点睛:本题主要考查的是新定义的理解和应用,归纳推理,在解题过程中应当审清题意,然后按照题目要求进行解答,在解答不等式恒成立问题时注意方法,需要将其转化为最值问题,然后求解范围问题,本题难度较大.。
第6讲 函数单调性含参讨论16类【题型一】 讨论思维基础:求导后一元一次型参数在常数位置(单参)【典例分析】已知函数()()ln 1f x a x x a R =+-∈. (1)讨论()f x 的单调性;(2)若函数()e 1x y f ax =-+与()e ln ay x a =+的图像有两个不同的公共点,求a 的取值范围.【答案】(1)答案见解析(2)()1,+∞【分析】(1)、先求出()f x ',对a 分类讨论判断导函数的正负即可得到单调区间;(2)、由题意将问题转化为()e e ln x a x a =+有两个不同的实根,构造()e x g x x =,判断()g x 的单调性;要使()()ln g x g x a =+有两个不同的实根,则需ln x x a =+有两个不同的实根;构造()ln h x x x a =--,对a 分类讨论判断()h x 的单调性,判断()h x 的零点,得出a 的取值范围. 解(1)()()ln 1f x a x x a R =+-∈,()1a x af x x x+'∴=+=,()0x >. ①、当0a ≥,()0f x '>,函数()f x 在()0,+∞上单调递增;①、当0a <,令()0f x '=,得x a =-,∴()0,x a ∈-时,()0f x '<;(),x a ∈-+∞时,()0f x '>,∴()f x 在()0,a -上单调递减,在(),a -+∞上单调递增.综上所述:当0a ≥,()f x 的单调递增为()0,+∞,无单调递减区间; 当0a <,()f x 的单调递增为(),a -+∞,()f x 的单调递减为()0,a -.【变式演练】1.已知函数()ln af x x x=+,()sin x g x e x =+,其中a ∈R . (1)试讨论函数()f x 的单调性;(2)若1a =,证明:()()g x f x x<. 【答案】(1)答案见解析(2)证明见解析 【分析】(1)先求出函数的定义域,然后求导,再根据导数的正负求出函数的单调区间,(2)要证()()g x f x x<,只要证sin ln 10x e x x x +-->,由于(0,1)x ∈时,sin ln 1110x e x x x +-->-=,当[1,)x ∈+∞时,令()sin ln 1x g x e x x x =+--,再利用导数求出其最小值大于零即可(1)()ln af x x x=+的定义域为(0,)+∞221()a x a f x x x x-'=-= 当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增;当0a >时,令()0f x '>,解得x a >;令()0f x '<,解得0x a <<; 综上所述:当0a ≤时,()f x 在(0,)+∞上单调递增,无减区间; 当0a >时,()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增; 2.已知函数()(2)e x f x x a =-. (1)求()f x 的单调区间(2)若()f x 的极值点为12-,且()()()f m f n m n =≠,证明:3()0ef m n -<+<.【答案】(1)单调递减区间为2,2a -⎛⎫-∞ ⎪⎝⎭,单调递增区间为2,2a -⎛⎫+∞⎪⎝⎭(2)证明见解析 【分析】(1)求导()(22)e xf x x a +-'=,由()0f x '<,()0f x '>求解;(2)由(1)结合()f x 的极值点为12-,由2122a -=-,得到1a =,()(21)e x f x x =-,作出函数()f x 的大致图象,不妨设m n <,根据()()()f m f n m n =≠,得到1122m n <-<<,再由 3(1)ef -=-,将证明3()0ef m n -<+<,转化为证明1m n +<-即可. 解:()f x 的定义域为R ,()(22)e xf x x a +-'=,由()0f x '=,得22a x -=.当2,2a x -⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当2,2a x -⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.所以()f x 的单调递减区间为2,2a -⎛⎫-∞ ⎪⎝⎭,单调递增区间为2,2a -⎛⎫+∞⎪⎝⎭. 【题型二】 讨论思维基础:求导后一元一次型参数在系数位置(单参)【典例分析】已知函数()()2ln f x x a x a =++. (1)讨论()f x 的单调性;(2)若()1212,x x x x <是2()()g x f x x ax =++的两个极值点,证明:()21g x x >.【答案】(1)当0a ≥时,()f x 在()0,∞+上为单调递增函数;当0a <时,若()f x 在20,a ⎛⎫- ⎪⎝⎭上为单调递增函数,在2,a ⎛⎫-+∞ ⎪⎝⎭上为单调递减函数;(2)证明见解析. 【分析】(1)()f x 的定义域为()0,∞+,求导()2f x ax x+=',分类讨论0a ≥和0a <两种情况,研究()'f x 的正负,从而求得函数的单调区间;(2)由题得2()2ln ()g x x x a =++,则()221()x ax g x x++'=,由()1212,x x x x <是2()()g x f x x ax=++的两个极值点,可知120x x <<,所以1201x x <<<,要证()21g x x >,需证()2221212ln 1g x x x x x =+>,构造函数1()2ln (1)h x x x x x=+>,即证 ()1h x >,从而证得()21g x x >.【详解】(1)易知()f x 的定义域为()0,∞+,22()ax a x xf x +=+='. 当0a ≥时,()0f x '>,所以()f x 在()0,∞+上为单调递增函数; 当0a <时,若20,x a ⎛⎫∈- ⎪⎝⎭,则()0f x '>,若2,x a ⎛⎫∈-+∞ ⎪⎝⎭,则()0f x '<, 所以()f x 在20,a ⎛⎫- ⎪⎝⎭上为单调递增函数,在2,a ⎛⎫-+∞ ⎪⎝⎭上为单调递减函数.【变式演练】1.已知函数f (x )=alnx +1x +4,其中a ∈R . (1)讨论函数f (x )的单调性;(2)对任意x ∈[1,e ],不等式f (x )≥1x +(x +1)2恒成立,求实数a 的取值范围. 【答案】(1)答案见解析(2)[(e +1)2−4,+∞) 【分析】(1)求出导函数f ′(x),分类讨论确定f ′(x)的正负得单调区间;(2)不等式变形为(x +1)2−alnx −4≤0.引入新函数g (x )=(x +1)2−alnx −4(x ∈[1,e ]),求出导函数g ′(x),分类讨论a ≤0时,不等式不恒成立,a >0时由导数确定函数有极小值点,而最大值是比较g(e )和g(1)的大小得到,从而得出参数范围. 解(1)函数f (x )的定义域为(0,+∞), f ′(x )=ax −1x 2=ax−1x 2,当a ≤0时,f ′(x )<0恒成立,函数f (x )在(0,+∞)上单调递减; 当a >0时,由f ′(x )>0,得x >1a , 由f ′(x )<0,得0<x <1a ,①函数f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增.综上,当a ≤0时,函数f (x )在(0,+∞)上单调递减;当a >0时,函数f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增.2.己知函数()e mxf x x =(其中e 为自然对数的底数)(1)讨论函数()f x 的单调性;(2)当1m =时,若()ln 1f x x ax ≥++恒成立,求实数a 的取值范围. 【答案】(1)答案见解析(2)(],1-∞ 【分析】(1)()()'1mxf x mx e =+,进而分0m =,0m >,0m <三种情况讨论求解即可;(2)由题意知ln 1xx a e x +≤-在()0+∞,上恒成立,故令ln 1()x x g x e x+=-,再根据导数研究函数的最小值,注意到01,1x e ⎛⎫∃∈ ⎪⎝⎭使()'00g x =,进而结合函数隐零点求解即可.(1)解:()()'1mxf x mx e =+①0m =,()f x 在R 上单调增; ①0m >,令()'10f x x m ==-,,()()'1,,0,x f x f x m ⎛⎫∈-∞-< ⎪⎝⎭单调减。
1 1.函数单调性的定义 对于函数)(xf的定义域D内某个区间上的任意两个自变量的值21,xx,⑴若当1x<2x时,都有)(1xf<)(2xf,则
说)(xf在这个区间上是增函数,对应的这个区间叫做函数的递增区间;⑵若当1x<2x时,都有)(1xf>)(2xf,则说)(xf在这个区间上是减函数,对应的这个区间叫做函数的递减区间。
注:①函数的单调区间是函数定义域的子集,在讨论函数的单调性的基础上不要忽略函数定义域的要求; ②一个函数有多个单调递增或递减区间时不能用“”连接;如xy1的单调递减区间时0,和,0而
不能写成,,00。 2.单调性证明四部曲 ①任取1x,2x属于定义域,且令1x<2x;②作差)(1xf-)(2xf并变形,一般情况下是变形为几个式子乘积的形
式; ③判断)(1xf-)(2xf的符号;④得出结论. 3.复合函数的单调性:同增异减 注:在解决复合函数单调性问题时不可忽略函数的定义域要求。 4.单调性与奇偶性之间的关系 奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反。 5.单调性的其它等价形式
①对于任意的0a,都有()()fxafx,表示()fx单调递增;
对于任意的0a,都有()()fxafx,表示()fx单调递减.
②对于任意的12xx,都有1212()()0fxfxxx,表示()fx单调递增;
对于任意的12xx,都有1212()()0fxfxxx,表示()fx单调递减. ③若xfy是奇函数,且对定义域内的任意yx,(0yx)都有 0yx
yfxf恒成立,则xfy在定义域内递增;
0yx
yfxf恒成立,则xfy在定义域内递减.
函数的单调性 2
一、单调性的概念及简单基本函数的单调性 【例1】设)(xf是定义在R上的函数. ①若存在Rxx21,,当21xx时、有)()(21xfxf成立,则函数)(xf在R上单调递增; ②若存在Rxx21,,当21xx时,有)()(21xfxf成立,则函数)(xf在R上不可能单调递 减; ③若存在02x,对于任意Rx1,都有)()(211xxfxf成立,则函数)(xf在R上 单调递增; ④任意Rxx21,,当21xx时,都有)()(21xfxf成立,则函数)(xf在R上单调递减. 以上命题正确的序号是( ) (A)①③ (B)②③ (C)②④ (D)②
专题12 函数的单调性的研究一、题型选讲题型一 求函数的单调区间利用导数求函数单调区间的步骤:(1)确定函数的定义域(2)求出()f x 的导函数'()f x(3)令'()0f x >(或0<),求出x 的解集,即为()f x 的单调增(或减)区间(4)列出表格例1、求函数()2f x=的单调区间例2、(2019南京学情调研)已知函数f(x)=ln x ,g(x)=x 2.(1) 求过原点(0,0),且与函数f(x)的图像相切的直线l 的方程; (2) 若a>0,求函数φ(x)=|g(x)-2a 2f(x)|在区间题型二 给定区间的单调性已知在某区间的单调性求参数范围问题,其思路为通过导数将问题转化成为不等式恒成立或不等式能成立问题,进而求解,要注意已知函数()f x 单调递增(减)时,其导函数()'0fx ≥(0≤),勿忘等号。
例3、(2018无锡期末)若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值范围是________.例4、(2018苏州暑假测试)已知函数f(x)=(ax 2+x)e x ,其中e 是自然对数的底数,a ∈R .(1) 若f ′(x )是函数f (x )的导函数,当a >0时,解关于x 的不等式f ′(x )>e x ; (2) 若f (x )在[-1,1]上是单调递增函数,求a 的取值范围;题型三 含参区间的讨论求含参函数单调区间的实质——解含参不等式,而定义域对x 的限制有时会简化含参不等式的求解。
当参数的不同取值对下一步的影响不相同时,就是分类讨论开始的时机。
当参数a 扮演多个角色时,则以其中一个为目标进行分类,在每一大类下再考虑其他角色的情况以及是否要进行进一步的分类。
例5、(2019镇江期末)己知函数f(x)=a ln x -bx(a ,b ∈R ).(1) 若a =1,b =1,求函数f (x )的图像在x =1处的切线方程; (2) 若a =1,求函数y =f (x )的单调区间;例6、(2017常州期末)已知函数f (x )=ln x -x -ax,a ∈R .(1) 当a =0时,求函数f (x )的极大值; (2) 求函数f (x )的单调区间;二、达标训练1、(2019苏锡常镇调研)已知偶函数的定义域为R ,且在[0,)上为增函数,则不等式的解集为 .2、(2018徐州期末)函数()()32333x f x x x x e -=+--的单调区间 3、(2018年泰州期中)()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______4、(2018苏锡常镇调研)已知函数f(x)=x 3+ax 2+bx +c ,g(x)=ln x.(1) 若a =0,b =-2,且f(x)≥g(x)恒成立,求实数c 的取值范围; (2) 若b =-3,且函数y =f(x)在区间(-1,1)上是单调递减函数. ①求实数a 的值;()f x +∞2(3)(2)f x f x >+5、(2018常州期末)已知函数f(x)=ln x(x +a )2,其中a 为常数.(1) 若a =0,求函数f(x)的极值;(2) 若函数f(x)在(0,-a)上单调递增,求实数a 的取值范围;6、(2019苏锡常镇调研)已知函数f(x)=(x +1)ln x +ax(a ∈R ).(1) 若y =f (x )在(1,f (1))处的切线方程为x +y +b =0,求实数a ,b 的值; (2) 设函数g (x )=f (x )x ,x ∈(其中e 为自然对数的底数).①当a =-1时,求g (x )的最大值; ②若h (x )=⎪⎪⎪⎪g (x )e x 是单调递减函数,求实数a 的取值范围.专题12 函数的单调性的研究一、题型选讲题型一 求函数的单调区间利用导数求函数单调区间的步骤:(1)确定函数的定义域(2)求出()f x 的导函数'()f x(3)令'()0f x >(或0<),求出x 的解集,即为()f x 的单调增(或减)区间(4)列出表格例1、求函数()2f x=的单调区间解:()()122'32112ln ln ln 4ln 122x x xx x x f x x x -⋅-==⋅ 令()'0fx >,即解不等式()ln ln 40x x -<,解得40ln 41x x e <<⇒<<()f x ∴的增单调区间为()41,e ,减区间为()0,1,()4,e +∞例2、(2019南京学情调研)已知函数f(x)=ln x ,g(x)=x 2.(1) 求过原点(0,0),且与函数f(x)的图像相切的直线l 的方程; (2) 若a>0,求函数φ(x)=|g(x)-2a 2f(x)|在区间 规范解答 (1)因为f(x)=ln x ,所以f ′(x)=1x (x >0).设直线l 与函数f(x)的图像相切于点(x 0,y 0), 则直线l 的方程为 y -y 0=1x 0(x -x 0),即 y -ln x 0=1x 0(x -x 0). (3分)因为直线l 经过点(0,0),所以0-ln x 0=1x 0(0-x 0),即ln x 0=1,解得x 0=e .因此直线l 的方程为 y =1e x ,即x -e y =0. (6分)(2)考察函数H(x)=g(x)-2a 2f(x)=x 2-2a 2ln x. H ′(x)=2x -2a 2x =2(x -a )(x +a )x (x ≥1).因为a >0,故由H′(x)=0,解得x =a.(8分) ①当0<a ≤1时,H ′(x)≥0在(11分)②当a >1时,H(x)在区间 (01)上递减 ,在区间()+∞,1为递增区间(16分) 题型二 给定区间的单调性已知在某区间的单调性求参数范围问题,其思路为通过导数将问题转化成为不等式恒成立或不等式能成立问题,进而求解,要注意已知函数()f x 单调递增(减)时,其导函数()'0fx ≥(0≤),勿忘等号。
例3、(2018无锡期末)若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值范围是________. 【答案】 (-∞,-1]∪⎣⎡⎭⎫72,+∞ 【解析】思路分析 由于条件中函数的解析式比较复杂,可以先通过代数变形,将其化为熟悉的形式,进而利用导数研究函数的性质及图像,再根据图像变换的知识得到函数f(x)的图像进行求解.函数f(x)=(x +1)2|x -a|=|(x +1)2(x -a)|=|x 3+(2-a)x 2+(1-2a)x -a|. 令g(x)=x 3+(2-a)x 2+(1-2a)x -a ,则g ′(x)=3x 2+(4-2a)x +1-2a =(x +1)(3x +1-2a). 令g′(x)=0得x 1=-1,x 2=2a -13. ①当2a -13<-1,即a<-1时,令g′(x)>0,即(x +1)(3x +1-2a)>0,解得x<2a -13或x>-1;令g′(x)<0,解得2a -13<x<-1.所以g(x)的单调增区间是⎝⎛⎭⎫-∞,2a -13,(-1,+∞),单调减区间是⎝⎛⎭⎫2a -13,-1.又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝⎛⎭⎫a ,2a -13,(-1,+∞),单调减区间是(-∞,a),⎝⎛⎭⎫2a -13,-1,满足条件,故a<-1(此种情况函数f(x)图像如图1).,图1)②当2a -13=-1,即a =-1时,f(x)=|(x +1)3|,函数f(x)图像如图2,则f(x)的单调增区间是(-1,+∞),单调减区间是(-∞,-1),满足条件,故a =-1.,图2)③当2a -13>-1,即a>-1时,令g′(x)>0,即(x +1)(3x +1-2a)>0,解得x<-1或x>2a -13;令g′(x)<0,解得-1<x<2a -13.所以g(x)的单调增区间是(-∞,-1),⎝⎛⎭⎫2a -13,+∞,单调减区间是⎝⎛⎭⎫-1,2a -13. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝⎛⎭⎫-1,2a -13,(a ,+∞),单调减区间是(-∞,-1),⎝⎛⎭⎫2a -13,a ,要使f(x)在[-1,2]上单调递增,必须满足2≤2a -13,即a ≥72,又因为a>-1,故a ≥72(此种情况函数f(x)图像如图3).综上,实数a 的取值范围是(-∞,-1]∪⎣⎡⎭⎫72,+∞.,图3)例4、(2018苏州暑假测试)已知函数f(x)=(ax 2+x)e x ,其中e 是自然对数的底数,a ∈R .(1) 若f ′(x )是函数f (x )的导函数,当a >0时,解关于x 的不等式f ′(x )>e x ; (2) 若f (x )在[-1,1]上是单调递增函数,求a 的取值范围;思路分析 第(2)问,因为f(x)在[-1,1]上是单调增函数,所以导函数f′(x)=[ax 2+(2a +1)x +1]·e x ≥0在[-1,1]上恒成立,而二次三项式“ax 2+(2a +1)x +1”不可因式分解,故需从a =0(a>0,a<0),和Δ>0(Δ=0,Δ<0)入手分类讨论,幸运的是本题的Δ=(2a +1)2-4a =4a 2+1>0,故仅需对a 进行分类讨论规范解答 (1) f′(x)=[ax 2+(2a +1)x +1]·e x . 不等式f′(x)>e x 可化为[ax 2+(2a +1)x]·e x >0,(2分) 因为e x >0,故有ax 2+(2a +1)x>0.当a>0时,不等式f′(x)>e x 的解集是(-∞,-2a +1a )∪(0,+∞).(4分)(2) 由(1)得f′(x)=[ax 2+(2a +1)x +1]·e x ,①当a =0时,f ′(x)=(x +1)e x ,f ′(x)≥0在[-1,1]上恒成立,当且仅当x =-1时取等号,故a =0符合要求;(6分)②当a ≠0时,令g(x)=ax 2+(2a +1)x +1,因为Δ=(2a +1)2-4a =4a 2+1>0,所以g(x)=0有两个不相等的实数根x 1,x 2,不妨设x 1>x 2,因此f(x)有极大值又有极小值.若a>0,因为g(-1)·g(0)=-a<0,所以f(x)在(-1,1)内有极值点,故f(x)在[-1,1]上不单调.(8分) 若a<0,可知x 1>0>x 2,因为g(x)的图像开口向下,要使f(x)在[-1,1]上单调,因为g(0)=1>0,必须满足⎩⎪⎨⎪⎧g (1)≥0,g (-1)≥0,即⎩⎪⎨⎪⎧3a +2≥0,-a ≥0,所以-23≤a<0.综上可知,a 的取值范围是⎣⎡⎦⎤-23,0.(10分) 题型三 含参区间的讨论求含参函数单调区间的实质——解含参不等式,而定义域对x 的限制有时会简化含参不等式的求解。