2021届高三数学一轮复习——高考中的导数应用问题
- 格式:docx
- 大小:135.95 KB
- 文档页数:12
《利用导数研究函数的极值》(一)考查内容:主要涉及求已知函数的极值一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数334y x x =-+有( ) A .极大值6,极小值2 B .极大值2,极小值6 C .极小值-1,极大值2D .极小值2,极大值82.函数()x f x xe -=在[0,4]x ∈上的极大值为( )A .1eB .0C .44e D .22e 3.已知函数()2()ln xf x ef e x e'=-,则()f x 的极大值点为( ) A .1eB .1C .eD .2e4.函数sin cos y x x x =+的一个极小值点为( ) A .2x π=-B .2x π=C .x π=D .32x π=5.函数331y x x =-+在[]3,3-的极大值是( ) A .19B .3C .-1D .-176.若2x =-是函数()321213f x x ax x =--+的一个极值点,则函数()f x 的极小值为( ) A .113-B .16-C .16D .1737.若函数3()3f x x x m =-+的极小值为-1,则函数()f x 的极大值为( )A .3B .-1C .13 D .2 8.正项等比数列{}n a 中的14031,a a 是函数()3214633f x x x x =-+-的极值点,则2061a =( )A .1B .2CD .1-9.若函数3()()3f x x a x b =--+的极大值为M ,极小值为N ,则M N -( ) A .与a 有关,且与少有关B .与a 无关,且与b 有关C .与a 无关,且与b 无关D .与a 有关,且与b 无关10.已知函数[]21()(1)(2)(1)3ln 2f x f x f f x x '''=-+--,则()f x () A .只有极大值B .只有极小值C .既有极大值也有极小值D .既无极大值也无极小值11.已知()ln (0)af x x a x=+≠,则 A .当0a <时,()f x 存在极小值()f a B .当0a <时,()f x 存在极大值()f a C .当0a >时,()f x 存在极小值()f aD .当0a >时,()f x 存在极大值()f a12.已知函数()32247f x x x x =---,其导函数为()f x ',则以下4个命题: ①()f x 的单调减区间是2,23⎛⎫-⎪⎝⎭;②()f x 的极小值是-15;③()f x 有且只有一个零点;④当2a >时,对任意的2x >x a ≠,恒有()()()()f x f a f a x a '>+-. 其中真命题的个数为( ) A .1 B .2 C .3 D .4二.填空题 13.函数321()313f x x x x =+--的极小值是__________ 14.已知函数()()21ln f x f x x =-',则()f x 的极大值为________. 15.若2x =-是函数()()211x f x x ax e-=+-的极值点,则()f x 的极大值为___16.已知函数()()()224f x x xax b =-++的图象关于1x =对称,记函数()f x 的所有极值点之和与积分别为m ,n ,则()f m n +=______. 三.解答题(解答应写出文字说明、证明过程或演算步骤)17.已知函数()ln f x ax bx x =+,()f x 在x e =处的切线方程是0x y e +-=,其中e 是自然对数的底数. (1)求实数a ,b 的值; (2)求函数()f x 的极值.18.已知函数322()3(1)1f x kx k x k =+--+在0,4x x ==处取得极值. (1)求常数k 的值;(2)求函数()f x 的单调区间与极值.19.已知函数21()22f x x mx lnx =--,m R ∈. (1)若1m =,求()f x 的单调递增区间和单调递减区间; (2)求()f x 的极值点.20.已知函数()()ln f x ax x a R =-∈. (1)讨论()f x 的极值;(2)若()f x 有两个零点1x ,2x ,证明:12112ln ln x x +>.21.已知函数()2ln f x x a x =--,R a ∈. (1)求函数()f x 的极值;(2)当2a =-时,若直线l :2y kx =-与曲线()y f x =没有公共点,求k 的取值范围.22.已知2a >,函数()1ln xf x e x ax e=+-. (1)判断()f x 极值点的个数;(2)若()1212x x x x <,是函数()f x 的两个极值点,证明:()()212ln f x f x a -<.《利用导数研究函数的极值》(一)解析1.【解析】令2330y x '=-=,解得1x =±,则,y y '随x 的变化如下表所以,当1x =-时,函数有极大值为6;当1x =时,函数有极小值为2.故选:A. 2.【解析】由()xf x xe-=可得1()x xf x e-'=,当(]0,1x ∈时()0f x '>,()f x 单调递增, 当(]1,4x ∈时()0f x '<,()f x 单调递减, 所以函数()xf x xe-=在[0,4]x ∈上的极大值为()11f e=,故选:A 3.【解析】因为()()2ln xf x ef e x e '=-,所以()()21ef e f x x e'-'=, 所以()()()2112ef e f e f e ee e=-'=-'', 因此()1f e e '=,所以()21f x x e='-,由()0f x '>得:02x e <<;由()0f x '<得:2x e >;所以函数()f x 在()0,2e 上单调递增,在()2,e +∞上单调递减,因此()f x 的极大值点2x e =.故选D4.【解析】因为sin cos y x x x =+,所以sin cos sin cos y x x x x x x '=+-=,A 选项,当2x π=-时,0y '=,在2x π=-的左侧附近,0y '>;在2x π=-的右侧附近,0y '<,所以2x π=-是极大值点,故A 错;B 选项,当2x π=时,0y '=,在2x π=的左侧附近,0y '>;在2x π=的右侧附近,0y '<,所以2x π=是极大值点,故B 错;C 选项,当x π=时,y π'=-,所以x π=不是极值点;D 选项,当32x π=时,0y '=,在32x π=的左侧附近,0y '<;在32x π=的右侧附近,0y '>,所以32x π=是极小值点,故D 正确.故选:D. 5.【解析】由于()()2333+11y x x x =-=-,由'0y =得出1x =±.当()1,1x ∈-时, '0y <,该函数在()11-,单调递减,当(),1x ∈-∞-时, '>0y ,该函数在(),1x ∈-∞-单调递增, 当()1,+x ∈∞时, '>0y ,该函数在()1,+x ∈∞单调递增. 则该函数在1x =-处取得极大值3,故选:B. 6.【解析】∵()321213f x x ax x =--+,∴()222x x ax f =--',由题意得()2240f a '-=+=,解得12a =-,∴()32112132x x f x x =+-+,∴()()()2221f x x x x x '=+-=+-.当2x <-或1x >时,()0f x '>;当21x -<<时,()0f x '<.所以,函数()y f x =的单调递增区间为(),2-∞-和()1,+∞,单调递减区间为()2,1-,当1x =时,函数()y f x =取得极小值()111121326f =+-+=-, 故选:B .7.【解析】2'()333(1)(1)f x x x x =-=+-,显然当11x x <->或时,'()0f x >,当11x -<<时,'()0f x <,∴1-是极大值点,1是极小值点,于是有(1)131f m =-+=-,1m =,从而(1)1313f -=-++=,即极大值为3.故选A .8.【解析】由()3214633f x x x x =-+-,则()22860f x x x =+'-=,因为14031,a a 是函数()3214633f x x x x =-+-的极值点,所以140316a a ⋅=,又0n a >,所以2016a ==2061=1,故选A .9.【解析】32()()3()3()301f x x a x b f x x a x a '=--+∴=--=∴=±当1x a <-时()0f x '>;当11a x a -<<+时()0f x '<;当1x a >+时()0f x '>;因此当1x a =-时()f x 取极大值;当1x a =+时()f x 取极小值; (1)(1)4M N f a f a ∴-=--+=,故选:C10.【解析】3()(1)(2)(1)f x f x f f x''''=-+--,∴(1)(1)(2)(1)3f f f f ''''=-+--且3(2)2(1)(2)(1)2f f f f ''''=-+--,解得1(1)2'=-f ,3(2)2f '=,246()02x x f x x+-'==,2x =-±0x >,∴()f x 在2x =-B . 11.【解析】f ′(x )221a x a x x x-=-=, a >0时,令f ′(x )>0,解得:x >a , 令f ′(x )<0,解得:0<x <a ,故f (x )在(0,a )递减,在(a ,+∞)递增, 故f (x )极小值=f (a ),无极大值,a ≤0时,f ′(x )>0,f (x )在(0,+∞)递增,无极值,故选C . 12.【解析】()32247f x x x x =---,其导函数为()2344f x x x '=--.令()0f x '=,解得23x =-,2x =.当()0f x '>时,即2x 23x -或时,函数单调递增,当()0f x '<时,即223x -<<时,函数单调递减,故当2x =时,函数有极小值,极小值为()215f -=-,当23x =-时,函数有极大值,极大值为203f ⎛⎫< ⎪⎝⎭,故函数只有一个零点,①②③正确;∵2a >,2x >且x a ≠, ∴令()()()()()g x f x f a f a x a =-'--,则()()22344344g x x x a a =-----',记()()g x h x '=,因为当2x >时,()640h x x -'=>,则()h x 在(2,+∞)单调递增,又因为()()0g a h a '==,∴当2x a <<时,()0g x '<,当x a >时,()0g x '>,∴以()g x ⋅在(2,a )递减,在(),a +∞递增,又x a ≠,∴()()0g x g a >=成立,故④正确.故选D. 13.【解析】函数321()313f x x x x =+--,则()223f x x x '=+-, 令()0f x '=,由2230x x +-=得3x =-或1x =,如下表所示:函数()32313f x x x x =+--在(),3-∞-上为增函数,在()3,1-上为减函数,在()1,+∞上为增函数,故()f x 在1x =处有极小值,极小值为()318f =-.14.【解析】2(1)2(1)()1(1)1,(1)11f f f x f f x '''=-'-='∴= , 因此()2ln f x x x =-,2()102f x x x-='=∴=时取极大值2ln22-15.【解析】()()211e x f x x ax -=+-,()()2121x f x x a x a e -'⎡⎤∴=+++-⎣⎦, 由题意可得()()3210f a e-'-=-+=,解得1a =-.()()211e x f x x x -∴=--,()()212x f x x x e -'=+-,令()0f x '=,得2x =-或1x =. 列表如下:所以,函数()y f x =的单调递增区间为(),2-∞-和()1,+∞,单调递减区间为()2,1-,所以,函数()y f x =的极大值为()352f e -=.故答案为:35e. 16.【解析】因为()f x 的图象关于1x =对称,所以()()()()0224f f f f ⎧=⎪⎨-=⎪⎩,即()()()0401641640b a b ⎧-=⎪⎨-++=⎪⎩,解得40a b =-⎧⎨=⎩,所以()()()2244f x x x x =--, 此时()222[(2)4)[])4(2)(2f x x x x -----=-22(4)(4)(),()x x x f x f x =--=∴关于直线1x =对称,()2232'2(4)(4)(24)412816f x x x x x x x x x =-+--=--+()()32224[()2(2)]4124x x x x x x x =--+-=---.令()'0f x =,得1x =或2240x x --=, 从而123m =+=,()144n =⨯-=-,故()()13515f m n f +=-=-⨯=-.故答案为:15-.17.【解析】(1)由()ln f x ax bx x =+,得()()1ln f x a b x '=++, 由()f x 在x e =处的切线方程是0x y e +-=,知切点为(),0e ,斜率为1-,所以()()()021f e a b e f e a b ⎧=+=⎪⎨=+=-'⎪⎩,解之得11a b =⎧⎨=-⎩.(2)()ln f x x x x =-,()ln f x x '=-,令()0f x '=,得1x =,由表可知,当1x =时,()f x 取得极大值1;()f x 无极小值.18.【解析】(1)由题意2()36(1)f x kx k x '=+-,又函数在0,4x x ==处取得极值,所以0,4x x ==是方程()0f x '=的两个解,∴346(1)0k k ⨯+-=中,解得13k =;(2)由(1)3218()239f x x x =-+,2()4f x x x '=-,0x <或4x >时,()0f x '>,()f x 的增区间为(,0)-∞和(4,)+∞,04x <<时,()0f x '<,()f x 的减区间是(0,4),所以0x =时,()f x 极大值(0)f ==89,4x =时,()f x 极小值88(4)9f ==-. 综上,增区间是(,0)-∞和(4,)+∞,减区间是(0,4),极大值是89,极小值是889-.19.【解析】(1)1m =,21()22f x x x lnx ∴=--,(0,)x ∈+∞,222()1x x f x x x x--∴'=--=,令()0f x '>,解得:2x >或1x <-, 令()0f x '<,解得:12x -<<,而(0,)x ∈+∞, 故()f x 在(0,2)递减,在(2,)+∞递增; (2)21()22f x x mx lnx =--,(0,)x ∈+∞, 222()x mx f x x m x x--∴'=--=,令()0f x '=,解得:1x =2x =,10x =<,20x =>,x ∴∈时,()0f x '<,x ∈,)+∞时,()0f x '>,故()f x 在(0,2m 递减,在(2m +)+∞递增;故()f x 有极小值点,极小值点是2m x +=.20.【解析】(1)()()110ax f x a x x x-'=-=>, ①当0a ≤时,由于0x >,故10ax ,()0f x '<,所以()f x 在()0,∞+内单调递减,无极值; ②当0a >时,由()0f x '=,得1x a=, 在10,a ⎛⎫ ⎪⎝⎭上,()0f x '<,在1,a ⎛⎫+∞⎪⎝⎭上,()0f x '>, 所以函数()f x 的单调递减区间为10,a ⎛⎫ ⎪⎝⎭,单调递增区间为1,a ⎛⎫+∞⎪⎝⎭, 函数()f x 有极小值11ln f a a ⎛⎫=+⎪⎝⎭,无极大值, 综上:当0a ≤时,()f x 无极值;当0a >时,()f x 有极小值1ln a +,无极大值.2021届高三一轮复习题型专题训练(2)函数()f x 有两个零点1x ,2x ,不妨设12x x <, 由(1)得,0a >且111ln 0,0f a a a e ⎛⎫=+<∴<<⎪⎝⎭, 则11ln 0x ax -=,22ln 0x ax -=,()2121ln ln x x a x x -=-,即2121ln ln x x a x x -=-, 要证:121112,0ln ln a x x e +><<,需证:12112a x x +>, 只需证:12122x x a x x +>,只需证:12211221ln ln 2x x x x x x x x +->-,只需证:22212121ln 2x x x x x x ->,只需证:2211121ln 2x x x x x x ⎛⎫<- ⎪⎝⎭, 令211x t x =>,即证11ln 2t t t ⎛⎫<- ⎪⎝⎭,设11()ln 2t t t t ϕ⎛⎫=-- ⎪⎝⎭, 则2221()02t t t tϕ--'=<,即函数()t ϕ在()1,+∞单调递减, 则()()10t ϕϕ<=,即得12112ln ln x x +>. 21.【解析】(1)()2ln f x x a x =--定义域为()0,∞+,()1a x a f x x x'-=-=. ①当0a ≤时,()0f x '>,()f x 为()0,∞+上的增函数,所以函数()f x 无极值. ②当0a >时,令()0f x '=,解得x a =.当()0,x a ∈,()0f x '<,()f x 在()0,a 上单调递减; 当(),x a ∈+∞,()0f x '>,()f x 在(),a +∞上单调递增.故()f x 在x a =处取得极小值,且极小值为()2ln f a a a a =--,无极大值. 综上,当0a ≤时,函数()f x 无极值;当0a >时,()f x 有极小值为2ln a a a --,无极大值. (2)当2a =-时,()22ln f x x x =-+,直线l :2y kx =-与曲线()y f x =没有公共点,等价于关于x 的方程222ln kx x x -=-+2021届高三一轮复习题型专题训练在()0,∞+上没有实数解,即关于x 的方程()12ln k x x -=在()0,∞+上没有实数解, 即2ln 1xk x-=在()0,∞+上没有实数解. 令()2ln xg x x =,则有()()221ln x g x x-'=.令()0g x '=,解得e x =, 当x 变化时,()g x ',()g x 的变化情况如下表:且当0x →时,()g x →-∞;e x =时,()g x 的最大值为2e;当x →+∞时,()0g x →,从而()g x 的取值范围为2,e ⎛⎤-∞ ⎥⎝⎦.所以当()21,e k ⎛⎫-∈+∞⎪⎝⎭时,方程()12ln k x x -=无实数解, 解得k 的取值范围是21,e ⎛⎫++∞ ⎪⎝⎭. 22.【解析】(1)由题意得()11x f x e a e x'=+-,0x >, 令()()11x g x f x e a e x'==+-,0x >, 则()211x g x e e x'=-在()0,∞+上递增,且()10g '=, 当()0,1x ∈时,()0g x '<,()g x 递减;当()1,x ∈+∞,()0g x '>,()g x 递增,∴()()min 120g x g a ==-<∵1110ag ea -⎛⎫=> ⎪⎝⎭,()120g a =-<,∴11,1x a ⎛⎫∃∈ ⎪⎝⎭,()10g x =. 当()10,x x ∈时,()()0g x f x '=>,()f x 递增; 当()1,1x x ∈时,()()0g x f x ='<,()f x 递减,2021届高三一轮复习题型专题训练 ∴1x x =是()f x 的极大值点 ∵()11ln 01ln g a a+=>+,()120g a =-<,∴()21,1ln x a ∃∈+,()20g x =.当()21,x x ∈时,()()0g x f x ='<,()f x 递减; 当()2,x x ∈+∞时,()()0g x f x '=>,()f x 递增,∴2x x =是()f x 的极小值点.∴()f x 在()0,∞+上有两个极值点 (2)证明:()1212x x x x <,是函数()f x 的两个极值点. 由(1)得12111ln x x a a<<<<+,且()()120g x g x ==, 即()()1212121111x x g x e a g x e a e x e x =+-==+-,所以()2121121x x x x e e e x x --=. ∴210x x ->,11a x <,()2111ln x a a x <<+, 由121111ln ,x x a a <<<<+,则121x x a <,即121a x x <,所以1210a x x -< ∴()()()()()()2122212121112111ln ln ln 1ln x x x x f x f x e e a x x x x a a a e x x x x ⎛⎫-=-+--=--+<+⎡⎤ ⎪⎣⎦⎝⎭设()()1ln 2a a a a ϕ=+->,则()110a aϕ'=-<, ∴()a ϕ在2a >时单调递减,则()()2ln 210a ϕϕ<=-<∴1ln a a +<,则()21ln a a a +<.∴()()221ln 2ln f x f x a a -<=。
导函数的“隐零点”问题知识拓展利用导数解决函数问题常与函数单调性的判断有关,而函数的单调性与其导函数的零点有着紧密的联系,按导函数零点能否求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.对于隐零点问题,由于涉及灵活的代数变形、整体代换、构造函数、不等式应用等技巧,对学生综合能力的要求较高,成为考查的难点.题型突破题型一 函数最值中的“隐零点”【例1】 设函数f (x )=e 2x-a ln x .(a 为大于零的常数),已知f ′(x )=0有唯一零点,求f (x )的最小值.解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x-ax(x >0). 当a >0时,设u (x )=e 2x,v (x )=-a x,因为u (x )=e 2x在(0,+∞)上单调递增,v (x )=-a x在 (0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于2e 2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a.故当a >0时,f (x )≥2a +a ln 2a.故f (x )的最小值为2a +a ln 2a.【训练1】 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0; (2)证明:当a ∈[0,1)时,函数g (x )=e x-ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=(x -1)(x +2)e x-(x -2)e x(x +2)2=x 2ex(x +2)2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x>-(x +2),即(x -2)e x+x +2>0.(2)证明 g ′(x )=(x -2)e x+a (x +2)x 3=x +2x3(f (x )+a ). 由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增.因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e xa -a (x a +1)x 2a =e x a +f (xa )(x a +1)x 2a=e xax a +2. 于是h (a )=e x a x a +2,由⎝ ⎛⎭⎪⎫e xx +2′=(x +1)e x (x +2)2>0,得y =e xx +2单调递增.所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e24.因为y =e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.题型二 不等式证明中的“隐零点”【例2】 (2019·天津卷)设函数f (x )=ln x -a (x -1)e x,其中a ∈R . (1)若a ≤0,讨论f (x )的单调性. (2)若0<a <1e,①证明f (x )恰有两个零点;②设x 0为f (x )的极值点,x 1为f (x )的零点,且x 1>x 0,证明3x 0-x 1>2.(1)解 由已知,f (x )的定义域为(0,+∞),且f ′(x )=1x -[a e x +a (x -1)e x]=1-ax 2e xx.因此当a ≤0时,1-ax 2e x>0,从而f ′(x )>0, 所以f (x )在(0,+∞)内单调递增. (2)证明 ①由(1)知f ′(x )=1-ax 2e xx.令g (x )=1-ax 2e x,由0<a <1e,可知g (x )在(0,+∞)内单调递减.又g (1)=1-a e>0,且g ⎝ ⎛⎭⎪⎫ln 1a =1-a ⎝ ⎛⎭⎪⎫ln 1a 2·1a =1-⎝ ⎛⎭⎪⎫ln 1a 2<0, 故g (x )=0在(0,+∞)内有唯一解, 从而f ′(x )=0在(0,+∞)内有唯一解, 不妨设为x 0,则1<x 0<ln 1a.当x ∈(0,x 0)时,f ′(x )=g (x )x >g (x 0)x=0, 所以f (x )在(0,x 0)内单调递增; 当x ∈(x 0,+∞)时,f ′(x )=g (x )x <g (x 0)x=0, 所以f (x )在(x 0,+∞)内单调递减, 因此x 0是f (x )的唯一极值点.令h (x )=ln x -x +1,则当x >1时,h ′(x )=1x-1<0,故h (x )在(1,+∞)内单调递减,从而当x >1时,h (x )<h (1)=0,所以ln x <x -1, 从而f ⎝ ⎛⎭⎪⎫ln 1a =ln ⎝ ⎛⎭⎪⎫ln 1a -a ⎝ ⎛⎭⎪⎫ln 1a -1e ln 1a =ln ⎝ ⎛⎭⎪⎫ln 1a -ln 1a+1=h ⎝ ⎛⎭⎪⎫ln 1a <0.又因为f (x 0)>f (1)=0,所以f (x )在(x 0,+∞)内有唯一零点. 又f (x )在(0,x 0)内有唯一零点1, 从而,f (x )在(0,+∞)内恰有两个零点.②由题意,⎩⎪⎨⎪⎧f ′(x 0)=0,f (x 1)=0,即⎩⎪⎨⎪⎧ax 20e x0=1,ln x 1=a (x 1-1)e x1, 从而ln x 1=x 1-1x 20e x 1-x 0,即e x 1-x0=x 20ln x 1x 1-1.因为当x >1时,ln x <x -1,又x 1>x 0>1, 故e x 1-x0<x 20(x 1-1)x 1-1=x 20,两边取对数,得ln e x 1-x 0<ln x 20, 于是x 1-x 0<2ln x 0<2(x 0-1),整理得3x 0-x 1>2.【训练2】 (2017·全国Ⅱ卷)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2. (1)解 f (x )的定义域为(0,+∞),设g (x )=ax -a -ln x ,则f (x )=xg (x ),f (x )≥0等价于g (x )≥0, 因为g (1)=0,g (x )≥0,故g ′(1)=0, 而g ′(x )=a -1x,g ′(1)=a -1,得a =1.若a =1,则g ′(x )=1-1x.当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以x =1是g (x )的极小值点,故g (x )≥g (1)=0. 综上,a =1.(2)证明 由(1)知f (x )=x 2-x -x ln x ,f ′(x )=2x -2-ln x , 设h (x )=2x -2-ln x ,则h ′(x )=2-1x.当x ∈⎝ ⎛⎭⎪⎫0,12时,h ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫12,+∞时,h ′(x )>0. 所以h (x )在⎝ ⎛⎭⎪⎫0,12单调递减,在⎝ ⎛⎭⎪⎫12,+∞单调递增.又h (e -2)>0,h ⎝ ⎛⎭⎪⎫12<0,h (1)=0,所以h (x )在⎝ ⎛⎭⎪⎫0,12有唯一零点x 0,在⎣⎢⎡⎭⎪⎫12,+∞有唯一零点1,且当x ∈(0,x 0)时,h (x )>0; 当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0. 因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0). 由x 0∈⎝ ⎛⎭⎪⎫0,12得f (x 0)<14.因为x =x 0是f (x )在(0,1)上的最大值点,由e -1∈(0,1),f ′(e -1)≠0得f (x 0)>f (e -1)=e-2.所以e -2<f (x 0)<2-2.题型三 导函数中“二次函数”的“设而不求”技巧【例3】 (2018·全国Ⅰ卷)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.(1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2.①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ②若a >2,令f ′(x )=0得,x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.(2)证明 由(1)知,f (x )存在两个极值点时,当且仅当a >2. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x-x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减, 又g (1)=0,从而当x ∈(1,+∞)时,g (x )<0. 所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.【训练3】 已知函数f (x )=x 2+a ln(x +2),a ∈R ,存在两个极值点x 1,x 2,求f (x 1)+f (x 2)的取值范围.解 函数f (x )的定义域为(-2,+∞), 且f ′(x )=2x +ax +2=2x 2+4x +a x +2,由于f (x )有两个极值点,则二次函数g (x )=2x 2+4x +a 在(-2,+∞)上有两个相异实根x 1,x 2, 由于g (x )的对称轴为x =-1,由二次函数的图象可知,只需Δ=16-8a >0且g (-2)=a >0,即0<a <2. 考虑到x 1,x 2是方程2x 2+4x +a =0的两根. 从而x 1+x 2=-2,x 1x 2=a2,从而f (x 1)+f (x 2)=x 21+a ln(x 1+2)+x 22+a ln(x 2+2)=(x 1+x 2)2-2x 1x 2+a ln[2(x 1+x 2)+x 1x 2+4] =4-a +a ln a2,其中0<a <2.令h (a )=4-a +a ln a 2,a ∈(0,2),则h ′(a )=-1+ln a2+1=ln a2<0,从而h (a )在(0,2)上单调递减,又当x →0(x >0),h (a )→4,a →2,h (a )→2,所以h (a )的值域为(2,4).综上所述f (x 1)+f (x 2)的取值范围是(2,4).补偿训练1.(2020·杭州二中考试)设函数f (x )=1-1x,g (x )=ln x .(1)求曲线y =f (2x -1)在点(1,0)处的切线方程;(2)求函数y =f (x )·g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的取值范围. 解 (1)当x =1时,y =f (2-1)=f (1)=0.y ′=f ′(2x -1)=1(2x -1)32,f ′(1)=1,所以切线方程为y =x -1. (2)y =f (x )·g (x )=⎝⎛⎭⎪⎫1-1x ln x =ln x -ln xx, y ′=1x -1x x +ln x 2x x=x -1+ln x2x x,因为x ∈⎣⎢⎡⎦⎥⎤1e ,e ,所以x x >0. 令h (x )=x -1+ln x 2⎝ ⎛⎭⎪⎫1e ≤x ≤e ,h ′(x )=x +12x >0, 则h (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递增,因为h (1)=0,所以y =f (x )·g (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递减, 在[1,e]上单调递增.y min =f (1)·g (1)=0,y max =max ⎩⎨⎧⎭⎬⎫f ⎝ ⎛⎭⎪⎫1e ·g ⎝ ⎛⎭⎪⎫1e,f (e )·g (e )=max ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫e -1,1-1e , 因为e -1>1-1e,所以y =f (x )·g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的取值范围为[0,e -1]. 2.已知函数f (x )=(x -1)e x-ax 的图象在x =0处的切线方程是x +y +b =0. (1)求a ,b 的值;(2)求证函数f (x )有唯一的极值点x 0,且f (x 0)>-32.(1)解 因为f ′(x )=x e x-a ,由f ′(0)=-1得a =1,又当x =0时,f (x )=-1, 所以切线方程为y -(-1)=-1(x -0), 即x +y +1=0, 所以b =1.(2)证明 令g (x )=f ′(x )=x e x-1, 则g ′(x )=(x +1)e x,所以当x <-1时,g (x )单调递减,且此时g (x )<0, 则g (x )在(-∞,-1)内无零点; 当x ≥-1时,g (x )单调递增, 且g (-1)<0,g (1)=e -1>0,所以g (x )=0有唯一解x 0,f (x )有唯一的极值点x 0. 由x 0e x 0=1⇒e x 0=1x 0,f (x 0)=x 0-1x 0-x 0=1-⎝ ⎛⎭⎪⎫1x 0+x 0, 又g ⎝ ⎛⎭⎪⎫12=e 2-1<0, g (1)=e -1>0⇒12<x 0<1⇒2<1x 0+x 0<52,所以f (x 0)>-32.3.已知f (x )=ax +x ln x (a ∈R ),y =f (x )在点(1,f (1))处的切线的斜率为2.若2f (x )-(k +1)x +k >0(k ∈Z )对任意x >1都成立,求整数k 的最大值. 解 由题设知f ′(x )=a +1+ln x ,由f ′(1)=2,解得a =1,所以f (x )=x +x ln x . 当x >1时,不等式2f (x )-(k +1)x +k >0(k ∈Z )化为k <x +2x ln xx -1,记g (x )=x +2x ln x x -1(x >1),则g ′(x )=2x -2ln x -3(x -1)2, 再设h (x )=2x -2ln x -3,则h ′(x )=2(x -1)x>0, 所以h (x )在(1,+∞)上单调递增,又h (2)=1-2ln 2<0,h ⎝ ⎛⎭⎪⎫52=2⎝⎛⎭⎪⎫1-ln 52>0, 故h (x )在⎝ ⎛⎭⎪⎫2,52上存在唯一零点x 0,使h (x 0)=2x 0-2ln x 0-3=0,且当1<x <x 0时,g ′(x )<0; 当x >x 0时,g ′(x )>0.即g (x )在(1,x 0)单调递减,在(x 0,+∞)单调递增, 所以g (x )min =g (x 0)=x 0+2x 0ln x 0x 0-1,由2x 0-2ln x 0-3=0得2ln x 0=2x 0-3, 则g (x )min =x 0+x 0(2x 0-3)x 0-1=2x 0∈(4,5),又k <x +2x ln xx -1恒成立,故整数k 的最大值为4.4.已知函数f (x )=x 2·ln x .(1)证明:对任意的t >0,存在唯一的s ,使t =f (s );(2)设(1)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g (t )ln t <12.证明 (1)当x ∈(0,1]时f (x )≤0;当x ∈(1,+∞)时f (x )>0,故下面只考虑f (x )在(1,+∞)上的性质. 由于对任意给定的t >0,令F (x )=f (x )-t ,x >1, 则F ′(x )=x (2ln x +1)>0, 从而F (x )在(1,+∞)单调递增,又F (1)=-t <0,F (e t )=e 2t·t -t >0,故F (x )在(1,+∞)存在唯一零点s ,满足t =f (s ). (2)由于s 2·ln s =t >e 2,从而s >e , 故ln g (t )ln t =ln s ln (s 2·ln s )=ln s2ln s +ln (ln s ), 令m =ln s ,则ln g (t )ln t =m2m +ln m =12+ln m m,m >1, 设h (m )=ln mm,m >1,下面求h (m )的取值范围. 由于h ′(m )=1-ln m m2, 从而当m ∈(1,e]时,h ′(m )≥0,当m ∈(e,+∞)时,h ′(m )<0, 故h (m )在(1,e]上单调递增,在(e ,+∞)上单调递减,而h (1)=0,h (e)=1e,m →+∞,h (m )→0,从而h (m )∈⎝ ⎛⎦⎥⎤0,1e , 从而e 2e +1=12+1e ≤ln g (t )ln t <12,又25<e 2e +1, 从而当t >e 2时,有25<ln g (t )ln t <12.5.已知函数f (x )=-12ax 2+x ln x +bx (a ,b ∈R ),函数f (x )的导函数为f ′(x ).(1)求f ′(x )的单调区间;(2)若f ′(x )有两个不同的零点x 1,x 2,证明: a 2x 1x 2<1.(1)解 函数f (x )的定义域为(0,+∞),f ′(x )=-ax +1+ln x +b . 令g (x )=f ′(x )=-ax +1+ln x +b (x >0), ∴g ′(x )=-a +1x.当a ≤0时, g ′(x )=-a +1x>0,则g (x )即f ′(x )在(0,+∞)上是增函数;当a >0时,若x ∈(0,1a ),则g ′(x )>0,若x ∈(1a,+∞),则g ′(x )<0,∴g (x )即f ′(x )在(0,1a)上是增函数,在⎝ ⎛⎭⎪⎫1a ,+∞上是减函数.综上所述,当a ≤0时,函数f ′(x )的单调递增区间为(0,+∞),无单调递减区间;当a >0时,函数f ′(x )的单调递增区间为⎝⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞.(2)证明 由(1)知当a ≤0时, f ′(x )在(0,+∞)上是增函数,不可能有两个零点,故a >0. 由f ′(x )有两个不同的零点x 1,x 2,得⎩⎪⎨⎪⎧f ′(x 1)=ln x 1-ax 1+b +1=0,f ′(x 2)=ln x 2-ax 2+b +1=0, 两式相减得ln x 1-ln x 2+ax 2-ax 1=0,即a =ln x 1-ln x 2x 1-x 2=lnx 1x 2x 1-x 2.∵a >0,x 1>0,x 2>0,∴欲证a 2x 1x 2<1,只需证⎝ ⎛⎭⎪⎪⎫ln x 1x 2x 1-x 22x 1x 2<1, 即证⎝ ⎛⎭⎪⎫ln x 1x 22<(x 1-x 2)x 1x 22=x 1x 2-2+x 2x 1. 不妨设0<x 1<x 2,令x 1x 2=t ∈(0,1),则只需证(ln t )2<t -2+1t. 设φ(t )=(ln t )2-t -1t+2, 则φ′(t )=2t ln t -1+1t 2=2ln t -t +1t t. 设h (t )=2ln t -t +1t ,则h ′(t )=-(t -1)2t 2, 当t ∈(0,1)时, h ′(t )<0,∴h (t )在(0,1)上单调递减,∴h (t )>h (1)=0,∴当t ∈(0,1)时, φ′(t )>0,φ(t )在(0,1)上单调递增, ∴当t ∈(0,1)时, φ(t )<φ(1)=0,即(ln t )2<t +1t-2在t ∈(0,1)上恒成立, 故原不等式得证.6.(2020·浙江新高考仿真卷二)设a 为实数,函数f (x )=x 2e 1-x -a (x -1).(1)当a =1时,求f (x )在⎝ ⎛⎭⎪⎫34,2上的最大值; (2)设函数g (x )=f (x )+a (x -1-e 1-x ),当g (x )有两个极值点x 1,x 2(x 1<x 2)时,总有x 2g (x 1)≤λf ′(x 1),求实数λ的值(f ′(x )为f (x )的导函数).解 (1)当a =1时,f (x )=x 2e1-x -(x -1), 则f ′(x )=(2x -x 2)e1-x -1=2x -x 2-e x -1e x -1. 令h (x )=2x -x 2-e x -1,则h ′(x )=2-2x -e x -1,显然h ′(x )在⎝ ⎛⎭⎪⎫34,2上是减函数. 又∵h ′⎝ ⎛⎭⎪⎫34=12-14e<0, ∴在⎝ ⎛⎭⎪⎫34,2上,总有h ′(x )<0.∴h (x )在⎝ ⎛⎭⎪⎫34,2上是减函数. 又∵h (1)=0,∴当x ∈⎝ ⎛⎭⎪⎫34,1时,h (x )>0, ∴f ′(x )>0,这时f (x )单调递增;当x ∈(1,2)时,h (x )<0,∴f ′(x )<0,这时f (x )单调递减.∴f (x )在⎝ ⎛⎭⎪⎫34,2上的极大值也即最大值是f (1)=1. (2)由题意知g (x )=(x 2-a )e1-x , 则g ′(x )=(2x -x 2+a )e1-x =(-x 2+2x +a )e 1-x . 根据题意,方程-x 2+2x +a =0有两个不同的实根x 1,x 2(x 1<x 2).∴Δ=4+4a >0,即a >-1,且x 1+x 2=2, ∵x 1<x 2,∴x 1<1,且x 2=2-x 1.由x 2g (x 1)≤λf ′(x 1),其中f ′(x )=(2x -x 2)e 1-x -a , 得(2-x 1)(x 21-a )e1-x 1≤λ[(2x 1-x 21)e 1-x 1-a ]. ∵-x 21+2x 1+a =0,∴上式化为(2-x 1)(2x 1)e1-x 1≤λ[(2x 1-x 21)e 1-x 1+(2x 1-x 21)]. 又∵2-x 1>0,∴不等式可化为x 1[2e 1-x1-λ(e1-x 1+1)]≤0对任意的x 1∈(-∞,1)恒成立. ①当x 1=0时,不等式x 1[2e1-x1-λ(e 1-x 1+1)]≤0恒成立,λ∈R ; ②当x 1∈(0,1)时,2e1-x 1-λ(e 1-x 1+1)≤0恒成立,即λ≥2e 1-x 1e 1-x 1+1.令函数k (x )=2e 1-x e 1-x +1=2-2e 1-x +1, 显然k (x )是R 内的减函数,∴x ∈(0,1)时,k (x )<k (0)=2e e +1,∴λ≥2e e +1; ③当x 1∈(-∞,0)时,2e 1-x1-λ(e 1-x 1+1)≥0恒成立,即λ≤2e 1-x 1e 1-x 1+1, 由②,当x ∈(-∞,0)时,k (x )>k (0)=2e e +1,即λ≤2e e +1. 综上所述,λ=2e e +1.。
第二节利用导数解决函数的单调性问题[最新考纲] 1.了解函数的单调性和导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不会超过三次)函数的单调性与导数的关系条件结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在(a,b)内单调递增f′(x)<0f(x)在(a,b)内单调递减f′(x)=0f(x)在(a,b)内是常数函数[常用结论]1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.一、思考辨析(正确的打“√”,错误的打“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0. ()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性. ()(3)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函数. ()[答案](1)×(2)√(3)√二、教材改编1.如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是()A.在区间(-3,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.在区间(3,5)上f (x )是增函数C [由图象可知,当x ∈(4,5)时,f ′(x )>0,故f (x )在(4,5)上是增函数.] 2.函数f (x )=cos x -x 在(0,π)上的单调性是( ) A.先增后减 B.先减后增 C.增函数D.减函数D [因为f ′(x )=-sin x -1<0在(0,π)上恒成立, 所以f (x )在(0,π)上是减函数,故选D.] 3.函数f (x )=x -ln x 的单调递减区间为 .(0,1] [函数f (x )的定义域为{x |x >0},由f ′(x )=1-1x≤0,得0<x ≤1,所以函数f (x )的单调递减区间为(0,1].]4.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则实数a 的最大值是 . 3 [f ′(x )=3x 2-a ≥0,即a ≤3x 2,又因为x ∈[1,+∞ ),所以a ≤3,即a 的最大值是3.]考点1 不含参数函数的单调性 求函数单调区间的步骤(1)确定函数f (x )的定义域. (2)求f ′(x ).(3)在定义域内解不等式f ′(x )>0,得单调递增区间. (4)在定义域内解不等式f ′(x )<0,得单调递减区间.1.函数f (x )=1+x -sin x 在(0,2π)上是( )A.单调递增B.单调递减C.在(0,π)上增,在(π,2π)上减D.在(0,π)上减,在(π,2π)上增A [f ′(x )=1-cos x >0在(0,2π)上恒成立,所以在(0,2π)上单调递增.] 2.函数y =12x 2-ln x 的单调递减区间为( )A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)B [∵y =12x 2-ln x ,∴x ∈(0,+∞),y ′=x -1x =(x -1)(x +1)x.由y ′≤0可解得0<x ≤1,∴y =12x 2-ln x 的单调递减区间为(0,1],故选B.]3.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是 .⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2 [f ′(x )=sin x +x cos x -sin x =x cos x , 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2.]求函数的单调区间时,一定要先确定函数的定义域,否则极易出错.如T 2. 考点2 含参数函数的单调性研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. 已知函数f (x )=12x 2-2a ln x +(a -2)x ,当a <0时,讨论函数f (x )的单调性.[解] 函数的定义域为(0,+∞),f ′(x )=x -2a x +a -2=(x -2)(x +a )x.①当-a =2,即a =-2时,f ′(x )=(x -2)2x≥0,f (x )在(0,+∞)上单调递增.②当0<-a <2,即-2<a <0时,∵0<x <-a 或x >2时,f ′(x )>0;-a <x <2时,f ′(x )<0,∴f (x )在(0,-a ),(2,+∞)上单调递增,在(-a,2)上单调递减. ③当-a >2,即a <-2时,∵0<x <2或x >-a 时,f ′(x )>0;2<x <-a 时,f ′(x )<0, ∴f (x )在(0,2),(-a ,+∞)上单调递增,在(2,-a )上单调递减.综上所述,当a =-2时,f (x )在(0,+∞)上单调递增;当-2<a <0时,f (x )在(0,-a ),(2,+∞)上单调递增,在(-a,2)上单调递减;当a <-2时,f (x )在(0,2),(-a ,+∞)上单调递增,在(2,-a )上单调递减.含参数的问题,应就参数范围讨论导数大于(或小于)零的不等式的解,在划分函数的单调区间时,要在函数定义域内确定导数为零的点和函数的间断点.已知函数f (x )=ln (e x +1)-ax (a >0),讨论函数y =f (x )的单调区间.[解] f ′(x )=e xe x +1-a =1-1e x +1-a .①当a ≥1时,f ′(x )<0恒成立, ∴当a ∈[1,+∞)时, 函数y =f (x )在R 上单调递减. ②当0<a <1时,由f ′(x )>0,得(1-a )(e x+1)>1, 即e x>-1+11-a ,解得x >ln a 1-a ,由f ′(x )<0,得(1-a )(e x +1)<1, 即e x<-1+11-a ,解得x <ln a 1-a .∴当a ∈(0,1)时,函数y =f (x )在⎝ ⎛⎭⎪⎫ln a1-a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫-∞,ln a 1-a 上单调递减. 综上,当a ∈[1,+∞)时,f (x )在R 上单调递减;当a ∈(0,1)时,f (x )在⎝ ⎛⎭⎪⎫ln a1-a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫-∞,ln a 1-a 上单调递减.考点3 已知函数的单调性求参数 根据函数单调性求参数的一般方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. [解] (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x-ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x-12-1,所以G (x )min =-1.所以a >-1且a ≠0,即a 的取值范围是(-1,0)∪(0,+∞). (2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )max ,而G (x )=⎝ ⎛⎭⎪⎫1x-12-1,因为x ∈[1,4],所以1x ∈,所以G (x )max =-716(此时x =4),所以a ≥-716且a ≠0,即a 的取值范围是∪(0,+∞).[母题探究]1.(变问法)若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围. [解] 由h (x )在[1,4]上单调递增得,当x ∈[1,4]时,h ′(x )≥0恒成立, 所以当x ∈[1,4]时,a ≤1x 2-2x恒成立,又当x ∈[1,4]时,⎝⎛⎭⎪⎫1x 2-2xmin =-1(此时x =1), 所以a ≤-1且a ≠0,即a 的取值范围是(-∞,-1].2.(变问法)若函数h (x )=f (x )-g (x )在[1,4]上存在单调递减区间,求a 的取值范围.[解] h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,又当x ∈[1,4]时,⎝ ⎛⎭⎪⎫1x2-2x min =-1,所以a >-1,且a ≠0.即a 的取值范围是(-1,0)∪(0,+∞).3.(变条件)若函数h (x )=f (x )-g (x )在[1,4]上不单调,求a 的取值范围. [解] 因为h (x )在[1,4]上不单调, 所以h ′(x )=0在(1,4)上有解, 即a =1x 2-2x有解,令m (x )=1x 2-2x,x ∈(1,4),则-1<m (x )<-716,所以实数a 的取值范围为⎝⎛⎭⎪⎫-1,-716. (1)f (x )在D 上单调递增(减),只要满足f ′(x )≥0(≤0)在D 上恒成立即可.如果能够分离参数,则可分离参数后转化为参数值与函数最值之间的关系.(2)二次函数在区间D 上大于零恒成立,讨论的标准是二次函数的图象的对称轴与区间D 的相对位置,一般分对称轴在区间左侧、内部、右侧进行讨论.已知函数f (x )=3xa -2x 2+ln x 在区间[1,2]上为单调函数,求a 的取值范围.[解] f ′(x )=3a -4x +1x,若函数f (x )在区间[1,2]上为单调函数,即在[1,2]上,f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0,即3a -4x +1x ≥0或3a -4x +1x≤0在[1,2]上恒成立,即3a≥4x -1x 或3a ≤4x -1x.令h (x )=4x -1x,因为函数h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a≤3,解得a <0或0<a ≤25或a ≥1.考点4 利用导数比较大小或解不等式用导数比较大小或解不等式,常常要构造新函数,把比较大小或求解不等式的问题转化为利用导数研究函数单调性的问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有:(1)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意x >0都有2f (x )+xf ′(x )>0成立,则( )A.4f (-2)<9f (3)B.4f (-2)>9f (3)C.2f (3)>3f (-2)D.3f (-3)<2f (-2)(2)设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是 .(1)A (2)(-∞,-2)∪(0,2) [(1)根据题意,令g (x )=x 2f (x ),其导数g ′(x )=2xf (x )+x 2f ′(x ),又对任意x >0都有2f (x )+xf ′(x )>0成立,则当x>0时,有g ′(x )=x (2f (x )+xf ′(x ))>0恒成立,即函数g (x )在(0,+∞)上为增函数,又由函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),则有g (-x )=(-x )2f (-x )=x 2f (x )=g (x ),即函数g (x )也为偶函数,则有g (-2)=g (2),且g (2)<g (3),则有g (-2)<g (3),即有4f (-2)<9f (3).故选A.(2)令φ(x )=f (x )x,∵当x >0时,∴φ(x )=f (x )x在(0,+∞)上为减函数,又φ(2)=0, ∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0, 此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数. 故x 2f (x )>0的解集为(-∞,-2)∪(0,2).]如本例(1)已知条件“2f (x )+xf ′(x )>0”,需构造函数g (x )=x 2f(x ),求导后得x >0时,g ′(x )>0,即函数g (x )在(0,+∞)上为增函数,从而问题得以解决.而本例(2)则需构造函数φ(x )=f (x )x 解决.2.已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导函数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为 .(-∞,-1)∪(1,+∞) [由题意构造函数F (x )=f (x )-12x ,则F ′(x )=f ′(x )-12.因为f ′(x )<12,所以F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.因为f (x 2)<x 22+12,f (1)=1,所以f (x 2)-x 22<f (1)-12,所以F (x 2)<F (1),又函数F (x )在R 上单调递减,所以x 2>1,即x ∈(-∞,-1)∪(1,+∞).]。
第1节 导数的概念与导数的计算考试要求 1.了解导数概念的实际背景;2。
通过函数图象直观理解导数的几何意义;3。
能根据导数的定义求函数y =c (c 为常数),y =x ,y =错误!,y =x 2,y =x 3,y =错误!的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.知 识 梳 理1。
函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→错误!=0lim x ∆→ 错误!为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ∆→ 错误!=0lim x ∆→ 错误!。
(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率。
相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2。
函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′。
3。
基本初等函数的导数公式 基本初等函数 导函数f (x )=c (c 为常数) f ′(x )=04.导数的运算法则若f′(x),g′(x)存在,则有:(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)错误!′=错误!(g(x)≠0)。
5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y对u的导数与u对x的导数的乘积。
《导数的计算》考查内容:主要涉及导数的运算 注意:复合函数求导一般为理科内容一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数()ln 2cos f x x =+的导数为( ) A .1sin 2x - B .sin x - C .sin xD .1sin 2x + 2.函数()sin f x x 的导数为( )A .()'sin cos f x x x =+B .()'sin cos f x x x =C .()'cos f x x =D .()'cos f x x =3.函数ln x y e x =的导数是( ) A .1ln x x e x ⎛⎫+⎪⎝⎭B .()ln xx x e +C .1xe xD .1ln x x+4.已知函数()sin f x a x b =+的导函数为()f x ',若13f π⎛⎫= ⎪⎭'⎝,则a =( ) A .4B .2C .1D .125.下列求导运算正确的是( )A .2111x x x '⎛⎫+=+ ⎪⎝⎭ B .21(log )ln 2x x '=C .3(3)3log e xx'=D .2(cos )2sin x x x x '=-6.下列对函数求导运算正确的是( )A .2sin cos sin x x x x x x '+⎛⎫= ⎪⎝⎭B .11ln x x '⎛⎫=- ⎪⎝⎭C .cos sin 33ππ'⎛⎫=- ⎪⎝⎭ D .()sin cos x x '=-7.已知()()231f x x xf '=+,则()1f '=( )A .1B .2C .-1D .-28.已知函数()2()ln f x xf e x '=+,则()f e =( ) A .e -B .eC .1-D .19.已知函数33()1xf x x e =++,其导函数为()f x ',则()()()()2020202020192019f f f f ''+-+-- 的值为( )A .1B .2C .3D .410.已知()0112nn n x a a x a x +=++⋅⋅⋅+,其中01243n a a a ++⋅⋅⋅+=,则123452345a a a a a ++++=( )A .405B .810C .324D .64811.函数()y f x =在R 上可导,且()()2'213f x x f x =-⋅-,则()()11f f '+=( ) A .0B .1C .-1D .不确定12.下列式子不.正确的是 ( ) A .()23cos 6sin x x x x '+=- B .()1ln 22ln 2xxx x'-=-C .()2sin 22cos 2x x '= D .2sin cos sin x x x x x x '-⎛⎫= ⎪⎝⎭二.填空题 13.函数sin xy x=的导数为_____________________; 14.()(2019ln )f x x x =+,若0()2020f x '=,则0x =_____.15.已知函数()()()()123f x x x x x =---,则()0f '=________. 16.设函数()f x 满足()()2311f x x f x '=++,则()3f 的值为______.三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.求下列函数的导数. (1)2sin y x x =;(2)n 1l y x x =+;(3)cos x xy e=;18.求下列函数的导数(1)3235y x x =+-;(2)sin y x x =+(3)sin x y x=;(4)21sin x y x -=19.求下列函数的导数:(1)sin xy e x = ;(2)y =2311x x x x ⎛⎫++ ⎪⎝⎭;(3)sin cos 22x y x x =-;20.求下列函数的导数(1)2sin 3y x x x =++; (2)2(ln sin )y x x x =+;(3) 221xy x =+ ; (4)41(13)y x =-.21.求下列函数的导数. (1)()ln x f x x =(2)()()239f x x x x ⎛⎫=+- ⎪⎝⎭ (3)()()2ln 51xf x x =+-22.求出下列函数的导数.(1)tan xy e x =(2)()3ln 45y x +=(3)2311y x x x x ⎛⎫=++ ⎪⎝⎭(4)y =sin nx x(5)()5221x y e x ++﹣=《导数的计算》解析1.【解析】因为常数的导数为0,cos x 的导数为sin x -, 所以()'sin f x x =-.故选:B.2.【解析】由()sin f x x =得,()'''1sin (sin )sin cos cos 2f x x x x x x =⋅+=+=, 故选:C3.【解析】因为函数ln xy ex =,所以11ln ln x xx y e x ee x x x ⎛⎫'=+=+ ⎪⎝⎭.故选:A 4.【解析】由题意知:()cos f x a x '=.因为13f π⎛⎫= ⎪⎭'⎝,所以cos 13a π=,解得2a =.故选:B.5.【解析】因为2111x x x '⎛⎫+=- ⎪⎝⎭,故A 错;因为21(log )ln 2x x '=,故B 正确;因为(3)3ln3xx '=,故C 错;因为22(cos )2cos sin x x x x x x '=-,故D 错.6.【解析】对于A 选项,2sin cos sin x x x x x x '-⎛⎫= ⎪⎝⎭,故A 选项错误.对于B 选项,1ln ln x x =-,所以()11ln ln x x x '⎛⎫'=-=- ⎪⎝⎭,故B 选项正确. 对于C 选项,cos 03π'⎛⎫= ⎪⎝⎭,故C 选项错误.对于D 选项,()sin cos x x '=,故D 选项错误.故选:B7.【解析】函数()()231f x x xf '=+,则()()231f x x f ''=+,令1x =代入上式可得()()1231f f ''=+,解得()11f '=-.故选:C8.【解析】由题得111()2(),()2(),()f x f e f e f e f e x e e '''''=+∴=+∴=-, 所以1()2()ln 2()11f e ef e e e e=+=⨯+'-=-.故选:C.9.【解析】因为33()1x f x x e =++,()333()131x xx f x x e x ee --=+-=-++,所以()()3f x f x -+=.又因为223()3(1)xxe f x x e -'=++, ()222233()33(1)()(1)x x x x e e f x x f x x e e ----'-=+-=+'=++ 所以()f x '为偶函数. 所以(2020)(2020)(2019)(2019)3f f f f ''+-+--=. 故选:C10.【解析】令1x =可得()0112nn a a a +=++⋅⋅⋅+, 由题意可得()12243n+=,解得5n =, 所以()5501512x a a x a x +=++⋅⋅⋅+,两边同时求导得()44125101225x a a x a x ⋅+=++⋅⋅⋅+, 令1x =可得()4125101225a a a ⋅+=++⋅⋅⋅+, 所以412525103810a a a ++⋅⋅⋅+=⨯=.故选:B.11.【解析】()()2'213f x x f x =-⋅-,得()()'41f x x f '=-,()()()'21411=2,()223f f f f x x x ''∴=-=--,,(1)3,(1)(1)1f f f '=-∴+=-.故选:C12.【解析】对于选项C ,(2sin 2)2cos 2(2)4cos 2x x x x ''=⋅=,C 错误 故选C13.【解析】22sin cos sin cos sin x x x x x x xy y x x x'⨯--=∴== 14.【解析】由题意,函数()(2019ln )f x x x =+,可得()2020ln f x x '=+, 因为0()2020f x '=,可得02020ln 2020x +=,即0ln 0x =,解得01x =.15.【解析】令()()()()123x x g x x --=-,所以()()f x xg x =,所以()()()'g x g f x x x ='+,所以()()()()()()00102030006g g f '+⋅='---==-.故答案为:6-.16.【解析】由()()2311f x x f x '=++,得''()23(1)f x x f =+,令1x =,则''(1)23(1)f f =+,解得'(1)1f =-,所以()231=-+f x x x ,令3x =,则(3)9911f =-+=,解得(3)1f =,故答案为:117.【解析】(1)y′=(x 2)′sin x +x 2(sin x)′=2xsin x +x 2cos x.(2)21111ln (ln )''''⎛⎫⎛⎫=+=+=- ⎪ ⎪⎝⎭⎝⎭y x x x x x x(3)2cos (cos )cos ()sin cos e ()x x x x x x x e x e x x y e e ''''-+⎛⎫=⋅==- ⎪⎝⎭18.【解析】(1)236y xx '=+;(2)sin cos y x x x '=+;(3)2cos sin x x xy x -'=;(4)()()222sin 1cos sin x x x x y x---'=.19.【解析】(1)y ′=(e x )′sinx +e x (sinx )′=e x sinx +e x cosx ..(2)因为y =x 3+21x+1,所以y ′=3x 2-32x . (3)因为y =x -12sinx ,所以y ′=1-12cosx .20.【解析】(1)因为2sin 3y x xx =++,所以cos 321cos 61y x x x x '=+⨯+=++;(2)因为2(ln sin )y x x x =+,所以()()()22ln sin ln sin y x x x x x x '''=+++,化简可得,()212ln sin cos y x x x x x x ⎛⎫'=+++ ⎪⎝⎭22ln 2sin cos x x x x x x x =+++;(3)因为221xy x =+,由基本初等函数的导数公式和运算法则可得, ()()()()222221211x x x x y x''+-+'=+()()22221221x x xx+-⋅=+()()222211x x-=+;(4)因为41(13)y x =-,所以()()()()4513134133y x x x --''⎡⎤'=--=--⨯-⎣⎦化简可得,()51213y x -'=-.21.【解析】(1)()'''22(ln )ln ()1ln x x x x xf x x x ⋅-⋅-==; (2)()()''239f x x x x ⎛⎫=+-+ ⎪⎝⎭()'239x x x ⎛⎫+- ⎪⎝⎭2222233272()(9)(1)2639x x x x x x x x =-+++=-++++=222736x x++;(3)()()''12ln 25151xf x x x =+⨯-=-52ln 251x x +-. 22.【解析】(1)由tan xy ex =,则()''2'tan tan t cos ()an xx xxe y e x e x e x x+==+, 即'2tan cos x x ey e x x=+(2)由3ln 45y x +=(),则'1245y x =+(3)由2323111y x x x x x x ⎛⎫=++=++ ⎪⎝⎭﹣,则'2332x y x =-,(4)由sin n x y x =,则'1cos sin n x x n x y x +-=,(5)由()5221x y e x +=+﹣,则()4'29221()x y x x e +=+﹣﹣.。
2021高考数学一轮复习导数及其应用学案理知识点一、导数的差不多运算1.差不多初等函数的导数公式2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3、复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 小题速通1.下列求导运算正确的是( )A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3xlog 3eD .(x 2cos x )′=-2sin x2.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)3.函数f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.1034.(2021·天津高考)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________.5.函数y =ln 2x +1x的导数为________.易错点1.利用公式求导时,一定要注意公式的适用范畴及符号,如(x n)′=nxn -1中n ≠0且n ∈Q *,(cos x )′=-sin x .2.注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.1、已知函数f (x )=sin x -cos x ,若f ′(x )=12f (x ),则tan x 的值为( )A .1B .-3C .-1D .2 2、若函数f (x )=2x+ln x 且f ′(a )=0,则2aln 2a=( )A .-1B .1C .-ln 2D .ln 2知识点二、导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度确实是位移函数s (t )对时刻t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0). 小题速通1.(2020·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4 2.设函数f (x )=x ln x ,则点(1,0)处的切线方程是________. 3.已知曲线y =2x 2的一条切线的斜率为2,则切点的坐标为________.4.函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =3x -2,则f (1)+f ′(1)=________. 易错点1.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者. 2.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别. 1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.(2021·兰州一模)已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则实数b 的值为________.知识点三、利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系(1)若f ′(x )>0,则f (x )在那个区间上是增加的. (2)若f ′(x )<0,则f (x )在那个区间上是减少的. (3)若f ′(x )=0,则f (x )在那个区间内是常数. 2.利用导数判定函数单调性的一样步骤(1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)依照结果确定f (x )的单调性及单调区间.小题速通1.函数f (x )=2x 3-9x 2+12x +1的单调减区间是( )A .(1,2)B .(2,+∞)C .(-∞,1)D .(-∞,1)和(2,+∞) 2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范畴为( )A .(-∞,-26] B.⎝ ⎛⎦⎥⎤-∞,62 C .[-26,+∞) D .[-5,+∞) 易错点若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立. 若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范畴是________.知识点四、利用导数研究函数的极值与最值1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 小题速通1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .42.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( )A .2B .3C .4D .53.(2021·济宁一模)函数f (x )=12x 2-ln x 的最小值为( )A.12B .1C .0D .不存在4.若函数f (x )=12x 2-ax +ln x 有极值,则a 的取值范畴为________.5.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范畴是________. 易错点1.f ′(x 0)=0是x 0为f (x )的极值点的既不充分也不必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.2.求函数最值时,易误认为极值点确实是最值点,不通过比较就下结论. 1.(2021·岳阳一模)下列函数中,既是奇函数又存在极值的是( )A .y =x 3B .y =ln(-x )C .y =x e -xD .y =x +2x2.设函数f (x )=x 3-3x +1,x ∈[-2,2]的最大值为M ,最小值为m ,则M +m =________.知识点五、定积分1.定积分的概念在∫ba f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 2.定积分的性质(1) ⎠⎛a b kf (x )d x =k ⎠⎛a b f (x )d x (k 为常数); (2) ⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;(3) ⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分差不多定理一样地,假如f (x )是区间[a ,b ]上的连续函数,同时F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),那个结论叫做微积分差不多定理,又叫做牛顿-莱布尼茨公式.其中F (x )叫做f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x ) ⎪⎪⎪ba,即⎠⎛ab f (x )d x =F (x ) ⎪⎪⎪ba =F (b )-F (a ).小题速通1.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-2 2.⎠⎛01(e x+x)d x =________.3.(2020·天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 易错点定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果能够为负. 由曲线y =x 2和直线x =0,x =1,y =14所围成的图形(如图所示)的面积为( )A .23 B.13 C .12 D.14过关检测练习一、选择题1.已知函数f (x )=log a x (a>0且a ≠1),若f ′(1)=-1,则a =( )A .e B.1e C.1e 2 D.122.直线y =kx +1与曲线y =x 2+ax +b 相切于点A(1,3),则2a +b 的值为( )A .-1B .1C .2D .-23.函数y =2x 3-3x 2的极值情形为( )A .在x =0处取得极大值0,但无极小值B .在x =1处取得极小值-1,但无极大值C .在x =0处取得极大值0,在x =1处取得极小值-1D .以上都不对4.若f(x)=-12x 2+m ln x 在(1,+∞)是减函数,则m 的取值范畴是( )A .[1,+∞)B .(1,+∞)C .(-∞,1]D .(-∞,1)5.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)6.已知函数f (x )=x (x -m )2在x =1处取得极小值,则实数m =( )A .0B .1C .2D .37.由曲线y =x 2-1,直线x =0,x =2和x 轴所围成的封闭图形的面积是( )A .⎠⎛02(x 2-1)d x B.⎠⎛02|x 2-1|d x C .⎠⎛02(x 2-1)d x D .⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x8.若函数f (x )=⎩⎪⎨⎪⎧1-2x,x ≤0,x 3-3x +a ,x >0的值域为[0,+∞),则实数a 的取值范畴是( )A .[2,3]B .(2,3]C .(-∞,2]D .(-∞,2) 二、填空题9.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范畴是________. 10.已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.11.已知函数f (x )的图象在点M (1,f (1))处的切线方程是y =12x +3,则f (1)+f ′(1)=________.12.已知函数g (x )满足g (x )=g ′(1)e x -1-g (0)x +12x 2,且存在实数x 0,使得不等式2m -1≥g (x 0)成立,则实数m的取值范畴为________. 三、解答题13.已知函数f (x )=x +a x+b (x ≠0),其中a ,b ∈R.(1)若曲线y =f (x )在点P (2,f (2))处的切线方程为y =3x +1,求函数f (x )的解析式; (2)讨论函数f (x )的单调性;(3)若关于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f (x )≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立,求实数b 的取值范畴.14.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f(x)的单调区间与极值.高考研究课:一 导数运确实是基点、几何意义是重点、定积分应用是潜考点考点 考查频度 考查角度导数的几何意义5年7考 求切线、已知切线求参数、求切点坐标定积分未考查题型一、导数的运算[典例] (1)(2020·惠州模拟)已知函数f (x )=1x cos x ,则f (π)+f ′⎝ ⎛⎭⎪⎫π2=( ) A .-3π2 B .-1π2 C .-3π D .-1π(2)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 018(x )等于( )A .-sin x -cos xB .sin x -cos xC .sin x +cos xD .cos x -sin x (3)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( ) A .-e B .-1 C .1 D .e 方法技巧1、可导函数的求导步骤(1)分析函数y =f (x )的结构特点,进行化简; (2)选择恰当的求导法则与导数公式求导; (3)化简整理答案. 2、求导运算应遵循的原则求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,如此能够减少运算量,提高运算速度,减少差错. 即时演练1.(2020·江西九校联考)已知y =(x +1)(x +2)(x +3),则y ′=( )A .3x 2-12x +6 B .x 2+12x -11 C .x 2+12x +6 D .3x 2+12x +11 2.已知函数f (x )=x ln x ,若f ′(x 0)=2,则x 0=________.题型二、导数的几何意义导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常显现在解答题的第1问中,难度较低,属中、低档题. 常见的命题角度有: 1求切线方程; 2确定切点坐标;3已知切线求参数值或范畴; 4切线的综合应用.角度一:求切线方程1.已知函数f (x )=ln(1+x )-x +x 2,则曲线y =f (x )在点(1,f (1))处的切线方程是________.角度二:确定切点坐标2.已知函数f (x )=exx(x >0),直线l :x -ty -2=0.若直线l 与曲线y =f (x )相切,则切点横坐标的值为________.角度三:已知切线求参数值或范畴3.(2021·武汉一模)已知a 为常数,若曲线y =ax 2+3x -ln x 上存在与直线x +y -1=0垂直的切线,则实数a 的取值范畴是________.4.若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范畴是________.角度四:切线的综合应用5.已知函数f (x )=m ln(x +1),g (x )=xx +1(x >-1).(1)讨论函数F (x )=f (x )-g (x )在(-1,+∞)上的单调性;(2)若y =f (x )与y =g (x )的图象有且仅有一条公切线,试求实数m 的值.方法技巧利用导数解决切线问题的方法(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.题型三、定积分及应用[典例] (1)(2020·东营模拟)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈1,2],则⎠⎛02f(x)d x 等于( )A.34B.45C.56D .不存在 (2)设f (x )=)⎩⎨⎧1-x 2,x ∈[-1,1,x 2-1,x ∈[1,2],则⎠⎛-12f (x )dx 的值为( )A.π2+43 B.π2+3 C.π4+43 D.π4+3 (3)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.方法技巧求定积分的2种方法及注意事项(1)定理法运用微积分差不多定理求定积分时要注意以下几点: ①对被积函数要先化简,再求积分;②求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和; ③关于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分; ④注意用“F′(x )=f (x )”检验积分的对错. (2)面积法依照定积分的几何意义可利用面积求定积分. 即时演练1.(2020·西安调研)定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -12.直线y =2x +3与抛物线y =x 2所围成封闭图形的面积为________.3.如图,在长方形OABC 内任取一点P ,则点P 落在阴影部分的概率为________.高考真题演练1.(2020·全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .32.(2021·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.3.(2021·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________. 4.(2020·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 5.(2020·全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.高考达标检测一、选择题1.若a =⎠⎛02x d x ,则二项式⎝⎛⎭⎪⎫x -a +1x 6展开式中的常数项是( ) A .20 B .-20 C .-540 D .5402.(2020·衡水调研)曲线y =1-2x +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -23.(2020·济南一模)已知曲线f (x )=ln x 的切线通过原点,则此切线的斜率为( )A .eB .-eC .1eD .-1e4.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f(x)图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-25.(2020·南昌二中模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范畴为( )A .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫5π6,π B.⎣⎢⎡⎭⎪⎫2π3,π C .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π D.⎝ ⎛⎦⎥⎤π2,5π6 6.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为( ) A .x +4y -2=0 B .x -4y +2=0 C .4x +2y -1=0 D .4x -2y -1=0二、填空题7.若a 和b 是运算机在区间(0,2)上产生的随机数,那么函数f(x)=lg (ax 2+4x +4b)的值域为R 的概率为________. 8.已知函数f (x )=e ax+bx (a <0)在点(0,f(0))处的切线方程为y =5x +1,且f (1)+f ′(1)=12.则a ,b 的值分别为________.9.(2021·东营一模)函数f (x )=x ln x 在点P(x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P(x 0,f (x 0))的坐标为________.10.设过曲线f (x )=-e x-x(e 为自然对数的底数)上的任意一点的切线为l 1,总存在过曲线g (x )=mx -3sin x 上的一点处的切线l 2,使l 1⊥l 2,则m 的取值范畴是________. 三、解答题11.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范畴;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范畴.12.已知函数f (x )=12x 2-ax +(3-a )ln x ,a ∈R.(1)若曲线y =f (x )在点(1,f (1))处的切线与直线2x -y +1=0垂直,求a 的值; (2)设f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:f (x 1)+f (x 2)>-5.能力提高训练题1.(2020·广东七校联考)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( )A .0<x 0<12B.12<x 0<1 C.22<x 0< 2 D.2<x 0< 32.函数y =f (x )图象上不同两点M (x 1,y 1),N (x 2,y 2)处的切线的斜率分别是k M ,k N ,规定φ(M ,N )=|k M -k N ||MN |(|MN |为线段MN 的长度)叫做曲线y =f (x )在点M 与点N 之间的“弯曲度”.设曲线f (x )=x 3+2上不同两点M (x 1,y 1),N (x 2,y 2),且x 1x 2=1,则φ(M ,N )的取值范畴是________.高考研究课:二、函数单调性必考,导数工具离不了全国卷5年命题分析[典例] (2021·山东高考节选)已知f (x )=a (x -ln x )+2x -1x2,a ∈R ,讨论f (x )的单调性.方法技巧导数法判定函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的阻碍进行分类讨论. 即时演练1.(2021·芜湖一模)函数f (x )=e x-e x ,x ∈R 的单调递增区间是( )A.()0,+∞B.()-∞,0C.()-∞,1D.()1,+∞ 2.(2021·全国卷Ⅱ节选)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0. 题型二、利用导数研究函数单调性的应用函数的单调性是高考命题的重点,其应用是考查热点.,常见的命题角度有: 1y =f (x )与y =f ′(x )的图象辨识;2比较大小;3已知函数单调性求参数的取值范畴; 4构造函数解不等式.角度一:y =f (x )与y =f ′(x )的图象辨识1.已知函数f (x )=ax 3+bx 2+cx +d ,若函数f (x )的图象如图所示,则一定有( )A .b >0,c >0B .b <0,c >0C .b >0,c <0D .b <0,c <02.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )角度二:比较大小3.设定义在R 上的函数f (x )的导函数为f ′(x ),且满足f (2-x )=f (x ),f ′xx -1<0,若x 1+x 2>2,x 1<x 2,则( ) A .f (x 1)<f (x 2) B .f (x 1)=f (x 2) C .f (x 1)>f (x 2) D .f (x 1)与f (x 2)的大小不能确定角度三:已知函数单调性求参数的取值范畴4.(2020·宝鸡一检)已知函数f (x )=x 2+4x +a ln x ,若函数f (x )在(1,2)上是单调函数,则实数a 的取值范畴是( )A .(-6,+∞)B .(-∞,-16)C .(-∞,-16]∪[-6,+∞)D .(-∞,-16)∪(-6,+∞)5.(2020·成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范畴是________.方法技巧由函数的单调性求参数的范畴的方法(1)可导函数f (x )在D 上单调递增(或递减)求参数范畴问题,可转化为f ′(x )≥0(或f ′(x )≤0)对x ∈D 恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上确实是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,如此就把函数的单调性问题转化成不等式问题.(3)若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范畴.(4)若已知f (x )在D 上不单调,则f (x )在D 上有极值点,且极值点不是D 的端点.角度四:构造函数解不等式6.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0.则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)7.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 018)2f (x +2 018)-f (-1)<0的解集为________.高考真题演练1.(2021·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范畴是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 2.(2020·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范畴是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 3.(2021·全国卷Ⅰ)已知函数f (x )=e x(e x-a )-a 2x .(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范畴.高考达标检测一、选择题1.已知函数f (x )=ln x +x 2-3x (a ∈R),则函数f (x )的单调递增区间为( )A.⎝ ⎛⎭⎪⎫-∞,12 B .(1,+∞) C.⎝ ⎛⎭⎪⎫-∞,12和(1,+∞) D.⎝ ⎛⎭⎪⎫0,12和(1,+∞) 2.(2021·浙江高考)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )3.关于R 上可导的任意函数f (x ),若满足1-xf ′x≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)4.已知函数f (x )=x sin x ,x 1,x 2∈⎝ ⎛⎭⎪⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0 B .x 1+x 2>0 C .x 21-x 22>0 D .x 21-x 22<05.(2021·吉林长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定6.已知定义在R 上的函数y =f (x )满足条件f (x +4)=-f (x ),且函数y =f (x +2)是偶函数,当x ∈(0,2]时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈[-2,0)时,f (x )的最小值为3,则a 的值为( ) A .e 2B .eC .2D .1 二、填空题7.设函数f (x )=x (e x-1)-12x 2,则函数f (x )的单调增区间为________.8.已知函数f (x )=x ln x -ax 2-x .若函数f (x )在定义域上为减函数,则实数a 的取值范畴是________. 9.(2020·兰州诊断)若函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,则实数a 的取值范畴是________. 三、解答题10.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.11.(2020·武汉调研)已知函数f (x )=x ln x .(1)若函数g (x )=f (x )+ax 在区间[e 2,+∞)上为增函数,求a 的取值范畴; (2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.12.(2020·湖南十校联考)函数f (x )=13x 3+|x -a |(x ∈R ,a ∈R).(1)若函数f (x )在R 上为增函数,求a 的取值范畴;(2)若函数f (x )在R 上不单调时,记f (x )在[-1,1]上的最大值、最小值分别为M (a ),m (a ),求M (a )-m (a ).能力提高训练题1.已知函数f (x )=ln x +(e -a )x -b ,其中e 为自然对数的底数.若不等式f (x )≤0恒成立,则b a的最小值为________.2.已知函数f (x )=(a -1)ln x -a 2x 2+x (a ∈R),g (x )=-13x 3-x +(a -1)ln x .(1)若a ≤12,讨论f (x )的单调性;(2)若过点⎝ ⎛⎭⎪⎫0,-13可作函数y =g (x )-f (x )(x >0)图象的两条不同切线,求实数a 的取值范畴.高考研究课:三、极值、最值两考点,利用导数巧推演全国卷5年命题分析极值 5年6考 求极值、由极值求参数 最值 5年5考 求最值、证明最值的存在性题型一、运用导数解决函数的极值问题函数的极值是每年高考的必考内容,题型既有选择题、填空题,也有解答题,难度适中,为中高档题.常见的命题角度有:1知图判定函数极值;2已知函数求极值;3已知极值求参数值或范畴.角度一:知图判定函数极值1.(2020·赤峰模拟)设函数f (x )在定义域R 上可导,其导函数为f ′(x ),若函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)角度二:已知函数求极值2.已知函数f (x )=x -1+aex (a ∈R ,e 为自然对数的底数). (1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)求函数f (x )的极值.角度三:已知极值求参数值或范畴3.设函数f (x )=ln x -1ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范畴是( )A .(-1,0)B .(-1,+∞)C .(0,1)D .(1,+∞)4.已知函数f (x )=ax -x 2-ln x ,若函数f (x )存在极值,且所有极值之和小于5+ln 2,则实数a 的取值范畴是________.方法技巧利用导数研究函数极值的一样流程题型二、运用导数解决函数的最值问题[典例] (2020·日照模拟)设函数f (x )=(x -1)e x -kx 2(k ∈R). (1)当k =1时,求函数f (x )的单调区间;(2)当k ∈⎝ ⎛⎦⎥⎤12,1时,求函数f (x )在[0,k ]上的最大值M .方法技巧 求函数f (x )在[a ,b ]上的最值的步骤(1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.即时演练1.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范畴是( ) A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)2.(2020·南昌模拟)已知函数f (x )=(2x -4)e x +a (x +2)2(x >0,a ∈R ,e 是自然对数的底数).(1)若f (x )是(0,+∞)上的单调递增函数,求实数a 的取值范畴;(2)当a ∈⎝ ⎛⎭⎪⎫0,12时,证明:函数f (x )有最小值,并求函数f (x )的最小值的取值范畴.高考真题演练1.(2021·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)·ex -1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .12.(2020·全国卷Ⅱ)设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范畴是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)3.(2020·全国卷Ⅱ)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( )A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减D .若x 0是f (x )的极值点,则 f ′(x 0)=04.(2020·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范畴.5.(2020·全国卷Ⅱ)已知函数f (x )=x 2e -x .(1)求f (x )的极小值和极大值; (2)当曲线y =f (x )的切线l 的斜率为负数时,求l 在x 轴上截距的取值范畴.6.(2021·江苏高考)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R)有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范畴.7.(2021·山东高考)已知函数f(x)=x2+2cos x,g(x)=e x(cos x-sin x+2x-2),其中e=2.718 28…是自然对数的底数.(1)求曲线y=f(x)在点(π,f(π))处的切线方程;(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判定有无极值,有极值时求出极值.高考达标检测一、选择题1.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =0 2.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则a b 的值为( )A .-23B .-2C .-2或-23D .2或-233.(2020·浙江瑞安中学月考)已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.163题:①f (x )的解析式为:f (x )=x 3-4x ,x ∈[-2,2];②f (x )的极值点有且仅有一个;③f (x )的最大值与最小值之和等于零.其中正确的命题个数为( )A .0B .1C .2D .3 5.(2021·长沙二模)已知函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( ) A.3-1 B.34 C.43 D.3+16.已知直线l 1:y =x +a 分别与直线l 2:y =2(x +1)及曲线C :y =x +ln x 交于A ,B 两点,则A ,B 两点间距离的最小值为( ) A.355 B .3 C.655 D .3 2二、填空题7.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范畴是________.8.已知函数f (x )=e x x 2-k ⎝ ⎛⎭⎪⎫2x +ln x ,若x =2是函数f (x )的唯独一个极值点,则实数k 的取值范畴为________. 9.(2020·湘中名校联考)已知函数g (x )=a -x 21e≤x ≤e,e 为自然对数的底数与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范畴是________.三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧ -x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.11.设函数f (x )=12x 2-(a +1)x +a ln x ,a >0. (1)求函数f (x )的单调区间;(2)讨论函数f (x )的零点个数.12.已知函数f(x)=ln x+x2-ax(a∈R).(1)当a=3时,求函数f(x)的单调区间;(2)若函数f(x)有两个极值点x1,x2,且x1∈(0,1],证明f(x1)-f(x2)≥-34+ln 2.能力提高训练题1.若函数f(x)=x3+ax2+bx的图象与x轴相切于点(c,0),且f(x)有极大值4,则c=( ) A.-3 B.-1C.1 D.32.已知函数f (x )=12x 2+(1-m )x +ln x .(1)若函数f (x )存在单调递减区间,求实数m 的取值范畴;(2)设x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,若m ≥72,求f (x 1)-f (x 2)的最小值.高考研究课:四、综合问题是难点,3大题型全冲关全国卷5年命题分析[典例] 一辆火车前行每小时电力的消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h 时,每小时消耗的电价值40元,其他费用每小时需400元,火车的最高速度为100 km/h ,火车以何速度行驶才能使从甲城开往乙城的总费用最少? 方法技巧利用导数解决生活中的优化问题的4步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回来实际问题作答. 即时演练1.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家猎取最大年利润的年产量为( )A .13万件B .11万件C.9万件D.7万件2.据环保部门测定,某处的污染指数与邻近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k(k >0).现已知相距18 km的A,B两家化工厂(污染源)的污染强度分别为a,b,它们连线上任意一点C处的污染指数y等于两化工厂对该处的污染指数之和.设AC=x(km).(1)试将y表示为x的函数;(2)若a=1,且x=6时,y取得最小值,试求b的值.题型二、利用导数研究函数的零点或方程根[典例] 已知函数f(x)=(x+a)e x,其中e是自然对数的底数,a∈R.(1)求函数f(x)的单调区间;(2)当a<1时,试确定函数g(x)=f(x-a)-x2的零点个数,并说明理由.方法技巧利用导数研究零点或方程根的方法研究方程根的情形,能够通过导数研究函数的单调性、最大值、最小值、变化趋势等,依照题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,能够使问题的求解有一个清晰、直观的整体展现. 即时演练1.已知函数f (x )=e 2x-ax 2+bx -1,其中a ,b ∈R ,e 为自然对数的底数,若f (1)=0,f ′(x )是f (x )的导函数,函数f ′(x )在区间(0,1)内有两个零点,则a 的取值范畴是( )A .(e 2-3,e 2+1) B .(e 2-3,+∞) C .(-∞,2e 2+2)D .(2e 2-6,2e 2+2)2.(2021·西安一模)已知函数f (x )=x +1+ax-a ln x .若函数y =f (x )的图象在x =1处的切线与直线2x +y -1=0平行.(1)求a 的值;(2)若方程f (x )=b 的区间[1,e]上有两个不同的实数根,求实数b 的取值范畴.题型二、利用导数研究与不等式有关的问题导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题. 常见的命题角度有: 1证明不等式; 2不等式恒成立问题.角度一:证明不等式1.已知函数f (x )=ln x -ax 2+(2-a )x (a >0).(1)讨论函数f (x )的单调性;(2)证明:当0<x <1a时,f ⎝ ⎛⎭⎪⎫1a +x >f ⎝ ⎛⎭⎪⎫1a -x ;(3)设函数y =f (x )的图象与x 轴交于A ,B 两点,线段AB 的中点的横坐标为x 0,证明:f ′(x 0)<0.方法技巧利用导数证明不等式的方法能够从所证不等式的结构和特点动身,结合已有的知识利用转化与化归思想,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明,其一样步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.如:证明:f (x )>g (x )(x ∈D ),令F (x )=f (x )-g (x ),x ∈D ,只需证明F (x )min >0(x ∈D )即可,从而把证明不等式问题转化求F (x )min 问题.角度二:不等式恒成立问题2.(2021·四川高考)设函数f (x )=ax 2-a -ln x ,其中a ∈R.(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).方法技巧1.利用导数研究不等式恒成立问题的思路第一要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范畴;也可分离变量,构造函数,直截了当把问题转化为函数的最值问题. 2.不等式成立(恒成立)问题常见转化方法(1)f (x )≥a 恒成立⇒f (x )min ≥a ,f (x )≥a 成立⇒f (x )max ≥a . (2)f (x )≤b 恒成立⇔f (x )max ≤b ,f (x )≤b 成立⇔f (x )min ≤b . (3)f (x )>g (x )恒成立F x =f x -g xF (x )min >0.(4)①∀x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)max .②∀x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)min .③∃x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x )min .④∃x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)max .高考真题演练1.(2021·全国卷Ⅰ)已知函数f (x )=a e 2x+(a -2)e x-x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范畴.2.(2021·全国卷Ⅲ)已知函数f (x )=x -1-a ln x .(1)若f (x )≥0,求a 的值;(2)设m 为整数,且关于任意正整数n ,⎝ ⎛⎭⎪⎫1+12·⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.3.(2021·全国卷Ⅰ)已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范畴;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.4.(2020·全国卷Ⅱ)设函数f(x)=e mx+x2-mx.(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若关于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范畴.高考达标检测1.(2020·全国卷Ⅰ)设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范畴.2.已知函数f (x )=ln x -a x +a x2(a ∈R).(1)若a =1,求函数f (x )的极值;(2)若f (x )在[1,+∞)内为单调增函数,求实数a 的取值范畴; (3)关于n ∈N *,求证:11+12+22+12+33+12+…+n n +12<ln(n +1).3.已知函数f (x )=sin x -x cos x (x ≥0).(1)求函数f (x )的图象在⎝⎛⎭⎪⎫π2,1处的切线方程;(2)若对任意x ∈(0,+∞),不等式f (x )<ax 3恒成立,求实数a 的取值范畴; (3)设m =∫π20f(x)d x ,g(x)=6m 4-πx 2f(x),证明:⎣⎢⎡⎦⎥⎤1+g ⎝ ⎛⎭⎪⎫13⎣⎢⎡⎦⎥⎤1+g ⎝ ⎛⎭⎪⎫132·…·⎣⎢⎡⎦⎥⎤1+g ⎝ ⎛⎭⎪⎫13n <e .4.(2021·天津高考)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3-3x 2-6x +a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数.(1)求g (x )的单调区间;(2)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m -x 0)-f (m ),求证:h (m )h (x 0)<0;(3)求证:存在大于0的常数A ,使得关于任意的正整数p ,q ,且pq∈[1,x 0)∪(x 0,2],满足⎪⎪⎪⎪⎪⎪p q-x 0≥1Aq 4.。
考点测试6 函数的单调性高考概览本考点是高考的常考知识点,常与函数的奇偶性、周期性相结合综合考查.题型为选择题、填空题,分值5分,难度为低、中、高各种档次 考纲研读 1.理解函数的单调性、最大值、最小值及其几何意义 2.会运用基本初等函数的图象分析函数的单调性一、基础小题1.下列函数中,在区间(0,1)上是增函数的是( ) A .y =|x | B .y =3-x C .y =1xD .y =-x 2+4答案 A解析 函数y =3-x ,y =1x,y =-x 2+4在(0,1)上均为减函数,y =|x |在(0,1)上为增函数,故选A.2.函数y =x 2-6x +10在区间(2,4)上( ) A .递减 B .递增 C .先递减后递增 D .先递增后递减答案 C解析 由函数y =x 2-6x +10的图象开口向上,对称轴为直线x =3,知y =x 2-6x +10在(2,4)上先递减后递增,故选C.3.若函数f (x )=(2a -1)x +b 是R 上的减函数,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫12,+∞ D .⎝⎛⎭⎪⎫-∞,12 答案 D解析 当2a -1<0,即a <12时,该函数是R 上的减函数.故选D.4.已知函数y =f (x )在R 上单调递增,且f (m 2+1)>f (-m +1),则实数m 的取值范围是( )A .(-∞,-1)B .(0,+∞)C .(-1,0)D .(-∞,-1)∪(0,+∞)答案 D解析 由题意得m 2+1>-m +1,故m 2+m >0,解得m <-1或m >0.故选D. 5.函数f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上的最大值是( )A.32 B .-83C .-2D .2答案 A解析 因为f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上为减函数,所以当x =-2时,f (x )取得最大值,且为2-12=32.故选A.6.函数f (x )=⎩⎪⎨⎪⎧x +cx ≥0,x -1x <0是增函数,则实数c 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1)D .(-∞,-1]答案 A解析 ∵f (x )在R 上单调递增,∴c ≥-1,即实数c 的取值范围是[-1,+∞).故选A.7.设函数f (x )在R 上为增函数,则下列结论一定正确的是( ) A .y =1f x在R 上为减函数B .y =|f (x )|在R 上为增函数C .y =-1f x在R 上为增函数D .y =-f (x )在R 上为减函数 答案 D解析 A 错误,如y =x 3,y =1f x在R 上无单调性;B 错误,如y =x 3,y =|f (x )|在R 上无单调性; C 错误,如y =x 3,y =-1f x在R 上无单调性;故选D.8.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-113,-3 B .[-6,-4] C .[-3,-22] D .[-4,-3]答案 B解析 由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a2∈[2,3],即a ∈[-6,-4].9.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1]B .(-1,0)∪(0,1)C .(0,1)D .(0,1]答案 D解析 f (x )=-(x -a )2+a 2,当a ≤1时,f (x )在[1,2]上是减函数;g (x )=ax +1,当a >0时,g (x )在[1,2]上是减函数,则a 的取值范围是0<a ≤1.故选D.10.已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c答案 D解析 因为f (x )的图象关于直线x =1对称,所以f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),所以b >a >c .11.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.答案 (-∞,1]∪[4,+∞)解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.12.已知f (x )=ax +1x +2,若对任意x 1,x 2∈(-2,+∞),有(x 1-x 2)[f (x 1)-f (x 2)]>0,则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 由f (x )=ax +1x +2=a +1-2ax +2,且y =f (x )在(-2,+∞)上是增函数,得1-2a <0,即a >12.二、高考小题13.(2019·全国卷Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )答案 C解析 因为f (x )是定义域为R 的偶函数,所以f ⎝ ⎛⎭⎪⎫log 314=f (-log 34)=f (log 34).又因为log 34>1>>0,且函数f (x )在(0,+∞)单调递减,所以f (log 34)< .故选C.14.(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |答案 A解析 作出函数f (x )=|cos2x |的图象,如图.由图象可知f (x )=|cos2x |的周期为π2,在区间⎝⎛⎭⎪⎫π4,π2上单调递增.同理可得f (x )=|sin2x |的周期为π2,在区间⎝ ⎛⎭⎪⎫π4,π2上单调递减,f (x )=cos|x |的周期为2π.f (x )=sin|x |不是周期函数.故选A.15.(2017·全国卷Ⅱ)函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)答案 D解析 由x 2-2x -8>0可得x >4或x <-2,所以x ∈(-∞,-2)∪(4,+∞),令u =x2-2x -8,则其在x ∈(-∞,-2)上单调递减,在x ∈(4,+∞)上单调递增.又因为y =ln u 在u ∈(0,+∞)上单调递增,所以f (x )=ln (x 2-2x -8)在x ∈(4,+∞)上单调递增.故选D.16.(2017·北京高考)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 答案 A解析 ∵函数f (x )的定义域为R ,f (-x )=3-x-⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x -3x =-f (x ),∴函数f (x )是奇函数.∵函数y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,∴函数y =-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.又y =3x在R上是增函数,∴函数f (x )=3x-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.故选A.17.(2016·北京高考)下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln (x +1)D .y =2-x答案 D解析 A 中,y =11-x =1-x -1的图象是将y =-1x的图象向右平移1个单位得到的,故y =11-x在(-1,1)上为增函数,不符合题意;B 中,y =cos x 在(-1,0)上为增函数,在(0,1)上为减函数,不符合题意;C 中,y =ln (x +1)的图象是将y =ln x 的图象向左平移1个单位得到的,故y =ln (x +1)在(-1,1)上为增函数,不符合题意;D 中,y =2-x=⎝ ⎛⎭⎪⎫12x 在(-1,1)上为减函数,所以D 符合题意.18.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,32 解析 由题意知函数f (x )在(0,+∞)上单调递减.因为f (2|a -1|)>f (-2),且f (-2)=f (2),所以f (2|a -1|)>f (2),所以2|a -1|<,解得12<a <32.三、模拟小题19.(2019·武汉模拟)若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]答案 B解析 因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a ,-2x +2a +3,x <a ,因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,所以a >1,所以a 的取值范围是(1,+∞).故选B.20.(2019·郑州模拟)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3答案 C 解析 y =x -a -2+a -3x -a -2=1+a -3x -a -2=1+a -3x -a +2,由题意知⎩⎪⎨⎪⎧a -3<0,a +2≤-1,得a ≤-3.所以a 的取值范围是a ≤-3.21.(2019·重庆模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12答案 C解析 由已知得,当-2≤x ≤1时,f (x )=x -2;当1<x ≤2时,f (x )=x 3-2.因为f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,所以f (x )的最大值为f (2)=23-2=6.22.(2019·漳州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln x +1,x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案 D解析 因为当x =0时,两个表达式对应的函数值都为零,所以函数的图象是一条连续的曲线.因为当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln (x +1)也是增函数,所以函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.23.(2020·沈阳市高三摸底)如果函数y =f (x )在区间I 上是增函数,且函数y =f xx在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0,3]C .[0,1]D .[1,3]答案 D解析 因为函数f (x )=12x 2-x +32的对称轴为直线x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f x x =12x -1+32x ,令g (x )=12x -1+32x(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤ 3,即函数f x x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].24.(2019·广东名校联考)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.答案 [0,1)解析 由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其单调递减区间是[0,1).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2019·福建泉州高三阶段测试)已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1;②当x >0时,f (x )>-1.(1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解 (1)令x =y =0得f (0)=-1. 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f ((x 1-x 2)+x 2)=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又因为f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.2.(2019·安徽肥东高级中学调研)函数f (x )=2x -ax的定义域为(0,1]. (1)当a =-1时,求函数f (x )的值域;(2)若f (x )在定义域上是减函数,求a 的取值范围.解 (1)因为a =-1,所以函数f (x )=2x +1x ≥22⎝ ⎛⎭⎪⎫当且仅当x =22时,等号成立,所以函数f (x )的值域为[22,+∞).(2)若函数f (x )在定义域上是减函数,则任取x 1,x 2∈(0,1]且x 1<x 2都有f (x 1)>f (x 2)成立, 即f (x 1)-f (x 2)=(x 1-x 2)⎝⎛⎭⎪⎫a +2x 1x 2x 1x 2>0,只要a <-2x 1x 2即可,由x 1,x 2∈(0,1],得-2x 1x 2∈(-2,0),所以a ≤-2,故a 的取值范围是(-∞,-2].3.(2019·湖南永州模拟)已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎪⎨⎪⎧f x ,x >0,-fx ,x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立.(1)求F (x )的表达式;(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解 (1)因为f (-1)=0,所以a -b +1=0, 所以b =a +1,所以f (x )=ax 2+(a +1)x +1. 因为对任意实数x 均有f (x )≥0恒成立, 所以⎩⎪⎨⎪⎧a >0,Δ=a +12-4a ≤0,所以⎩⎪⎨⎪⎧a >0,a -12≤0.所以a =1,从而b =2,所以f (x )=x 2+2x +1,所以F (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)g (x )=x 2+2x +1-kx =x 2+(2-k )x +1. 因为g (x )在[-2,2]上是单调函数, 所以k -22≤-2或k -22≥2,解得k ≤-2或k ≥6.故实数k 的取值范围是(-∞,-2]∪[6,+∞).4.(2019·陕西西安长安区大联考)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1·x 2)=f (x 1)+f (x 2),且当x >1时,f (x )>0.(1)求f (1)的值;(2)证明:f (x )为单调增函数;(3)若f ⎝ ⎛⎭⎪⎫15=-1,求f (x )在⎣⎢⎡⎦⎥⎤125,125上的最值. 解 (1)因为函数f (x )满足f (x 1·x 2)=f (x 1)+f (x 2), 令x 1=x 2=1,则f (1)=f (1)+f (1),解得f (1)=0. (2)证明:设x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,所以f ⎝ ⎛⎭⎪⎫x 1x2>0,所以f (x 1)-f (x 2)=f ⎝⎛⎭⎪⎫x 2·x 1x2-f (x 2)=f (x 2)+f ⎝ ⎛⎭⎪⎫x 1x 2-f (x 2)=f ⎝ ⎛⎭⎪⎫x 1x 2>0,所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (3)因为f (x )在(0,+∞)上是增函数.若f ⎝ ⎛⎭⎪⎫15=-1,则f ⎝ ⎛⎭⎪⎫15+f ⎝ ⎛⎭⎪⎫15=f ⎝ ⎛⎭⎪⎫125=-2, 因为f ⎝ ⎛⎭⎪⎫15×5=f (1)=f ⎝ ⎛⎭⎪⎫15+f (5)=0, 所以f (5)=1,则f (5)+f (5)=f (25)=2,f (5)+f (25)=f (125)=3,即f (x )在⎣⎢⎡⎦⎥⎤125,125上的最小值为-2,最大值为3.。
2021届高三数学一轮复习——高考中的导数应用问题
第1课时 导数与不等式
证明不等式
命题点1 构造函数法
例1 (2020·赣州模拟)已知函数f (x )=1-ln x x ,g (x )=a e e x +1x
-bx ,若曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直.
(1)求a ,b 的值;
(2)证明:当x ≥1时,f (x )+g (x )≥2x
. (1)解 因为f (x )=1-ln x x
,x >0, 所以f ′(x )=ln x -1x 2
,f ′(1)=-1. 因为g (x )=a e e x +1x -bx ,所以g ′(x )=-a e e x -1x 2-b . 因为曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直, 所以g (1)=1,且f ′(1)·g ′(1)=-1,
所以g (1)=a +1-b =1,g ′(1)=-a -1-b =1,
解得a =-1,b =-1.
(2)证明 由(1)知,g (x )=-e e x +1x
+x , 则f (x )+g (x )≥2x ⇔1-ln x x -e e x -1x
+x ≥0. 令h (x )=1-ln x x -e e x -1x
+x (x ≥1), 则h (1)=0,h ′(x )=-1+ln x x 2+e e x +1x 2+1=ln x x 2+e e x +1. 因为x ≥1,所以h ′(x )=ln x x 2+e e x +1>0, 所以h (x )在[1,+∞)上单调递增,
所以当x ≥1时,h (x )≥h (1)=0,
即1-ln x x -e e x -1x
+x ≥0, 所以当x ≥1时,f (x )+g (x )≥2x
.
命题点2 分拆函数法
例2 (2019·福州期末)已知函数f (x )=eln x -ax (a ∈R ).
(1)讨论f (x )的单调性;
(2)当a =e 时,证明:xf (x )-e x +2e x ≤0.
(1)解 f ′(x )=e x
-a (x >0). ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;
②若a >0,则当0<x <e a 时,f ′(x )>0,当x >e a
时,f ′(x )<0, 故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭
⎫e a ,+∞上单调递减. (2)证明 因为x >0,
所以只需证f (x )≤e x x
-2e , 当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.
所以f (x )max =f (1)=-e ,
记g (x )=e x x -2e(x >0),则g ′(x )=(x -1)e x x 2
, 所以当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e ,
综上,当x >0时,f (x )≤g (x ),
即f (x )≤e x x
-2e ,即xf (x )-e x +2e x ≤0. 思维升华 (1)利用导数证明不等式的基本思路是依据函数的单调性,求得函数的最值,然后由f (x )≤f (x )max 或f (x )≥f (x )min 证得不等式.
(2)证明f (x )>g (x ),可以构造函数h (x )=f (x )-g (x ),然后利用h (x )的最值证明不等式.。