计算方法引论课后答案
- 格式:doc
- 大小:377.00 KB
- 文档页数:7
第二章数值分析4^92.1 已知多项式通过下列点:1 3答案:q(x) = p(x) -r(x) X5X4X3-3X 1 .2 22.2观测得到二次多项式2的值:表中p2(x)的某一个函数值有错误,试找出并校正它.答案:函数值表中p2(-1)错误,应有p2(-1) = 0 .2.3利用差分的性质证明12■ 22■川,n2=n(n ■ 1)(2n ■ 1)/6.2.4当用等距节点的分段二次插值多项式在区间[-1,1]近似函数e x时,使用多少个节点能够保证误差不超过丄10-6.2答案:需要143个插值节点.2.5 设被插值函数f (x) • C4[a,b] , H3h)(x)是f (x)关于等距节点b — aa ^Xo :::捲:::川:::x n=b的分段三次艾尔米特插值多项式,步长h .试估计n ||f(x)-H3h)(x)||::.答案:||住)-出5)仪川:乞令人4.384第三章函数逼近3.1求f(x)二sinx,x,[0,0.1]在空间门=span{1,x, x2}上最佳平方逼近多项式,并给出平方误差.答案:f (x) =sin X的二次最佳平方逼近多项式为sin x p2(x) = -0.832 440 7 105 1.000 999 1x - 0.024 985 1x2,二次最佳平方逼近的平方误差为20.12 12■ = 0 (sinx) - P 2(x))2dx =0.989 310 7 10•3.2确定参数a,b 和c ,使得积分1 ---------------------------2 1 I (a,b,c)[ax 2 bx c -1 -x 2]dx 取最小值.J 1 — x 2810答案:a, b = 0, c =3 二3 二3.3 求多项式f (x) =2x 4 x 3 5x 2 1在[-1,1]上的3次最佳一致逼近多项式p(x)-答案:f (x)的最佳一致逼近多项式为p(x) = X ’ 7x2 3.43.4用幕级数缩合方法,求 f(x)=e x (―1兰XW1)上的3次近似多项式 p 6,3(x),并估计 || f(X )-P 6,3(X )II ::.答案:p5,3(x) =0.994 574 65 + 0.997 395 83x+0.542 968 75x 2 十 0.177 083 33x 3, || f (x) - p 6,3 (x) |^<0.006 572 327 71 一3.5 求f (x) -e x ( -1乞x 乞1)上的关于权函数「(X )-的三次最佳平方逼近小-x 2多项式 Q(x),并估计误差 || f(x)-$(x)||2 和 || f(x)-S 3(x) ||::.答案:§3(x) =0.994 571 0.997 308x 0.542 991x 20.177 347x 3,|| f (x) -S 3(x) ||2 = 0.006 894 83, || f (x) - §3(x)||严 0.006 442 575.第四章数值积分与数值微分14.1用梯形公式、辛浦生公式和柯特斯公式分别计算积分 X n dx (n -1,2,3,4),并与精确值比较.答案:计算结果如下表所示I 2 0. 5 0. 333 333 0. 250 000 0. 208 333 I 30. 5 0. 333 333 0. 250 000 0. 200 000 精确值0. 50. 333 3330. 250 0000. 200 0004.2 确定下列求积公式中的待定参数,使得求积公式的代数精度尽量高,并指明所确定的求积公式具有的代数精度.h(])仁 f (x)dx 止 A_i f (-h) + A f (0) + A f (h)11 (2)J(x)dx: 3【f(-1) 2f(X i ) 3f(X 2)]hh2⑴ of(x)dxVf(O) f(h)「h[f g f(h)]答案:(1)具有三次代数精确度 (2)具有二次代数精确度 (3)具有三次代数精确度. 4.3 设h = % - X 0,确定求积公式r (x - x o ) f (x)dx = h 1 2[ Af (x o ) + Bf (x i )] + h 3[C 「(x o ) + Df^)] + R[ f ]xo中的待定参数 A, B,C, D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.37 1 if 4)(叮)6答案:A = —, B— ,C —, D — , R[f]=— _) h ,其中 (x o ,xi).202030 20 14404.4设P 2(x)是以0,h,2h 为插值点的f(x)的二次插值多项式,用F 2(x)导出计算积分3h3 4 5If (x)dx 的数值积分公式I h ,并用台劳展开法证明:I - l h h f (0) O(h ).力83h3答案:I h P 2(x)dx h[ f(0) 3f (2h)].0 4(3)取7个节点处的函数值.1sin x4.6用变步长的复化梯形公式和变步长的复化辛浦生公式计算积分Idx .要x1o 1«求用事后误差估计法时,截断误不超过10和 10 .1(1) 运用复化梯形公式计算上述积分值,使其截断误差不超过丄10」. 2(2) 取同样的求积节点,改用复化辛浦生公式计算时,截断误差是多少?(3) 要求的截断误差不超过10“ ,若用复化辛浦生公式,应取多少个节点处的函数值? 答案:(1)只需n — 7.5,取9个节点,I : 0.9464.5 给定积分I 二1sin xdx|R n [f]耳一孟宀皿盂日中0.271估2 2答案:使用复化梯形公式时,I T^ 0.946满足精度要求;使用复化辛浦生公式时,I s4 =0.946 083满足精度要求.4.7 ( 1 )利用埃尔米特插值公式推导带有导数值的求积公式1 323 1 3>5.2用矩阵的直接三角分解法解方程组 广1 0 2 0、「5、0 10 1 X 2312 4 3X 3仃10 1 0 3丿 g<7;答案: &=2 , x 3 = 2 , x 2 = 1, X| = 1 .ba f(x)dx 二 其中余项为b —a(b 「a)2[f(a)f(b)] — ' 丿[f (b)-f (a)] R[f], 2 12R[f]=U 54!30 f ( 4()),(a,b).其中(2)利用上述公式推导带修正项的复化梯形求积公式h 2 f(x)dx :T^—[ f (X N ) - f (x 。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
4.1:在我们所了解的早期排序算法之中有一种叫做Maxsort 的算法。
它的工作流程如下:首先在未排序序列(初始时为整个序列)中选择其中最大的元素max ,然后将该元素同未排序序列中的最后一个元素交换。
这时,max 元素就包含在由每次的最大元素组成的已排序序列之中了,也就说这时的max 已经不在未排序序列之中了。
重复上述过程直到完成整个序列的排序。
(a) 写出Maxsort 算法。
其中待排序序列为E ,含有n 个元素,脚标为范围为0,,1n -K 。
void Maxsort(Element[] E) { int maxID = 0;for (int i=E.length; i>1; i--) { for (int j=0; j<i; j++) {if (E[j] > E[maxID]) maxID = k; E[i] <--> E[maxID];(b) 说明在最坏情况下和平均情况下上述算法的比较次数。
最坏情况同平均情况是相同的都是11(1)()2n i n n C n i -=-==∑。
4.2:在以下的几个练习中我们研究一种叫做“冒泡排序”的排序算法。
该算法通过连续几遍浏览序列实现。
排序策略是顺序比较相邻元素,如果这两个元素未排序则交换这两个元素的位置。
也就说,首先比较第一个元素和第二个元素,如果第一个元素大于第二个元素,这交换这两个元素的位置;然后比较第二个元素与第三个元素,按照需要交换两个元素的位置;以此类推。
(a)起泡排序的最坏情况为逆序输入,比较次数为11(1)()2n i n n C n i -=-==∑。
(b) 最好情况为已排序,需要(n-1)次比较。
4.3: (a)归纳法:当n=1时显然成立,当n=2时经过一次起泡后,也显然最大元素位于末尾;现假设当n=k-1是,命题也成立,则当n=k 时,对前k-1个元素经过一次起泡后,根据假设显然第k-1个元素是前k-1个元素中最大的,现在根据起泡定义它要同第k 个元素进行比较,当k 元素大于k-1元素时,它为k 个元素中最大的,命题成立;当k 元素小于k-1元素时,它要同k-1交换,这时处于队列末尾的显然时队列中最大的元素。
习题一1. 在3位十进制计算机上分别从左到右及从右到左计算:34.53+0.035 24+0.046 219+0.048 9+0.032 7,说明那个结果较为准确。
解:(1)从左到右计算:34.53+0.035 24+0.046 219+0.048 9+0.032 7=0.345×102+0.35 2×10-1+0.46 2×10-1+0.48 9×10-1+0.32 7×10-1 =0.345×102+0.000×102+0.46 2×10-1+0.48 9×10-1+0.32 7×10-1 =0.345×102+0.46 2×10-1+0.48 9×10-1+0.32 7×10-1 =0.345×102+0.000×102+0.48 9×10-1+0.32 7×10-1 =0.345×102+0.48 9×10-1+0.32 7×10-1 ……=0.345×102 =34.5(2)从右到左计算:34.53+0.035 24+0.046 219+0.048 9+0.032 7=0.345×102+0.35 2×10-1+0.46 2×10-1+0.48 9×10-1+0.32 7×10-1 =0.345×102+0.000×102+0.46 2×10-1+0.81 6×10-1 =0.345×102+0.46 2×10-1+1.27 8×10-1 =0.345×102+0.46 2×10-1+0.127 8×100 =0.345×102+0.46 2×10-1+0.128×100 =0.345×102+0.046 ×100+0.128×100 =0.345×102+0.174 ×100 =0.345×102+0.00174 ×102 =0.345×102+0.002 ×102 =0.347×102 =34.7----------------------------------------------------------------------------------------------------------------------2. 用秦九韶算法计算4532)(23-+-=x x x x p 在x =2处的值。
计算方法易大义第一章答案1、计算方法数值分析教材数值分析引论主要内容插值法数值逼近数值积分数值微分解线性方程组非线性方程组数值解法矩阵特征值与特征向量的计算常微分方程数值解法基础知识高等数学一元微积分线性代数多项式矩阵线性方程组 1数值分析研究对象第一章数值计算引论实际问题建立数学模型提供计算方法程序设计上机计算结果分析 2误差来源及种类模型误差观测误差测量值与真值之间的误差截断误差例如舍入误差数值分析主要研究截断误差和舍入误差 1 绝对误差设是准确值是近似值称为的绝对误差为的绝对误差限 2 相对误差称为的相对误差实用中常用表示的相对误差称为的相对误2、差限 3误差的基本概念 3 有效数字设若则说近似值具有n位有效数字分别是例1设是某数经四舍五入所得则误差不超过末位的半个单位即又故该不等式又可写为由有效数字定义可知有3位有效数字分别是2 7 0 例1 2 32 93 32 89 故有3位有效数字分别是3 2 8 由于中的数字9不是有效数字故不是有效数有效数位与误差的关系 1 有效数位n越多则绝对误差越小2 定理1若近似数具有n位有效数字则反之若则至少有n位有效数字进一步得 1 3 和 1 4 给出了由自变量的误差引起的函数值的误差的近似式误差传播 1 一元函数情形设则由Taylor 展开公式 1 4 13、3 4求函数值的误差估计 2 多元函数情形设则由多元函数的Taylor展开公式类似可得例1 3 测得某桌面的长a的近似值a 120cm 宽b的近似值b60cm 若已知 e a 0 2cm e b 0 1cm 试求近似面积s a b 的绝对误差限与相对误差限解面积s ab 在公式 1 5 中将换为s ab 则相对误差限为 5数值计算中应该注意的几个问题 1 尽量简化计算步骤减少乘除运算的次数秦九韶算法计算多项式通常运算的乘法次数为若采用递推算法则乘法次数仅为n 2 防止大数吃掉小数当a 远远大于b 时尽量避免a b 例如假设计算机只能存放10位尾数的十进制数则3 尽量避免相近数相减例如当x很大时应当x接近于0时应4 避免绝对值很小的数做分母当 b a 时应尽量避免5 选用数值稳定性好的算法以控制舍入误差高速增长例如若误差则计算时误差扩大了倍而 n 1 2 是稳定的。
参考答案:习题七7.1 运用Euler 方法和改进Euler 方法求下列初值问题在给定区间上的数值解, 计算结果保留四位小数。
(1) ⎪⎩⎪⎨⎧=≤≤=-=04.0,2.00,1)0(22h x y y x dxdy; (2) ⎪⎩⎪⎨⎧=≤≤=-=1.0,5.00,1)0(h x y ydxdy。
解:(1) 5,4,3,2,1,0,,04.0,1)0(,),(22====-=n nh x h y y x y x f n8360.08635.08935.09262.09616.01Euler 8299.08583.08894.09232.096.01Euler 2.016.012.008.004.00改进k x (2) 5,4,3,2,1,0,,1.0,1)0(,),(====-=n nh x h y y y x f n6071.06708.07412.0819.0905.01Euler 5905.06561.0729.081.09.01Euler 5.04.03.02.01.00改进k x 7.2 用Euler 方法和改进Euler 方法求初值问题⎪⎩⎪⎨⎧=+=0)0(y bax dx dy的解在),2,1(, ==n hn x n 处的近似值。
bnh ah n n bnh n ah bh anh h n a y bhanh y b anh h y b ax h y y x hf y y y x b ax y x f n n n n n n n n n ++=+++++==++-+=++=++=++=+===+=-+2222121002)1()...210(...2)1()()(),(0,0,),(7.3 运用标准四阶Runge--Kutta 法求初值问题⎪⎩⎪⎨⎧=+=1)1(32y yx x dx dy的解在x =1.1,1.2,1.3处的近似值, 计算结果保留三位小数。
102.2)3.1(,587.1)2.1(,24.1)1.1(===y y y7.4 运用标准四阶Runge--Kutta 法求初值问题⎪⎩⎪⎨⎧=--=1)0(2y xy y dx dy在区间[0,1]上的数值解, 取步长h =0.2, 将计算结果与准确值1)12()(---=x e x y x 进行比较。
《计算方法教程(第二版)》习题答案第一章 习题答案1、浮点数系),,,(U L t F β共有 1)1()1(21++---L U t ββ 个数。
3、a .4097b .62211101110.0,211101000.0⨯⨯c .6211111101.0⨯ 4、设实数R x ∈,则按β进制可表达为:,1,,,3,2,011)11221(+=<≤<≤⨯++++++±=t t j jd d l t t d t t d dd x βββββββ按四舍五入的原则,当它进入浮点数系),,,(U L t F β时,若β211<+t d ,则 l tt d dd x fl ββββ⨯++±=)221()(若 β211≥+t d ,则 l tt d d d x fl ββββ⨯+++±=)1221()(对第一种情况:t l lt l t t d x fl x -++=⨯≤⨯+=-βββββ21)21(1)()(11对第二种情况:t l lt l t t d x fl x -++=⨯≤⨯--=-ββββββ21)21(1)(11就是说总有: tl x fl x -≤-β21)( 另一方面,浮点数要求 β<≤11d , 故有l x ββ1≥,将此两者相除,便得t x x fl x -≤-121)(β 5、a . 5960.1 b . 5962.1 后一种准确6、最后一个计算式:00025509.0原因:避免相近数相减,避免大数相乘,减少运算次数7、a .]!3)2(!2)2(2[2132 +++=x x x yb .)21)(1(22x x x y ++=c .)11(222-++=x x x yd . +-+-=!2)2(!6)2(!4)2(!2)2(2642x x x x y e .222qp p q y ++=8、01786.098.5521==x x9、 m )10(m f - 1 233406.0- 3 20757.0- 5 8.07 710计算宜采用:])!42151()!32141()!22131[()(2432+⨯-+⨯-+⨯--=x x x f第二章 习题答案1、a .Tx )2,1,3(= b .Tx )1,2,1,2(--= c .无法解 2、a .与 b .同上, c .T T x )2188.1,3125.0,2188.1,5312.0()39,10,39,17(321---≈---=7、a .⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---14112111473123247212122123211231321213122 b . ⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛----333211212110211221213231532223522121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=111211212130213221219、T x )3415.46,3659.85,1220.95,1220.95,3659.85,3415.46(1= T x )8293.26,3171.7,4390.2,4390.2,3171.7,8293.26(2= 10、T LDL 分解:)015.0,579.3,9.1,10(diag D =⎪⎪⎪⎪⎪⎭⎫⎝⎛=16030.07895.05.018947.07.019.01L Cholesky 分解⎪⎪⎪⎪⎪⎭⎫⎝⎛=1225.01408.10833.15811.18918.12333.12136.23784.18460.21623.3G 解:)1,1,2,2(--=x 12、16,12,1612111===∞A A A611,4083.1,61122212===∞A A A2)(940)()(12111===∞A Cond A Cond A Cond524)(748)()(22221===∞A C o n d A C o n d A C o n d⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=--180.0000180.0000- 30.0000 180.0000- 192.0000 36.0000- 30.0000 36.0000- 9.0000,0.0139 0.1111- 0.0694- 0.1111- 0.0556 0.1111- 0.0694- 0.1111- 0.0139 1211A A1151.372,1666.0212211==--A A15、 1A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代不收敛; 2A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代不收敛; 3A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代收敛;第三章 习题答案1、Lagrange 插值多项式:)80.466.5)(20.366.5)(70.266.5)(00.166.5()80.4)(20.3)(70.2)(00.1(7.51)66.580.4)(20.380.4)(70.280.4)(00.180.4()66.5)(20.3)(70.2)(00.1(3.38)66.520.3)(80.420.3)(70.220.3)(00.120.3()66.5)(80.4)(70.2)(00.1(0.22)66.570.2)(80.470.2)(20.370.2)(00.170.2()66.5)(80.4)(20.3)(00.1(8.17)66.500.1)(80.400.1)(20.300.1)(70.200.1()66.5)(80.4)(20.3)(70.2(2.14)(4--------⨯+--------⨯+--------⨯+--------⨯+--------⨯=x x x x x x x x x x x x x x x x x x x x x L Newton 插值多项式:)80.4)(20.3)(70.2)(00.1(21444779.0)20.3)(70.2)(00.1(527480131.0)70.2)(00.1(855614973.2)00.1(117647059.22.14)(4----+------+-+=x x x x x x x x x x x N2、设)(x y y =,其反函数是以y 为自变量的函数)(y x x =,对)(y x 作插值多项式:)1744.0)(1081.0)(4016.0)(7001.0(01253.0)1081.0)(4016.0)(7001.0(01531.0)4016.0)(7001.0(009640.0)7001.0(3350.01000.0)(----+---+--+--=y y y y y y y y y y y N 3376.0)0(=N 是0)(=x y 在]4.0,3.0[中的近似根。
Solutions for Section 2.2Exercise 2.2.1(a)States correspond to the eight combinations of switch positions, and also must indicate whether the previous roll came out at D, i.e., whether the previous input was accepted. Let 0 represent a position to the left (as in the diagram) and 1 a position to the right. Each state can be represented by a sequence of three 0's or 1's, representing the directions of the three switches, in order from left to right. We follow these three bits by either a indicating it is an accepting state or r, indicating rejection. Of the 16 possible states, it turns out that only 13 are accessible from the initial state, 000r. Here is the transition table:杠杆可能出现8种情况,影响着最终状态。
并且也要说明,前面一个大理石球是否从D滚出,也就是说,前一个输入是否被接受。
令0 代表向左方的状态(如图表),1 代表向右方。
这三个杠杆的每一个状态都可以用三个数(0或1)组成的序列表示。
这个序列后面跟着字母a或者r。
2.1 证明方程043=-+x x 在区间[1,2]内有且仅有一个根。
如果用二分法求它具有五位有效数字的根,试问需对分多少次?(不必求根) 14,10log 4,10210211021212||2451*11=≥>⨯=⨯=<=---++K k a b k n m k k ε 2.2 用二分法求方程0134=+-x x 在[0.3, 0.4]内的一个根, 精度要求21021-⨯=ε。
k a b x f(x)0 0.300 0.350 0.325 0.0361 0.325 0.350 0.337 0.0002 0.337 0.350 0.344 -0.0173 0.337 0.344 0.341 -0.0084 0.337 0.341 0.339 -0.004x=0.3392.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求210-=ε2.3-1 x=0.645 2.3-2x=1.78 2.3-3x=1.13 2.3-4 x=0.9182.4 考虑方程032=-x e x ,将其改写为3xe x ±=,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附近的两个根(取精度要求310-=ε) (1) 910840.0,0.13*0===x x e x x, k x g(x)0 0.951890 0.9292651 0.929265 0.9188122 0.918812 0.9140223 0.914022 0.9118364 0.911836 0.9108405 0.910840 0.910386(2) 459075.0,5.03-*0-=-==x x e x x, k x g(x)0 -0.449641 -0.4611061 -0.461106 -0.4584712 -0.458471 -0.4590753 -0.459075 -0.4589362.5 为求方程0123=--x x 在5.1=x 附近的一个根,建立下列形式的迭代公式:(1) 2121111kk x x x x +=⇒+=+,; )7.1,3.1(,7.1)(3.1∈≤≤x x g)7.1,3.1(,191.0/2)(3∈<≤='x x x g ,收敛,1.489(2) 3212311k k x x x x +=⇒+=+,;)2,1(,2)(1∈≤≤x x g)2,1(,1)1(61)(3/22∈<+='x x x x g ,收敛,1.465 (3) 111112-=⇒-=+k k x x x x , )6.1,4.1(,107.1)1(21)(2/3∈>≥-='x x x g ,发散 2.6 考虑用迭代法求解下列方程: (1) )2(312x e x x +-=- 0.608 (2) x x -=50.467 (3) 27475.1--+=x x x 6 2.7 用迭代法的思想,给出求22222+++++ 的迭代公式,并证明:222222lim =+++++∞→nn 。
第一章 误差1 问,,722分别作为π的近似值各具有几位有效数字分析 利用有效数字的概念可直接得出。
解 π= 592 65… 记x 1=,x 2=,x 3=722.由π- x 1= 59…= 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。
由π- x 2= 59…= 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。
由π-722= 59 … 85…= 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。
2 已知近似数x*有两位有效数字,试求其相对误差限。
分析 本题显然应利用有效数字与相对误差的关系。
解 利用有效数字与相对误差的关系。
这里n=2,a 1是1到9之间的数字。
%5101211021|*||*||)(|1211*=⨯⨯≤⨯≤-=+-+-n ra x x x x ε3 已知近似数的相对误差限为%,问x*至少有几位有效数字 分析 本题利用有效数字与相对误差的关系。
解 a 1是1到9间的数字。
1112*10)1(2110)19(21102110003%3.0)(--⨯+≤⨯+⨯=⨯<=a x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。
4 计算,问要取几位有效数字才能保证相对误差限不大于%。
分析 本题应利用有效数字与相对误差的关系。
解 设取n 位有效数字,由=…,故a 1=9。
411*10%01.01021|*||*||)(-+-=≤⨯≤-=n r a x x x x ε解不等式411101021-+-≤⨯n a知取n=4即可满足要求。
5 计算76017591-,视已知数为精确值,用4位浮点数计算。
解 =-76017591 8×10-2-0.131 6×10-2=×10-5结果只有一位有效数字,有效数字大量损失,造成相对误差的扩大,若通分后再计算:56101734.0105768.01760759176017591-⨯=⨯=⨯=- 就得到4位有效数字的结果。
第一章 误差1. 试举例,说明什么是模型误差,什么是方法误差.解: 例如,把地球近似看为一个标准球体,利用公式24A r π=计算其表面积,这个近似看为球体的过程产生的误差即为模型误差.在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 其中我们取前9项的乘积作为π的近似值,得这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差.2. 按照四舍五入的原则,将下列各数舍成五位有效数字:816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 2363. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +⨯各有几位有效数字?解: 已知4311d 10,d 1022a b --<⨯<⨯, 又0.2053210a b +=⨯,()433211110100.551010222d a b da db da db ----+=+≤+=⨯+⨯=⨯<⨯,所以a b +有三位有效数字;因为0.1047571410a b ⨯=⨯,所以a b ⨯有三位有效数字.6. 设120.9863,0.0062y y ==,是经过舍入后作为12,x x 的近似值.求1211,y y 的计算值与真值的相对误差限及12y y ⋅与真值的相对误差限.解: 已知-4-41112221211d ,d ,d =10,d 1022x y x x y x x x =+=+⨯=⨯, ()44111111110d d 12dr dr 0.50100.9863x xx x x y --⨯⎛⎫==≈=≈⨯ ⎪⎝⎭;()42222222110d d 12dr dr 0.81100.0062x xx x x y --⨯⎛⎫==≈=≈⨯ ⎪⎝⎭;()()()4221212dr dr dr 0.50100.81100.8210x x x x ---⋅=+≈⨯+⨯≈⨯.7. 正方形的边长约为100cm,应该怎样测量,才能使其面积的误差不超过1cm 2. 解: 设正方形面积为S,边长为a,则S=a 2.所以要使:2d d 2d 1s a a a ==≤,则要求211d 0.5102200a a -≤==⨯.所以边长的误差不能超过20.510-⨯cm.8. 用观测恒星的方法求得某地维度为4502'''(读到秒),试问:计算sin ϕ将有多大误差?解: ()()1d sin cos d cos 45022ϕϕϕ*''⎛⎫'''== ⎪⎝⎭.9 . 真空中自由落体运动距离s 与时间的关系由公式212s gt =确定,g 是重力加速度.现在假设g 是准确的,而对t 的测量有0.1s ±的误差,证明t 增加时,距离的绝对误差增加而相对误差却减小. 证明: 因为:221d d d d d d d ;2.122s gt t gt t t s gt gt t s s t gt ⎛⎫=====⎪⎝⎭ d s 与t成正比,d s s与t 成反比,所以当d t 固定的时候, t增加时,距离的绝对误差增加而相对误差却减小.10. 设0x >,x 的相对误差为δ,求ln x 的绝对误差. 解: 已知d x x δ=,所以ln x 的绝对误差()d d ln x x xδ==. 11. 设x 的相对误差为%α,求nx 的相对误差.解: 1d d d %n n n nx nx x n xn x x xα-===. 12. 计算球的体积,为了使相对误差限为1%,问度量半径R 时允许的相对误差限如何? 解: 已知343V R π=,设()d dr R R a R ==,则要使得 ()()3d dr dln d ln 3d ln 3d ln 3dr 31%V V V R R R R a V ========,则11%3a =⋅. 第二章 插值法与数值微分1.设y =在100,121,144x =三处的值是很容易求得的,试以这三个点建立y =的二次插值多项式,并用,且给出误差估计.用其中的任意两点,构造线性插值函数,用得到的三个线性插值函数,,并分析其结果不同的原因.解: 已知012012100,121,144;10,11,12x x x y y y ======,建立二次Lagrange 插值函数可得:()211510.7228L ≈=.误差()()()()()()2012012,,,,3!f R x x x x x x x x x x ξξξ'''=---∈,所以利用前两个节点建立线性插值函数可得:()111510.7143L ≈=.利用后两个节点建立线性插值可得:()111510.7391L ≈=.利用前后两个节点建立线性插值可得:()111510.6818L ≈=.与,二次插值比线性插值效果好,利用前两个节点的线性插值比其他两个线性插值效果好.此说明,二次插值比线性插值效果好,内插比外插效果好.2. 利用(2.9)式证明 证明: 由(2.9)式当01x x x <<时,()()01max x x x f f x ξ≤≤''''≤,()()()01201101max 4x x x x x x x x x ≤≤--≤- 所以3. 若()0,1,...,j x n 为互异节点,且有 证明 证明: 由于且()0nk j j j x l x =∑和kx都为k 次多项式,而且在k+1个不同的节点处的函数值都相同0,1,...,k n =, 所以马上有()0,0,1,...,nk kj j j x l x xk n =≡=∑.4. 设给出sin x 在[],ππ-上的数值表,用二次插值进行计算,若希望截断误差小于510-,问函数表的步长最大能取多少?解: 记插值函数为p(x),则所以()()()()11cos max sin 3!i i i x x p x x x x x x ππξ-+-≤≤--=---()cos 1ξ-≤;令()()()()11i i i g x x x x x x x -+=---,设1i x x th -=+,得又()()()[]12,0,2t t t t t ϕ=--∈的最大值为10.3849ϕ⎛= ⎝⎭,所以有 所以0.0538h ≤.5. 用拉格朗日插值和牛顿插值找经过点()()()()3,1,0,2,3,2,6,10---的三次插值公式. 解: Lagrange 插值函数:牛顿插值: 首先计算差商也可以利用等距节点构造,首先计算差分 可得前插公式 和后插公式6. 确定一次数不高于4的多项式()x ϕ,使()()()()()00,00,111,21ϕϕϕϕϕ''=====. 解: 利用重节点计算差商则可构造Hermite 插值函数满足题设条件:7. 寻找过1n +个点01,,...,n x x x 的21n +次多项式()21n H x +,满足条件: 解: 和Lagrange 插值函数的构造类似,可将插值函数写成其中,基函数满足条件 (1)()()(),,,21n i n i h x h x P n ∈+;(2)()()()(),,,,,0;,0n i n i n ij ij n i j j ijj h x h x h x h x δδ''====则可由已知条件,可得()()()()2,,,12n i n i i i n i h x l x x x l x '⎡⎤=--⎣⎦;()()()2,,n i i n i h x x x l x '=-.所以可得8. 过0,1两点构造一个三次Hermite 插值多项式,满足条件: 解: 计算重节点的差商马上可得9. 过给定数组(1) 作一分段线性插值函数.(2) 取第二类边界条件,作三次样条插值多项式.(3) 用两种插值函数分别计算75.5,78.3x x ==的函数值. 解: (1)做分段线性插值函数可得:其中, ()[][]076 75,76;0 75,76.x x l x x ⎧-∈⎪=⎨∉⎪⎩()[][][]175 75,7677 76,77;0 75,77.x x l x x x x ⎧-∈⎪=-∈⎨⎪∉⎩ (2)把已知节点值带入M 关系式可得: 由边界条件可得050M M ==,所以上面方程组变为可求解方程组解得12340.0058,0.0067,0.0036,0.0071M M M M ====.所以可得在每个区间上的三次样条函数的表达式: (3)当75.5x =时,()()()50175.5 2.76875.5 2.83375.5 2.8005I l l =+=;()()()()()30.00580.005875.575.576 2.7687675.5 2.83375.575 2.79966s ⎛⎫=-+-+--= ⎪⎝⎭当78.3x =时,()()()53475.5 2.97978.3 3.06278.3 3.0039I ll =+=;10. 若给出sin ,cos ,tan x x x 的函数表:用表上的数据和任一插值公式求: (1) 用tan x 表格直接计算tan1.5695.(2) 用sin1.5695和cos1.5695来计算tan1.5695.并讨论这两个结果中误差变化的原因. 解: 利用Lagrange 插值直接用tan 表计算得tan1.5695819.0342874999274≈;利用Lagrange 插值计算sin 得sin1.56950.99999917500000≈;利用Lagrange 插值计算cos 得cos1.56950.00129630000000≈;最后利用sin/cos 计算tan 得tan1.5695771.4257309264500≈.出现小除数,误差被放大.11. 求三次样条函数()s x ,已知和边界条件解: 把表中数据带入M 关系式可得由边界条件还可得到两个方程: 联立两个方程组可解得:带入M 表达式便可得所求三次样条函数.12. 称n 阶方阵()ij A a =具有严格对角优势,若 (1) 试证明:具有严格对角优势的方阵必可逆. (2) 证明:方程组(2.62)解存在唯一.证明: (1)设矩阵A 按行严格对角占优,如果A 奇异,则存在非零向量x 使得Ax=0,写成分量形式为令指标0i 使得00i x x∞=≠,则因此0000010n i i i i j j j i x a a =≠⎛⎫⎪-≤ ⎪ ⎪⎝⎭∑ 即000010ni i i j j j i a a =≠-≤∑上式与矩阵按行严格对角占优矛盾,因此矩阵非奇异. (2)方程组(2.62)由于该方程组系数矩阵为严格对角占优的方阵,所以由克拉默法则可知方程组存在唯一解.。