2021版新高考数学一轮复习第三章导数及其应用3.4.3导数的存在性问题课件新人教B版
- 格式:ppt
- 大小:1.22 MB
- 文档页数:38
专题 导数与函数的极值、最值一、题型全归纳题型一 利用导数解决函数的极值问题【题型要点】利用导数研究函数极值问题的一般流程命题角度一 由图象判断函数的极值【题型要点】由图象判断函数y =f (x )的极值,要抓住两点: (1) 由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性,两者结合可得极值点【例1】设函数()x f 在R 上可导,其导函数为()x f ',且函数()()x f x y '-=1的图象如图所示,则下列结论中一定成立的是( )A.函数f (x )有极大值f (2)和极小值f (1)B.函数f (x )有极大值f (-2)和极小值f (1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)【解析】由题图可知,当x <-2时,()x f '>0;当-2<x <1时,()x f '<0;当1<x <2时,()x f '<0;当x >2时,()x f '>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【例2】已知函数f (x )的导函数f ′(x )的图象如图,则下列叙述正确的是( )A .函数f (x )在(-∞,-4)上单调递减B .函数f (x )在x =2处取得极大值C .函数f (x )在x =-4处取得极值D .函数f (x )有两个极值点【解析】由导函数的图象可得,当x ≤2时,f ′(x )≥0,函数f (x )单调递增;当x >2时,f ′(x )<0,函数f (x )单调递减,所以函数f (x )的单调递减区间为(2,+∞),故A 错误.当x =2时函数取得极大值,故B 正确.当x =-4时函数无极值,故C 错误.只有当x =2时函数取得极大值,故D 错误.故选B.命题角度二 求已知函数的极值【题型要点】求函数极值的一般步骤(1)先求函数f (x )的定义域,再求函数f (x )的导函数. (2)求()x f '=0的根.(3)判断在()x f '=0的根的左、右两侧()x f '的符号,确定极值点. (4)求出具体极值.【例3】已知函数f (x )=(x -2)(e x -ax ),当a >0时,讨论f (x )的极值情况. 【解析】 ∵()x f '=(e x -ax )+(x -2)(e x -a )=(x -1)(e x -2a ),∵a >0, 由()x f '=0得x =1或x =ln 2a .∵当a =e2时,f ′(x )=(x -1)(e x -e )≥0,∵f (x )在R 上单调递增,故f (x )无极值.∵当0<a <e2时,ln 2a <1,当x 变化时,()x f ',f (x )的变化情况如下表:∵当a >e2时,ln 2a >1,当x 变化时,()x f ',f (x )的变化情况如下表:综上,当0<a <e2时,f (x )有极大值-a (ln 2a -2)2,极小值a -e ;当a =e2时,f (x )无极值;当a >e2时,f (x )有极大值a -e ,极小值-a (ln 2a -2)2.【例4】已知函数f (x )=ln x +a -1x ,求函数f (x )的极小值.【解析】 f ′(x )=1x -a -1x 2=x -(a -1)x 2(x >0),当a -1≤0,即a ≤1时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增,无极小值. 当a -1>0,即a >1时,由f ′(x )<0,得0<x <a -1,函数f (x )在(0,a -1)上单调递减; 由f ′(x )>0,得x >a -1,函数f (x )在(a -1,+∞)上单调递增.f (x )极小值=f (a -1)=1+ln(a -1). 综上所述,当a ≤1时,f (x )无极小值; 当a >1时,f (x )极小值=1+ln(a -1).命题角度三 已知函数的极值求参数值(范围)【题型要点】已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.【易错提醒】若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.【例5】设函数f (x )=[ax 2-(3a +1)x +3a +2]e x .(1)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求实数a 的值; (2)若f (x )在x =1处取得极小值,求实数a 的取值范围.【解析】 (1)因为f (x )=[ax 2-(3a +1)x +3a +2]e x ,所以f ′(x )=[ax 2-(a +1)x +1]e x . f ′(2)=(2a -1)e 2.由题设知f ′(2)=0,即(2a -1)e 2=0,解得a =12.(2)由(1)得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x .若a >1,则当x ∵⎪⎭⎫⎝⎛1,1a 时,f ′(x )<0; 当x ∵(1,+∞)时,f ′(x )>0.所以f (x )在x =1处取得极小值.若a ≤1,则当x ∵(0,1)时,ax -1≤x -1<0,所以f ′(x )>0.所以1不是f (x )的极小值点. 综上可知,a 的取值范围是(1,+∞).题型二 函数的最值问题【题型要点】求函数f (x )在[a ,b ]上最值的方法(1)若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.【例1】(2019·全国卷Ⅲ)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.【解析】(1)f ′(x )=6x 2-2ax =2x (3x -a ).令f ′(x )=0,得x =0或x =a 3.若a >0,则当x ∵(-∞,0)∵⎪⎭⎫⎝⎛+∞,3a 时,f ′(x )>0;当x ∵⎪⎭⎫⎝⎛3,0a 时,f ′(x )<0.故f (x )在 (-∞,0),⎪⎭⎫⎝⎛+∞,3a 单调递增,在⎪⎭⎫⎝⎛3,0a 单调递减. 若a =0,f (x )在(-∞,+∞)单调递增.若a <0,则当x ∵⎪⎭⎫ ⎝⎛∞-3,a ∵(0,+∞)时,f ′(x )>0;当x ∵⎪⎭⎫ ⎝⎛0,3a 时,f ′(x )<0.故f (x )在⎪⎭⎫ ⎝⎛∞-3,a ,(0,+∞)单调递增,在⎪⎭⎫⎝⎛0,3a 单调递减. (2)满足题设条件的a ,b 存在.(∵)当a ≤0时,由(1)知,f (x )在[0,1]单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1. (∵)当a ≥3时,由(1)知,f (x )在[0,1]单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1. (∵)当0<a <3时,由(1)知,f (x )在[0,1]的最小值为⎪⎭⎫⎝⎛3a f =-a 327+b ,最大值为b 或2-a +b .若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当且仅当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1.【例2】(2020·贵阳市检测)已知函数f (x )=x -1x -ln x .(1)求f (x )的单调区间;(2)求函数f (x )在⎥⎦⎤⎢⎣⎡e e,1上的最大值和最小值(其中e 是自然对数的底数).【解析】 (1)f (x )=x -1x -ln x =1-1x-ln x ,f (x )的定义域为(0,+∞). 因为f ′(x )=1x 2-1x =1-xx 2,所以f ′(x )>0∵0<x <1,f ′(x )<0∵x >1,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由(1)得f (x )在⎥⎦⎤⎢⎣⎡1,1e 上单调递增,在(1,e]上单调递减,所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上的极大值为f (1)=1-11-ln 1=0.又⎪⎭⎫ ⎝⎛e f 1=1-e -ln 1e =2-e ,f (e)=1-1e -ln e =-1e,且⎪⎭⎫⎝⎛e f 1<f (e).所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上的最大值为0,最小值为2-e.题型三 函数极值与最值的综合应用【题型要点】解决函数极值、最值问题的策略(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论. (3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例1】设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .若f (x )在x =2处取得极小值,则a 的取值范围为_______. 【解析】 f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x ,若a >12,则当x ∵⎪⎭⎫⎝⎛2,1a 时,f ′(x )<0;当x ∵(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∵(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎪⎭⎫⎝⎛+∞,21. 【例2】已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在区间[-1,e](e 为自然对数的底数)上的最大值.【解析】:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23,当x 变化时,f ′(x ),f (x )的变化情况如下表所以当x =0时,函数f (x )取得极小值f (0)=0,函数f (x )的极大值点为x =23.(2)∵由(1)知,当-1≤x <1时,函数f (x )在[-1,0)和⎪⎭⎫⎢⎣⎡1,32上单调递减,在⎪⎭⎫⎢⎣⎡32,0上单调递增.因为f (-1)=2,⎪⎭⎫ ⎝⎛32f =427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.∵当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增. 所以f (x )在[1,e]上的最大值为f (e)=a .所以当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2.题型四 利用导数研究生活中的优化问题【题型要点】利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x ).(2)求函数的导数()x f ',解方程()x f '=0.(3)比较函数在区间端点和()x f '=0的点的函数值的大小,最大(小)者为最大(小)值. (4)回归实际问题,结合实际问题作答.【例1】某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大. 【解析】(1)因为当x =5时,y =11,所以a2+10=11,解得a =2.(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎡⎦⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.则()x f '=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6). 于是,当x 变化时,()x f ',f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【例2】已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品x 千件,并且全部销售完,每千件的销售收入为f (x )万元,且f (x )=⎩⎨⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)写出年利润W (万元)关于年产品x (千件)的函数解析式;(2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入-年总成本) 【解析】(1)由题意得W =⎩⎨⎧⎝⎛⎭⎫10.8-130x 2x -2.7x -10,0<x ≤10,⎝⎛⎭⎫108x -1 0003x 2x -2.7x -10,x >10,即W =⎩⎨⎧8.1x -130x 3-10,0<x ≤10,98-⎝⎛⎭⎫1 0003x +2.7x ,x >10.(2)∵当0<x ≤10时,W =8.1x -130x 3-10,则W ′=8.1-110x 2=81-x 210=(9+x )(9-x )10,因为0<x ≤10,所以当0<x <9时,W ′>0,则W 递增;当9<x ≤10时,W ′<0,则W 递减.所以当x =9时,W 取最大值1935=38.6万元.∵当x >10时,W =98-⎪⎭⎫⎝⎛+x x 7.231000≤98-21 0003x×2.7x =38. 当且仅当1 0003x =2.7x ,即x =1009时等号成立.综上,当年产量为9千件时,该企业生产此产品所获年利润最大.二、高效训练突破 一、选择题1.函数f (x )=2x 3+9x 2-2在[-4,2]上的最大值和最小值分别是( ) A .25,-2 B .50,14 C .50,-2D .50,-14【解析】:因为f (x )=2x 3+9x 2-2,所以f ′(x )=6x 2+18x ,当x ∵[-4,-3)或x ∵(0,2]时,f ′(x )>0,f (x )为增函数,当x ∵(-3,0)时,f ′(x )<0,f (x )为减函数,由f (-4)=14,f (-3)=25,f (0)=-2,f (2)=50,故函数f (x )=2x 3+9x 2-2在[-4,2]上的最大值和最小值分别是50,-2. 2.已知函数y =f (x )的导函数f ′(x )的图象如图所示,给出下列判断:∵函数y =f (x )在区间⎪⎭⎫⎝⎛--21,3内单调递增;∵当x =-2时,函数y =f (x )取得极小值; ∵函数y =f (x )在区间(-2,2)内单调递增;∵当x =3时,函数y =f (x )有极小值. 则上述判断正确的是( ) A .∵∵ B .∵∵ C .∵∵∵D .∵∵【解析】:对于∵,函数y =f (x )在区间⎪⎭⎫⎝⎛--21,3内有增有减,故∵不正确; 对于∵,当x =-2时,函数y =f (x )取得极小值,故∵正确;对于∵,当x ∵(-2,2)时,恒有f ′(x )>0,则函数y =f (x )在区间(-2,2)上单调递增,故∵正确; 对于∵,当x =3时,f ′(x )≠0,故∵不正确.3.(2020·东莞模拟)若x =1是函数f (x )=ax +ln x 的极值点,则( ) A.f (x )有极大值-1 B.f (x )有极小值-1 C.f (x )有极大值0D.f (x )有极小值0【解析】∵f (x )=ax +ln x ,x >0,∵f ′(x )=a +1x ,由f ′(1)=0得a =-1,∵f ′(x )=-1+1x =1-xx .由f ′(x )>0得0<x <1,由f ′(x )<0得x >1, ∵f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.∵f (x )极大值=f (1)=-1,无极小值,故选A.4.函数f (x )=x 3+bx 2+cx +d 的大致图象如图所示,则x 21+x 22等于( )A.89B.109C.169D.289【解析】函数f (x )的图象过原点,所以d =0.又f (-1)=0且f (2)=0,即-1+b -c =0且8+4b +2c =0,解得b =-1,c =-2,所以函数f (x )=x 3-x 2-2x ,所以f ′(x )=3x 2-2x -2,由题意知x 1,x 2是函数的极值点,所以x 1,x 2是f ′(x )=0的两个根,所以x 1+x 2=23,x 1x 2=-23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=49+43=169. 5.已知函数f (x )=2f ′(1)ln x -x ,则f (x )的极大值为( ) A .2 B .2ln 2-2 C .eD .2-e【解析】:函数f (x )定义域(0,+∞),f ′(x )=2f ′(1)x -1,所以f ′(1)=1,f (x )=2ln x -x ,令f ′(x )=2x-1=0,解得x =2.当0<x <2时,f ′(x )>0,当x >2时,f ′(x )<0,所以当x =2时函数取得极大值,极大值为2ln 2-2. 6.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A.[-3,+∞) B.(-3,+∞) C.(-∞,-3)D.(-∞,-3]【解析】由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:7.用边长为120 cm 的正方形铁皮做一个无盖水箱,先在四周分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱的最大容积为( ) A .120 000 cm 3 B .128 000 cm 3 C .150 000 cm 3D .158 000 cm 3【解析】:设水箱底长为x cm ,则高为120-x2cm.由⎩⎪⎨⎪⎧120-x 2>0,x >0,得0<x <120.设容器的容积为y cm 3,则有y =-12x 3+60x 2.求导数,有y ′=-32x 2+120x .令y ′=0,解得x =80(x =0舍去).当x ∵(0,80)时,y ′>0;当x ∵(80,120)时,y ′<0. 因此,x =80是函数y =-12x 3+60x 2的极大值点,也是最大值点,此时y =128 000.故选B.8.(2020·郑州质检)若函数y =f (x )存在n -1(n ∵N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A .2折函数 B .3折函数 C .4折函数D .5折函数【解析】:.f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)·(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3×(-2)+2=-4. 所以函数y =f (x )有3个极值点,则f (x )为4折函数.9.(2020·昆明市诊断测试)已知函数f (x )=(x 2-m )e x ,若函数f (x )的图象在x =1处切线的斜率为3e ,则f (x )的极大值是( )A .4e -2 B .4e 2 C .e -2D .e 2【解析】:f ′(x )=(x 2+2x -m )e x .由题意知,f ′(1)=(3-m )e =3e ,所以m =0,f ′(x )=(x 2+2x )e x .当x >0或x <-2时,f ′(x )>0,f (x )是增函数;当-2<x <0时,f ′(x )<0,f (x )是减函数.所以当x =-2时,f (x )取得极大值,f (-2)=4e -2.故选A.10.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( ) A.20 B.18 C.3D.0【解析】原命题等价于对于区间[-3,2]上的任意x ,都有f (x )max -f (x )min ≤t , ∵f ′(x )=3x 2-3,∵当x ∵[-3,-1]时,f ′(x )>0, 当x ∵[-1,1]时,f ′(x )<0,当x ∵[1,2]时,f ′(x )>0. ∵f (x )max =f (2)=f (-1)=1,f (x )min =f (-3)=-19. ∵f (x )max -f (x )min =20,∵t ≥20.即t 的最小值为20.故选A.二、填空题1.已知f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a -b = .【解析】:由题意得f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9, 经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7. 2.已知函数f (x )=x 3+ax 2+(a +6)x +1.若函数f (x )的图象在点(1,f (1))处的切线斜率为6,则实数a = ;若函数在(-1,3)内既有极大值又有极小值,则实数a 的取值范围是 .【解析】:f ′(x )=3x 2+2ax +a +6,结合题意f ′(1)=3a +9=6,解得a =-1;若函数在(-1,3)内既有极大值又有极小值,则f ′(x )=0在(-1,3)内有2个不相等的实数根,则⎩⎪⎨⎪⎧Δ=4a 2-12(a +6)>0,f ′(-1)>0,f ′(3)>0,解得-337<a <-3.3.(2020·甘肃兰州一中期末改编)若x =-2是函数f (x )=(x 2+ax -1)e x 的极值点,则f ′(-2)= ,f (x )的极小值为 .【解析】:由函数f (x )=(x 2+ax -1)e x 可得f ′(x )=(2x +a )e x +(x 2+ax -1)e x ,因为x =-2是函数f (x )的极值点,所以f ′(-2)=(-4+a )e -2+(4-2a -1)e -2=0,即-4+a +3-2a =0,解得a =-1.所以f ′(x )=(x 2+x -2)e x .令f ′(x )=0可得x =-2或x =1.当x <-2或x >1时,f ′(x )>0,此时函数f (x )为增函数,当-2<x <1时,f ′(x )<0,此时函数f (x )为减函数,所以当x =1时函数f (x )取得极小值,极小值为f (1)=(12-1-1)×e 1=-e.4.(2019·武汉模拟)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是 .【解析】:因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.5.若函数f (x )=x 3-3ax 在区间(-1,2)上仅有一个极值点,则实数a 的取值范围为 .【解析】因为f ′(x )=3(x 2-a ),所以当a ≤0时,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增,f (x )没有极值点,不符合题意; 当a >0时,令f ′(x )=0得x =±a , 当x 变化时,f ′(x )与f (x )的变化情况如下表所示:因为函数f (x )在区间(-1,2)上仅有一个极值点,所以⎩⎨⎧a <2,-a ≤-1或⎩⎨⎧-a >-1,2≤a ,解得1≤a <4.三 解答题1.(2020·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 【解析】:(1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx,令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.所以f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. 所以f (x )max =f (1)=-1.所以当a =-1时,函数f (x )在(0,+∞)上的最大值为-1.(2)f ′(x )=a +1x ,x ∵(0,e],1x ∵⎪⎭⎫⎢⎣⎡+∞,1e .∵若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数,所以f (x )max =f (e)=a e +1≥0,不符合题意;∵若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∵(0,e],解得0<x <-1a,令f ′(x )<0得a +1x <0,结合x ∵(0,e],解得-1a <x ≤e.从而f (x )在⎪⎭⎫ ⎝⎛-a 1,0上为增函数,在⎥⎦⎤⎝⎛-e a ,1上为减函数,所以f (x )max =⎪⎭⎫ ⎝⎛-a f 1=-1+⎪⎭⎫ ⎝⎛-a 1ln .令-1+⎪⎭⎫ ⎝⎛-a 1ln =-3,得⎪⎭⎫⎝⎛-a 1ln =-2,即a =-e 2.因为-e 2<-1e ,所以a =-e 2为所求.故实数a 的值为-e 2.2.(2020·洛阳尖子生第二次联考)已知函数f (x )=mx -nx-ln x ,m ∵R .(1)若函数f (x )的图象在(2,f (2))处的切线与直线x -y =0平行,求实数n 的值; (2)试讨论函数f (x )在区间[1,+∞)上的最大值.【解析】:(1)由题意得f ′(x )=n -x x 2,所以f ′(2)=n -24.由于函数f (x )的图象在(2,f (2))处的切线与直线x -y =0平行,所以n -24=1,解得n =6.(2)f ′(x )=n -xx2,令f ′(x )<0,得x >n ;令f ′(x )>0,得x <n .∵当n ≤1时,函数f (x )在[1,+∞)上单调递减,所以f (x )max =f (1)=m -n ;∵当n >1时,函数f (x )在[1,n )上单调递增,在(n ,+∞)上单调递减,所以f (x )max =f (n )=m -1-ln 3.(2019·郑州模拟)已知函数f (x )=1-x x +k ln x ,k <1e ,求函数f (x )在⎥⎦⎤⎢⎣⎡e e ,1上的最大值和最小值.【解析】 f ′(x )=-x -(1-x )x 2+k x =kx -1x2.∵若k =0,则f ′(x )=-1x 2在⎥⎦⎤⎢⎣⎡e e ,1上恒有f ′(x )<0,所以f (x )在⎥⎦⎤⎢⎣⎡e e ,1上单调递减.∵若k ≠0,则f ′(x )=kx -1x 2=k ⎝⎛⎭⎫x -1k x 2.(∵)若k <0,则在⎥⎦⎤⎢⎣⎡e e,1上恒有k ⎝⎛⎭⎫x -1k x 2<0.所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上单调递减,(∵)若k >0,由k <1e ,得1k >e ,则x -1k <0在⎥⎦⎤⎢⎣⎡e e ,1上恒成立,所以k ⎝⎛⎭⎫x -1k x 2<0, 所以f (x )在1e ,e 上单调递减.综上,当k <1e 时,f (x )在⎥⎦⎤⎢⎣⎡e e ,1上单调递减,所以f (x )min =f (e )=1e +k -1,f (x )max =⎪⎭⎫⎝⎛e f 1=e -k -1.4.已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e ]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.【解析】由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x 2(a >0).(1)由f ′(x )>0解得x >1a ,所以函数f (x )的单调递增区间是⎪⎭⎫⎝⎛+∞,1a ;由f ′(x )<0解得x <1a ,所以函数f (x )的单调递减区间是⎪⎭⎫⎝⎛a 1,0.所以当x =1a 时,函数f (x )有极小值⎪⎭⎫⎝⎛a f 1=a ln 1a +a =a -a ln a ,无极大值. (2)不存在.理由如下:由(1)可知,当x ∵⎪⎭⎫ ⎝⎛a 1,0时,函数f (x )单调递减;当x ∵⎪⎭⎫⎝⎛+∞,1a 时,函数f (x )单调递增.∵若0<1a≤1,即a ≥1时,函数f (x )在[1,e ]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件.∵若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎪⎭⎫⎢⎣⎡a 1,1上为减函数,在⎥⎦⎤⎢⎣⎡e a ,1上为增函数,故函数f (x )的最小值为f (x )的极小值⎪⎭⎫⎝⎛a f 1=a ln 1a +a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,而1e≤a <1,故不满足条件.∵若1a >e ,即0<a <1e时,函数f (x )在[1,e ]上为减函数,故函数f (x )的最小值为f (e )=a +1e =0,解得a =-1e ,而0<a <1e ,故不满足条件.综上所述,这样的a 不存在.。
第1节导数的概念及运算考试要求1。
通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2。
体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=错误!,y=错误!的导数;5。
能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f(ax+b))的导数;6。
会使用导数公式表.知识梳理1。
导数的概念设函数y=f(x)在区间(a,b)上有定义,且x0∈(a,b),若Δx无限趋近于0时,比值错误!=错误!无限趋近于一个常数A,则称f(x)在x=x0处可导,并称该常数A为函数f(x)在x=x0处的导数,记作f′(x0)。
若函数y=f(x)在区间(a,b)内任意一点都可导,则f(x)在各点的导数也随着x的变化而变化,因而是自变量x的函数,该函数称作f(x)的导函数,记作f′(x).2。
导数的几何意义导数f′(x0)的几何意义就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,在点P的切线方程为y-y0=f′(x0)(x-x0)。
3.基本初等函数的导数公式基本初等函数导函数f(x)=C(C为常数)f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__x f(x)=cos x f′(x)=-4若f′(x),g′(x)存在,则有:(1)[Cf(x)]′=Cf′(x)(C为常数);(2)[f(x)±g(x)]′=f′(x)±g′(x);(3)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(4)错误!′=错误!(g(x)≠0).5.复合函数求导的运算法则若y=f(u),u=ax+b,则y x′=y u′·u x′,即y x′=y u′·a.[常用结论与微点提醒]1。
2021年高考数学一轮复习第三章导数及其应用3.2导数的应用课时1导数与函数的单调性文题型一 不含参数的函数的单调性 例1 求函数f (x )=ln xx的单调区间.解 函数f (x )的定义域为(0,+∞). 因为f (x )=ln x x ,所以f ′(x )=1-ln x x2. 当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减. 故函数f (x )的单调递增区间为(0,e), 单调递减区间为(e ,+∞).思维升华 确定函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是________________.答案 ⎝ ⎛⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤0,π2解析 f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x ≥0,则其在区间(-π,π)上的解集为⎝ ⎛⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤0,π2,即f (x )的单调递增区间为⎝ ⎛⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤0,π2.题型二 含参数的函数的单调性 例2 已知函数f (x )=ln x +ax +a +1x-1.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当-12≤a ≤0时,讨论f (x )的单调性.解 (1)当a =1时,f (x )=ln x +x +2x-1,此时f ′(x )=1x +1-2x 2,f ′(2)=12+1-24=1.又因为f (2)=ln 2+2+22-1=ln 2+2,所以切线方程为y -(ln 2+2)=x -2, 整理得x -y +ln 2=0.(2)f ′(x )=1x +a -1+a x 2=ax 2+x -a -1x2=ax +a +1x -1x 2.当a =0时,f ′(x )=x -1x 2. 此时,在(0,1)上,f ′(x )<0,f (x )单调递减; 在(1,+∞)上,f ′(x )>0,f (x )单调递增.当-12≤a <0时,f ′(x )=a ⎝ ⎛⎭⎪⎫x +a +1a x -1x 2.当-1+a a =1,即a =-12时,f ′(x )=-x -122x 2≤0在(0,+∞)上恒成立,所以f (x )在(0,+∞)上单调递减.当-12<a <0时,-1+a a >1,此时在(0,1)或⎝ ⎛⎭⎪⎫-1+a a ,+∞上,f ′(x )<0,f (x )单调递减;在⎝ ⎛⎭⎪⎫1,-1+a a 上,f ′(x )>0,f (x )单调递增. 综上,当a =0时,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增;当-12<a <0时,f (x )在(0,1)或⎝ ⎛⎭⎪⎫-1+a a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫1,-1+a a 上单调递增; 当a =-12时,f (x )在(0,+∞)上单调递减.思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点. (3)个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性. 解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a2a,则当x ∈(0, 1-a2a)时,f ′(x )<0;当x ∈(1-a2a ,+∞)时,f ′(x )>0,故f (x )在(0, 1-a2a)上单调递减,在( 1-a2a,+∞)上单调递增.题型三 利用函数单调性求参数例3 设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解 (1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2, 依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a <(x +2x)max =-22,当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22). 引申探究 在本例3(3)中,1.若g (x )在(-2,-1)内为减函数,如何求解?解 方法一 ∵g ′(x )=x 2-ax +2,且g (x )在(-2,-1)内为减函数, ∴g ′(x )≤0,即x 2-ax +2≤0在(-2,-1)内恒成立,∴⎩⎪⎨⎪⎧g ′-2≤0,g ′-1≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解之得a ≤-3,即实数a 的取值范围为(-∞,-3]. 方法二 ∵g ′(x )=x 2-ax +2,由题意可得g ′(x )≤0在(-2,-1)上恒成立, 即a ≤x +2x 在(-2,-1)上恒成立,又y =x +2x,x ∈(-2,-1)的值域为(-3,-2 2 ], ∴a ≤-3,∴实数a 的取值范围是(-∞,-3]. 2.若g (x )的单调减区间为(-2,-1),求a 的值. 解 ∵g (x )的单调减区间为(-2,-1), ∴x 1=-2,x 2=-1是g ′(x )=0的两个根, ∴(-2)+(-1)=a ,即a =-3.3.若g (x )在(-2,-1)上不单调,求a 的取值范围.解 由引申探究1知g (x )在(-2,-1)上为减函数,a 的范围是(-∞,-3],若g (x )在(-2,-1)上为增函数,可知a ≥x +2x 在(-2,-1)上恒成立,又y =x +2x的值域为(-3,-2 2 ],∴a 的范围是[-22,+∞),∴函数g (x )在(-2,-1)上单调时,a 的取值范围是(-∞,-3]∪[-22,+∞), 故g (x )在(-2,-1)上不单调,实数a 的取值范围是(-3,-22). 思维升华 已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.已知函数f (x )=e xln x -a e x(a ∈R ).(1)若f (x )在点(1,f (1))处的切线与直线y =1e x +1垂直,求a 的值;(2)若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围.解 (1)f ′(x )=e x ln x +e x ·1x -a e x =(1x-a +ln x )e x,f ′(1)=(1-a )e ,由(1-a )e·1e=-1,得a =2.(2)由(1)知f ′(x )=(1x-a +ln x )e x,若f (x )为单调递减函数,则f ′(x )≤0,在x >0时恒成立. 即1x-a +ln x ≤0,在x >0时恒成立.所以a ≥1x+ln x ,在x >0时恒成立.令g (x )=1x+ln x (x >0),则g ′(x )=-1x 2+1x =x -1x2(x >0),由g ′(x )>0,得x >1; 由g ′(x )<0,得0<x <1.故g (x )在(0,1)上为单调递减函数,在[1,+∞)上为单调递增函数,此时g (x )的最小值为g (x )=1,但g (x )无最大值(且无趋近值).故f (x )不可能是单调递减函数. 若f (x )为单调递增函数,则f ′(x )≥0,在x >0时恒成立,即1x-a +ln x ≥0,在x >0时恒成立,所以a ≤1x+ln x ,在x >0时恒成立,由上述推理可知此时a ≤1.故实数a 的取值范围是(-∞,1].5.分类讨论思想研究函数的单调性典例 (14分)已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,其中函数g (x )的图象在点(1,g (1))处的切线平行于x 轴.(1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.思维点拨 依据g (x )的切线条件可得g ′(1)=0得a ,b 关系,代g (x )后消去b ,对a 进行分类讨论确定g ′(x )的符号. 规范解答解 (1)依题意得g (x )=ln x +ax 2+bx , 则g ′(x )=1x+2ax +b .[2分]由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴得:g ′(1)=1+2a +b =0,∴b =-2a -1.[4分](2)由(1)得g ′(x )=2ax 2-2a +1x +1x=2ax -1x -1x.∵函数g (x )的定义域为(0,+∞), ∴当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1, 由g ′(x )<0,得x >1,[6分]当a >0时,令g ′(x )=0,得x =1或x =12a ,[7分]若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a <x <1;[9分]若12a >1,即0<a <12, 由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a,[11分]若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0.[12分] 综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1)上单调递增,在(1,12a )上单调递减,在(12a ,+∞)上单调递增;当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在(0,12a)上单调递增,在(12a,1)上单调递减,在(1,+∞)上单调递增.[14分] 温馨提醒 (1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法. (2)本题求解先分a =0或a >0两种情况,再比较12a和1的大小.[方法与技巧]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域. 2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.[失误与防范]1.f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.讨论函数单调性要在定义域内进行,不要忽略函数的间断点.A 组 专项基础训练 (时间:40分钟)1.函数f (x )=(x -3)e x的单调递增区间是____________. 答案 (2,+∞)解析 函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=e x +(x -3)e x =(x -2)e x. 由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增, 此时由不等式f ′(x )=(x -2)e x>0,解得x >2.2.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为__________. 答案 (-∞,52]解析 ∵f ′(x )=6x 2-6mx +6, 当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52.3.设函数f (x )=x -2sin x 是区间⎣⎢⎡⎦⎥⎤t ,t +π2上的减函数,则实数t 的取值范围是______________________. 答案 ⎣⎢⎡⎦⎥⎤2k π-π3,2k π-π6,k ∈Z解析 由题意得f ′(x )=1-2cos x ≤0,即cos x ≥12,解得2k π-π3≤x ≤2k π+π3 (k ∈Z ),∵f (x )=x -2sin x 是区间⎣⎢⎡⎦⎥⎤t ,t +π2上的减函数,∴⎣⎢⎡⎦⎥⎤t ,t +π2⊆⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3,∴2k π-π3≤t ≤2k π-π6(k ∈Z ).4.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则的大小关系为________________. 答案解析 设g (x )=f xex,则g ′(x )=f ′x e x -f x e x ex2=f ′x -f xex,由题意g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f x 1<f x 2,所以.5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f (12),c =f (3),则a ,b ,c 的大小关系为____________.答案 c <a <b解析 依题意得,当x <1时,f ′(x )>0,f (x )为增函数; 又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f (12),即有f (3)<f (0)<f (12),c <a <b .6.函数f (x )=x -ln x 的单调递减区间为________. 答案 (0,1)解析 函数的定义域是(0,+∞), 且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x <1,所以单调递减区间是(0,1).7.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是________. 答案 [34,+∞)解析 f ′(x )=(2x -2a )e x +(x 2-2ax )e x=[x 2+(2-2a )x -2a ]e x,由题意当x ∈[-1,1]时,f ′(x )≤0恒成立, 即x 2+(2-2a )x -2a ≤0在x ∈[-1,1]时恒成立. 令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g -1≤0,g 1≤0,即⎩⎪⎨⎪⎧-12+2-2a ·-1-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.8.函数f (x )=x 3+bx 2+cx +d 的图象如图,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为____________.答案 (-∞,-2)解析 ∵f (x )=x 3+bx 2+cx +d , ∴f ′(x )=3x 2+2bx +c .由题图可知f ′(-2)=f ′(3)=0,∴⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1. 由g (x )=x 2-x -6>0,解得x <-2或x >3. 当x <-2时,g ′(x )<0,∴g (x )=x 2-x -6在(-∞,-2)上为减函数.∴函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 10.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -1x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x , ∴f ′(1)=1=12a ,a =2. 又∵g (1)=0=12a +b ,∴b =-1, ∴g (x )=x -1.(2)∵φ(x )=m x -1x +1-f (x )=m x -1x +1-ln x 在[1,+∞)上是减函数. ∴φ′(x )=-x 2+2m -2x -1x x +12≤0在[1,+∞)上恒成立. 即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立,则2m -2≤x +1x,x ∈[1,+∞), ∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2. 故实数m 的取值范围是(-∞,2].B 组 专项能力提升(时间:20分钟)11.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是__________.答案 1<a ≤2解析 ∵f (x )=12x 2-9ln x , ∴f ′(x )=x -9x(x >0), 当x -9x≤0时,有0<x ≤3, 即在(0,3]上原函数是减函数,∴a -1>0且a +1≤3,解得1<a ≤2.12. f (x ),g (x ) (g (x )≠0)分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )<f (x )g ′(x ),且f (-3)=0,则f x g x<0的解集为____________. 答案 (-3,0)∪(3,+∞)解析 f x g x是奇函数, ∵当x <0时,f ′(x )g (x )<f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x g 2x <0,则f x g x 在(-∞,0)上为减函数,在(0,+∞)上也为减函数.又f (-3)=0,则有f -3g -3=0=f 3g 3,可知f x g x<0的解集为(-3,0)∪(3,+∞).13.若函数f (x )=-13x 3+12x 2+2ax 在[23,+∞)上存在单调递增区间,则a 的取值范围是________.答案 (-19,+∞) 解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-(x -12)2+14+2a . 当x ∈[23,+∞)时, f ′(x )的最大值为f ′(23)=29+2a .令29+2a >0,解得a >-19. 所以a 的取值范围是(-19,+∞). 14.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.答案 (0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x=-x -1x -3x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.15.函数f (x )=ax 3+3x 2+3x (a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )在区间(1,2)上是增函数,求a 的取值范围.解 (1)f ′(x )=3ax 2+6x +3,f ′(x )=3ax 2+6x +3=0的判别式Δ=36(1-a ).①若a ≥1,则f ′(x )≥0,且f ′(x )=0,当且仅当a =1,x =-1,故此时f (x )在R 上是增函数.②由于a ≠0,故当a <1时,f ′(x )=0有两个根,x 1=-1+1-aa ,x 2=-1-1-a a. 若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)上是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)上是减函数;当x ∈(x 1,x 2)时,f ′(x )>0,故f (x )在(x 1,x 2)上是增函数.(2)当a >0,x >0时,f ′(x )>0,所以当a >0时,f (x )在区间(1,2)上是增函数.当a <0时,f (x )在区间(1,2)上是增函数,当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0. 综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,0∪(0,+∞).。
2024年高考数学一轮复习课件(新高考版)第三章 一元函数的导数及其应用§3.3 导数与函数的极值、最值考试要求1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值f′(x)<0f′(x)>0都小,f′(a)=0;而且在点x=a附近的左侧,右侧,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y =f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点处的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧,右侧 ,则b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.(3)极小值点、极大值点统称为,极小值和极大值统称为 .f ′(x )>0f ′(x )<0极值点极值2.函数的最大(小)值(1)函数f (x )在区间[a ,b ]上有最值的条件:如果在区间[a ,b ]上函数y =f (x )的图象是一条 的曲线,那么它必有最大值和最小值.(2)求函数y =f (x )在区间[a ,b ]上的最大(小)值的步骤:①求函数y =f (x )在区间(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中最大的一个是最大值,最小的一个是最小值.连续不断极值端点处的函数值f (a ),f (b )常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的极值可能不止一个,也可能没有.( )(2)函数的极小值一定小于函数的极大值.( )(3)函数的极小值一定是函数的最小值.( )(4)函数的极大值一定不是函数的最小值.( )√××√1.如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为√A.1B.2C.3D.4由题意知,只有在x=-1处,f′(-1)=0,且其两侧导数符号为左负右正,故f(x)的极小值点只有1个.2.函数f(x)=x3-ax2+2x-1有极值,则实数a的取值范围是_____________ _____________.f′(x)=3x2-2ax+2,由题意知f′(x)有变号零点,∴Δ=(-2a)2-4×3×2>0,43.若函数f(x)=x3-4x+m在[0,3]上的最大值为4,则m=____.f′(x)=x2-4,x∈[0,3],当x∈[0,2)时,f′(x)<0,当x∈(2,3]时,f′(x)>0,所以f(x)在[0,2)上单调递减,在(2,3]上单调递增.又f(0)=m,f(3)=-3+m,所以在[0,3]上,f(x)max=f(0)=4,所以m=4.第二部分命题点1 根据函数图象判断极值例1 (多选)(2023·华南师大附中模拟)如图是y =f (x )的导函数f ′(x )的图象,对于下列四个判断,其中正确的判断是A.当x =-1时,f (x )取得极小值B. f (x )在[-2,1]上单调递增C.当x =2时,f (x )取得极大值D. f (x )在[-1,2]上不具备单调性√√由导函数f′(x)的图象可知,当-2<x<-1时,f′(x)<0,则f(x)单调递减;当x=-1时,f′(x) =0;当-1<x<2时,f′(x)>0,则f(x)单调递增;当x=2时,f′(x)=0;当2<x<4时,f′(x)<0,则f(x)单调递减;当x=4时,f′(x)=0,所以当x=-1时,f(x)取得极小值,故选项A正确;f(x)在[-2,1]上有减有增,故选项B错误;当x=2时,f(x)取得极大值,故选项C正确;f(x)在[-1,2]上单调递增,故选项D错误.命题点2 求已知函数的极值例2 (2022·西南大学附中模拟)已知函数f(x)=ln x+2ax2+2(a+1)x(a≠0),讨论函数f(x)的极值.因为f(x)=ln x+2ax2+2(a+1)x,若a>0,则当x∈(0,+∞)时,f′(x)>0恒成立,故函数f(x)在(0,+∞)上单调递增,无极值.当a>0时,f(x)无极值.命题点3 已知极值(点)求参数例3 (1)(2023·福州质检)已知函数f(x)=x(x-c)2在x=2处有极小值,则c的值为√A.2B.4C.6D.2或6由题意,f′(x)=(x-c)2+2x(x-c)=(x-c)·(3x-c),则f′(2)=(2-c)(6-c)=0,所以c=2或c=6.若c=2,则f′(x)=(x-2)(3x-2),当x∈(2,+∞)时,f′(x)>0,f(x)单调递增,函数f(x)在x=2处有极小值,满足题意;若c=6,则f′(x)=(x-6)(3x-6),当x∈(-∞,2)时,f′(x)>0,f(x)单调递增;当x∈(2,6)时,f′(x)<0,f(x)单调递减;当x∈(6,+∞)时,f′(x)>0,f(x)单调递增,函数f(x)在x=2处有极大值,不符合题意.综上,c=2.(2)(2023·威海模拟)若函数f(x)=e x-ax2-2ax有两个极值点,则实数a的取值范围为√由f(x)=e x-ax2-2ax,得f′(x)=e x-2ax-2a.因为函数f(x)=e x-ax2-2ax有两个极值点,所以f′(x)=e x-2ax-2a有两个变号零点,当x>0时,g′(x)<0;当x<0时,g′(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减.思维升华根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则a+b的值为A.-1或3B.1或-3√C.3D.-1因为f(x)=x3+ax2+bx-a2-7a,所以f′(x)=3x2+2ax+b,因为函数f(x)在x=1处取得极大值10,所以f′(1)=3+2a+b=0,①f(1)=1+a+b-a2-7a=10,②联立①②,解得a=-2,b=1或a=-6,b=9.当a=-6,b=9时,f′(x)=3x2-12x+9=(x-1)(3x-9),f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减,故f(x)在x=1处取得极大值10,符合题意.综上可得,a=-6,b=9.则a+b=3.√∴φ(x)在(0,2)上单调递减,在(2,+∞)上单调递增,又当x→+∞时,φ(x)→+∞,命题点1 不含参函数的最值例4 (2022·全国乙卷)函数f(x)=cos x+(x+1)sin x+1在区间[0,2π]的最小值、最大值分别为√f(x)=cos x+(x+1)sin x+1,x∈[0,2π],则f′(x)=-sin x+sin x+(x +1)·cos x=(x+1)cos x,x∈[0,2π].又f(0)=cos 0+(0+1)sin 0+1=2,f(2π)=cos 2π+(2π+1)sin 2π+1=2,命题点2 含参函数的最值例5 已知函数f(x)=-ln x(a∈R).(1)讨论f(x)的单调性;①若a≤0,则f′(x)<0在(0,+∞)上恒成立,所以f(x)在(0,+∞)上单调递减;②若a>0,则当x>a时,f′(x)<0;当0<x<a时,f′(x)>0,所以f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.所以f(x)max=f(a)=-ln a;思维升华求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f(x)的最值.跟踪训练2 (1)(2021·新高考全国Ⅰ)函数f(x)=|2x-1|-2ln x的最小值1为_____.函数f(x)=|2x-1|-2ln x的定义域为(0,+∞).当x>1时,f′(x)>0,所以f(x)min=f(1)=2-1-2ln 1=1;综上,f(x)min=1.(2)已知函数h(x)=x-a ln x+ (a∈R)在区间[1,e]上的最小值小于零,求a的取值范围.①当a+1≤0,即a≤-1时,h′(x)>0恒成立,即h(x)在(0,+∞)上单调递增,则h(x)在[1,e]上单调递增,故h(x)min=h(1)=2+a<0,解得a<-2;②当a+1>0,即a>-1时,在(0,a+1)上,h′(x)<0,在(a+1,+∞)上,h′(x)>0,所以h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增,若a+1≤1,求得h(x)min>1,不合题意;若1<a+1<e,即0<a<e-1,则h(x)在(1,a+1)上单调递减,在(a+1,e)上单调递增,故h(x)min=h(a+1)=2+a[1-ln(a+1)]>2,不合题意;若a+1≥e,即a≥e-1,则h(x)在[1,e]上单调递减,第三部分1.(多选)已知函数f(x)的导函数f′(x)的图象如图所示,则下列结论中正确的是A.f(x)在区间(-2,3)上有2个极值点B.f′(x)在x=-1处取得极小值C.f(x)在区间(-2,3)上单调递减D.f(x)在x=0处的切线斜率小于0√√√根据f′(x)的图象可得,在(-2,3)上,f′(x)≤0,∴f(x)在(-2,3)上单调递减,∴f(x)在区间(-2,3)上没有极值点,故A错误,C正确;由f′(x)的图象易知B正确;根据f′(x)的图象可得f′(0)<0,即f(x)在x=0处的切线斜率小于0,故D正确.√。
核心考点·精准研析考点一 关于函数零点或方程的根的存在性问题【典例】1.(2021·泰安模拟)若函数f(x)=ax 3-32x 2+1存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( )A.(-∞,-√22)B.(-√2,0)C.(0,√2)D.(√22,+∞)2.(2021·扬州模拟)已知函数f(x)={2x 2,x ≤0,e x ,x >0,若方程[f(x)]2=a恰有两个不同的实数根x 1,x 2,则x 1+x 2的最大值是________. 【解题导思】序号 联想解题1由存在唯一的零点x 0,且x 0>0,想到分离变量a 构建新函数2由[f(x)]2=a 恰有两个不同的实数根,想到f(x)=√a ,数形结合求x 1,x 2,构建函数.【解析】1.选A.由函数f(x)=ax 3-2x 2+1存在唯一的零点x 0,且x 0>0等价于a=32x 2-1x3有唯一正根,即函数y=g(x)=32x 2-1x3的图象与直线y=a 在y 轴右侧有1个交点,又y=g(x)为奇函数且g ′(x)=3(√2-x )(√2+x )2x 4,则y=g(x)在(-∞,-√2),(√2,+∞)上为减函数,在(-√2,0),(0,√2)上为增函数,则满足题意时y=g(x)的图象与直线y=a 的位置关系如图所示,即实数a的取值范围是a<-√22.2.作出f(x)的函数图象如图所示,由[f(x)]2=a,可得f(x)=√a,所以√a>1,即a>1,不妨设x1<x2,则2x12=e x2=√a,令√a=t(t>1),则x1=-√t2,x2=ln t,所以x1+x2=ln t-√t2,令g(t)=ln t-√t2,则g′(t)=4-√2t4t,所以当1<t<8时,g′(t)>0,g(t)在(1,8)上递增;当t>8时,g′(t) <0,g(t)在(8,+∞)上递减;所以当t=8时,g(t)取得最大值g(8)=ln 8-2=3ln 2-2.答案:3ln 2-2题1条件改为f(x)=ax3-3x2+1,其他条件不变,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为________.【解析】当a=0时,不符合题意.a≠0时,f′(x)=3ax2-6x,令f′(x)=0,得x1=0,x2=2a.若a>0,由图象知f(x)有负数零点,不符合题意.若a<0,由图象结合f(0)=1>0知,此时必有f(2a)>0,即a×8a3-3×4a2+1>0,化简得a2>4,又a<0,所以a<-2.答案:(-∞,-2)导数法研究函数零点的存在性问题的策略(1)基本依据:函数零点的存在性定理.(2)注意点:函数零点的存在性定理是函数存在零点的充分不必要条件.(3)基本方法:导数法分析函数的单调性、极值、区间端点函数值,画出函数的草图,数形结合求参数的值.(4)常见技巧:将已知等式适当变形,转化为有利于用导数法研究性质的形式.已知函数f(x)=x+e x-a, g(x)=ln(x+2)-4e a-x,其中e为自然对数的底数,若存在x0使f(x0)-g(x0)=3成立,则实数 a的值为( )2 2-12-1【解析】选(x)-g(x)=x+e x-a-ln(x+2)+4e a-x,令y=x-ln(x+2),y′=1-1x+2=x+1 x+2,故y=x-ln(x+2)在(-2,-1)上是减函数,(-1,+∞)上是增函数,故当x=-1时,y 有最小值-1-0=-1,而e x-a +4e a-x ≥4(当且仅当e x-a =4e a-x ,即x=a+ln 2时,等号成立);故f(x)-g(x)≥3(当且仅当等号同时成立时,等号成立);故a+ln 2=-1,即a=-1-ln 2.考点二 关于函数极值、最值的存在性问题【典例】(2021·大连模拟)已知x=1是函数f(x)=ax 2+x2-xln x 的极值点.(1)求实数a 的值.(2)求证:函数f(x)存在唯一的极小值点x 0,且0<f(x 0)<716.(参考数据:ln 2≈,16e 5<74,其中e 为自然对数的底数) 【解题导思】 序号题目拆解(1)求实数a 的值(2)由f ′(1)=0求a,并用极值的定义检验函数f(x)存在唯一的极小值点x 0,且0<f(x 0)<716结合(1)分析函数f(x)的单调性,利用零点存在性定理确定极小值点x 0所在区间,计算f(x 0)的取值范围【解析】(1)因为f ′(x)=2ax-2-ln x,且x=1是极值点,所以 f ′(1)=2a-12=0,所以a=14.此时f ′(x)=x 2-12-ln x ,设g(x)=f ′(x) ,则g ′(x)=12-1x=x -22x.则当0<x<2时,g ′(x)<0,g(x)为减函数.又g(1)=0,g(2)=12-ln 2<0,所以当0<x<1时,g(x)>0 ,f(x) 为增函数;当1<x<2时,g(x)<0 ,f(x)为减函数.所以x=1为f(x)的极大值点,符合题意.(2)当x>2时,g′(x)>0,g(x)为增函数,且g(4)=32-2ln 2>0 ,g(2)<0,所以存在x0∈(2,4),g(x0)=0.当2<x<x0时,g(x)<0 ,f(x)为减函数;当4>x>x0时,g(x)>0 ,f(x) 为增函数,所以函数f(x)存在唯一的极小值点x0.又g(72)=54-ln 72,已知16e5<74 ,可得e5<(72)4⇒5<4ln 72,所以g(72)<0,所以72<x0<4 ,且满足x02-12-ln x0=0.所以f(x0)=x024+x02-x0ln x0=-x024+x0∈(0,716).导数法研究函数极值、最值存在性问题的原则(1)弄清用导数法求函数(不含参数)的极值、最值的一般步骤,及关键步骤要注意的问题.(2)在某区间上函数存在极值点,即方程f′(x)=0一定有根,但方程有根,并不一定是极值点,还要判断函数的单调性,看原函数在此根的左右两侧是否出现单调性改变,通常要结合函数图象解决.(3)在某区间上函数存在最值,通常假设存在最值,根据题目条件求出后构建方程,解出参数的值并进行检验.(2021·抚顺模拟)已知函数f(x)=ln x-ax-3(a≠0).(1)讨论函数f(x)的单调性.(2)若函数f(x)有最大值M,且M>a-5,求实数a 的取值范围. 【解析】(1)f(x)的定义域为(0,+∞), 由已知得f ′(x)=1x -a,当a<0时,f ′(x)>0,所以,f(x)在(0,+∞)内单调递增,无减区间; 当a>0时,令f ′(x)=0,得x=1a ,所以当x ∈(0,1a)时f ′(x)>0,f(x)单调递增;当x ∈(1a,+∞)时f ′(x)<0,f(x)单调递减.(2)由(1)知,当a<0时,f(x)在(0,+∞)内单调递增,无最大值, 当a>0时,函数f(x)在x=1a 取得最大值,即f(x)max =f (1a)=ln 1a-4=-ln a-4,因此有-ln a-4>a-5,得ln a+a-1<0,设g(a)=ln a+a-1,则g ′(a)=1a +1>0,所以g(a)在(0,+∞)内单调递增,又g(1)=0,所以g(a)<g(1),得0<a<1, 故实数a 的取值范围是(0,1). 考点三 关于不等式的存在性问题【典例】1.已知f(x)=ln x-x 4+34x,g(x)=-x 2-2ax+4,若对∀x 1∈(0,2], ∃x 2∈[1,2],使得f(x 1)≥g(x 2)成立,则a 的取值范围是 ( ) A.[-18,+∞) B.[25-8ln216,+∞)C.[-18,54] D.(-∞,54) 【解题导思】序号联想解题【解析】选A.因为f(x)=ln x-4+4x,x ∈(0,2], 所以f ′(x)=1x -14-34x 2=-(x -1)(x -3)4x 2,令f ′(x)=0,解得x=1或x=3(舍),从而0<x<1,f ′(x)<0;1<x<2,f ′(x)>0; 所以当x=1时,f(x)取最小值,为12,因此∃x ∈[1,2],使得12≥-x 2-2ax+4成立,所以a ≥(-x 2+74x )最小值,因为y=-x2+74x在[1,2]上单调递减,所以y=-x2+74x的最小值为-22+78=-18,因此a ≥-18.2.已知函数f(x)=ax-e x (a ∈R),g(x)=lnx x.(1)求函数f(x)的单调区间.(2)∃x 0∈(0,+∞),使不等式f(x)≤g(x)-e x 成立,求a 的取值范围. 【解题导思】【解析】(1)因为f ′(x)=a-e x ,x ∈R.当a ≤0时,f ′(x)<0,f(x)在R 上单调递减; 当a>0时,令f ′(x)=0得x=ln a.由f ′(x)>0得f(x)的单调递增区间为(-∞,ln a); 由f ′(x)<0得f(x)的单调递减区间为(ln a,+∞).综上,当a ≤0时,f(x)的单调减区间为R;当a>0时,f(x)的单调增区间为(-∞,ln a);单调减区间为(ln a,+∞).(2)因为∃x 0∈(0,+∞),使不等式f(x)≤g(x)-e x , 所以ax ≤lnx x,即a ≤lnx x 2.设h(x)=lnx x2,则问题转化为a ≤(lnx x 2)max,由h ′(x)=1-2lnx x 3,令h ′(x)=0,则x=√e .当x 在区间(0,+∞)内变化时,h ′(x),h(x)的变化情况如下表:x (0,√e ) √e(√e ,+∞)h ′(x) + 0 - h(x)↗极大值12e↘由上表可知,当x=√e 时,函数h(x)有极大值,即最大值为12e.所以a ≤12e.1.不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x ∈D 恒成立,应求f(x)的最小值;若存在x ∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错. 2.两个常用结论(1)∃x ∈I,使得f(x)>g(x)成立⇔[f(x)-g(x)]max >0(x ∈I). (2)对∀x 1∈D 1,∃x 2∈D 2使得f(x 1)≥g(x 2)⇔f(x)min ≥g(x)min ,f(x)的定义域为D 1,g(x)的定义域为D 2.已知f(x)=ln x-x+a+1.(1)若存在x ∈(0,+∞),使得f(x)≥0成立,求实数a 的取值范围. (2)求证:当x>1时,在(1)的条件下,12x 2+ax-a>xln x+12成立.【解析】f(x)=ln x-x+a+1(x>0).(1)原题即为存在x ∈(0,+∞)使得ln x-x+a+1≥0, 所以a ≥-ln x+x-1, 令g(x)=-ln x+x-1, 则g ′(x)=-1x +1=x -1x.令g ′(x)=0,解得x=1.因为当0<x<1时,g ′(x)<0,所以g(x)为减函数, 当x>1时,g ′(x)>0,所以g(x)为增函数, 所以g(x)min =g(1)=0.所以a ≥g(1)=0. 所以a 的取值范围为[0,+∞). (2)原不等式可化为12x 2+ax-xln x-a-12>0(x>1,a ≥0).令G(x)=12x 2+ax-xln x-a-12,则G(1)=0.由(1)可知x>1时,x-ln x-1>0,则G ′(x)=x+a-ln x-1 ≥x-ln x-1>0,所以G(x)在(1,+∞)上递增, 所以当x>1时,G(x)>G(1)=0. 所以当x>1时,12x 2+ax-xln x-a-12>0成立,即当x>1时,12x 2+ax-a>xln x+12成立.。
第2讲导数的应用考纲展示命题探究1函数的单调性与导数的关系2用充分必要条件来诠释导数与函数单调性的关系(1)f′(x)>0(或f′(x)<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)f′(x)≥0(或f′(x)≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件(f′(x)=0不恒成立).注意点应用导数解决函数单调性问题的原则方法(1)求函数f(x)的单调区间,也是求不等式f′(x)>0(或f′(x)<0)的解集,但单调区间不能脱离函数定义域而单独存在,求单调区间要坚持“定义域优先”的原则.(2)由函数f(x)在区间[a,b]内单调递增(或递减),可得f′(x)≥0(或f′(x)≤0)在该区间恒成立,而不是f′(x)>0(或f′(x)<0)恒成立,“=”不能少.必要时还需对“=”进行检验.1.思维辨析(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)f(x)在(a,b)上单调递增与(a,b)是f(x)的单调递增区间是相同的说法.()答案(1)×(2)√(3)×2.函数y=(3-x2)e x的单调递增区间是()A.(-∞,0) B.(0,+∞)C.(-∞,-3)和(1,+∞) D.(-3,1)答案 D解析y′=-2x e x+(3-x2)e x=e x(-x2-2x+3),由y′>0⇒x2+2x-3<0⇒-3<x<1,∴函数y=(3-x2)e x的单调递增区间是(-3,1).故选D.3.函数f (x )=e x -2x 的单调递增区间是________.答案 (ln 2,+∞)解析 f ′(x )=e x -2,令f ′(x )=0得x =ln 2.当x ∈(ln 2,+∞)时,f ′(x )>0,∴f (x )=e x -2x 的单调递增区间为(ln 2,+∞).[考法综述] 单调性是导数几种应用中最基本也是最重要的内容,因为求极值和最值都离不开单调性.利用导数讨论函数单调性或求函数的单调区间是导数的重要应用,也是高考的热点,经常在解答题的分支问题中出现,难度一般.命题法 判断函数的单调性典例 已知函数f (x )=ln x -mx +m ,m ∈R .(1)已知函数f (x )在点(1,f (1))处与x 轴相切,求实数m 的值;(2)求函数f (x )的单调区间;(3)在(1)的结论下,对于任意的0<a <b ,证明:f (b )-f (a )b -a<1a -1. [解] 由f (x )=ln x -mx +m ,得f ′(x )=1x -m (x >0).(1)依题意得f ′(1)=1-m =0,即m =1.(2)当m ≤0时,f ′(x )=1x -m >0,函数f (x )在(0,+∞)上单调递增;当m >0时,f ′(x )=-m ⎝⎛⎭⎪⎫x -1m x ,由f ′(x )>0,得x ∈⎝ ⎛⎭⎪⎫0,1m ,由f ′(x )<0,得x ∈⎝ ⎛⎭⎪⎫1m ,+∞, 即函数f (x )在⎝ ⎛⎭⎪⎫0,1m 上单调递增,在⎝ ⎛⎭⎪⎫1m ,+∞上单调递减. (3)证明:由(1)知m =1,得f (x )=ln x -x +1,对于任意的0<a <b ,f (b )-f (a )b -a<1a -1可化为(ln b -b )-(ln a -a )b -a<1a -1,因为0<a <b ,所以有b -a >0,故不等式可化为(ln b -b )-(ln a -a )<⎝ ⎛⎭⎪⎫1a -1(b -a ),即ln b a <b a -1,令t =b a ,得ln t -t +1<0(t >1),令f (t )=ln t -t +1.由(2)知,函数f (x )在(1,+∞)上单调递减,且f (1)=0,即f (t )<f (1),于是上式成立,故对于任意的0<a <b ,f (b )-f (a )b -a <1a-1成立. 【解题法】 单调区间的求法及由单调性求参数取值范围的方法(1)利用导数求函数的单调区间的两个方法①方法一:a.确定函数y =f (x )的定义域;b .求导数y ′=f ′(x );c .解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;d .解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间. ②方法二:a.确定函数y =f (x )的定义域;b .求导数y ′=f ′(x ),令f ′(x )=0,解此方程,求出在定义域内的一切实根;c .把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义域分成若干个小区间;d .确定f ′(x )在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.(2)由函数的单调性求参数的取值范围的方法①可导函数在某一区间上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)(f ′(x )在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围.②可导函数在某一区间上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题.③若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.1.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1 B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34 D.⎣⎢⎡⎭⎪⎫32e ,1 答案 D解析 由题意可知存在唯一的整数x 0,使得e x 0(2x 0-1)<ax 0-a ,设g (x )=e x (2x -1),h (x )=ax -a ,由g ′(x )=e x (2x +1)可知g (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减,在⎝ ⎛⎭⎪⎫-12,+∞上单调递增,作出g (x )与h (x )的大致图象如图所示,故⎩⎪⎨⎪⎧ h (0)>g (0)h (-1)≤g (-1),即⎩⎨⎧ a <1-2a ≤-3e ,所以32e≤a <1,故选D.2.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)答案 A解析 令F (x )=f (x )x ,因为f (x )为奇函数,所以F (x )为偶函数,由于F ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,所以F (x )=f (x )x 在(0,+∞)上单调递减,根据对称性,F (x )=f (x )x 在(-∞,0)上单调递增,又f (-1)=0,f (1)=0,数形结合可知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).故选A.3.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k <1k B .f ⎝ ⎛⎭⎪⎫1k >1k -1 C .f ⎝ ⎛⎭⎪⎫1k -1<1k -1 D .f ⎝ ⎛⎭⎪⎫1k -1>k k -1答案 C解析 构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数.∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0,∴g ⎝ ⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0, 即f ⎝ ⎛⎭⎪⎫1k -1>k k -1-1=1k -1, 所以选项C 错误,故选C.4.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)答案 C解析 (1)当a =0时,显然f (x )有两个零点,不符合题意.(2)当a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,解得x 1=0,x 2=2a .当a >0时,2a >0,所以函数f (x )=ax 3-3x 2+1在(-∞,0)与⎝ ⎛⎭⎪⎫2a ,+∞上为增函数,在⎝⎛⎭⎪⎫0,2a 上为减函数,因为f (x )存在唯一零点x 0,且x 0>0,则f (0)<0,即1<0,不成立.当a <0时,2a <0,所以函数f (x )=ax 3-3x 2+1在⎝ ⎛⎭⎪⎫-∞,2a 和(0,+∞)上为减函数,在⎝ ⎛⎭⎪⎫2a ,0上为增函数,因为f (x )存在唯一零点x 0,且x 0>0,则f ⎝ ⎛⎭⎪⎫2a >0,即a ·8a 3-3·4a 2+1>0,解得a >2或a <-2,又因为a <0,故a 的取值范围为(-∞,-2).选C.5.已知函数f (x )=-2(x +a )ln x +x 2-2ax -2a 2+a ,其中a >0.(1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.解 (1)由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x-a )-2ln x -2⎝ ⎛⎭⎪⎫1+a x , 所以g ′(x )=2-2x +2a x 2=2⎝ ⎛⎭⎪⎫x -122+2⎝ ⎛⎭⎪⎫a -14x 2当0<a <14时,g (x )在区间⎝ ⎛⎭⎪⎫0,1-1-4a 2,⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增,在区间⎝ ⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减; 当a ≥14时,g (x )在区间(0,+∞)上单调递增.(2)证明:由f ′(x )=2(x -a )-2ln x -2⎝ ⎛⎭⎪⎫1+a x =0,解得a =x -1-ln x 1+x -1. 令φ(x )=-2⎝ ⎛⎭⎪⎫x +x -1-ln x 1+x -1ln x +x 2-2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -1x -2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -12+x -1-ln x 1+x -1. 则φ(1)=1>0,φ(e)=-e (e -2)1+e -1-2⎝ ⎛⎭⎪⎫e -21+e -12<0. 故存在x 0∈(1,e),使得φ(x 0)=0.令a 0=x 0-1-ln x 01+x -10,u (x )=x -1-ln x (x ≥1). 由u ′(x )=1-1x ≥0知,函数u (x )在区间(1,+∞)上单调递增.所以0=u (1)1+1<u (x 0)1+x -10=a 0<u (e )1+e -1=e -21+e -1<1. 即a 0∈(0,1).当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0.由(1)知,f ′(x )在区间(1,+∞)上单调递增,故当x ∈(1,x 0)时,f ′(x )<0,从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0,从而f (x )>f (x 0)=0.所以,当x ∈(1,+∞)时,f (x )≥0.综上所述,存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.6.设函数f (x )=3x 2+ax e x (a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x(e x )2=-3x 2+(6-a )x +a e x,因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e , 从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x-e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +a e x, 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366, x 2=6-a +a 2+366. 当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数;当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92, 故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞. 7.函数f (x )=ax 3+3x 2+3x (a ≠0).(1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.解 (1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ). ①若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1. 故此时f (x )在R 上是增函数.②由于a ≠0,故当a <1时,f ′(x )=0有两个根:x 1=-1+1-a a ,x 2=-1-1-a a. 若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时f ′(x )>0, 故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数;若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,0∪(0,+∞). 1 判断函数极值的方法一般地,当函数f (x )在点x 0处连续时,(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;(2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.2 求可导函数f (x )的极值的步骤(1)求导函数f ′(x );(2)求方程f ′(x )=0的根;(3)检验f ′(x )在方程f ′(x )=0的根的左右两侧的函数值的符号,如果左正右负,那么函数y =f (x )在这个根处取得极大值;如果左负右正,那么函数y =f (x )在这个根处取得极小值,可列表完成.3 函数的最值在闭区间[a ,b ]上的连续函数y =f (x ),在[a ,b ]上必有最大值与最小值.在区间(a ,b )上的连续函数y =f (x ),若有唯一的极值点,则这个极值点就是最值点.注意点 极值点的含义及极值与最值的关系(1)“极值点”不是点,若函数f (x )在x 1处取得极大值,则x 1即为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2).(2)极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.1.思维辨析(1)导数为零的点不一定是极值点.( )(2)三次函数在R 上必有极大值和极小值.( )(3)函数的极大值不一定比极小值大.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )(6)函数f (x )=x sin x 有无数个极值点.( )答案 (1)√ (2)× (3)√ (4)× (5)√ (6)√2.函数y =x 4-4x +3在区间[-2,3]上的最小值为( )A .72B .36C .12D .0 答案 D解析 因为y ′=4x 3-4,令y ′=0即4x 3-4=0,解得x =1.当x <1时,y ′<0,当x >1时,y ′>0,所以函数的极小值为y |x =1=0,而在端点处的函数值y |x =-2=27,y |x =3=72,所以y min =0.3.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3 答案 A解析 ∵f ′(x )=3ax 2+b ,∴f ′(1)=3a +b =0.①又当x =1时有极值-2,∴a +b =-2.②联立①②解得⎩⎪⎨⎪⎧a =1,b =-3. [考法综述] 函数的极值与最值是高考热点内容,对极值的考查主要有2个命题角度:①判断极值的情况,②已知函数求极值.考查函数最值时必定涉及函数的单调性,还会涉及方程和不等式.题型有大题也有小题且有一定难度.另外已知函数的极值(最值)情况求参数的取值范围也是热点考查内容,涉及函数的单调性时,往往需要进行分类讨论,这类题综合性强,难度较大.命题法 求函数的极值与最值典例 已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2(x <1),a ln x (x ≥1). (1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.[解] (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表: x(-∞,0) 0 f ′(x )- 0 + 0 -f (x )极小值 极大值 点为x =23.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增. 因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增,则f (x )在[1,e]上的最大值为f (e)=a .故当a ≥2时,f (x )在[-1,e]上的最大值为a ;当a <2时,f (x )在[-1,e]上的最大值为2.【解题法】 求函数极值和最值的方法(1)求函数的极值应先确定函数的定义域,再解方程f ′(x )=0,再判断f ′(x )=0的根是否是极值点,可通过列表结合导函数与0的大小(或函数的单调性)进行分析,若遇极值点含参数不能比较大小时,则需分类讨论.(2)函数的最大值①若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.②若函数在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成.③函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或小)值点,此结论在导数的实际应用中经常用到.1.对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A .-1是f (x )的零点B .1是f (x )的极值点C .3是f (x )的极值D .点(2,8)在曲线y =f (x )上答案 A解析 由A 知a -b +c =0;由B 知f ′(x )=2ax +b,2a +b =0;由C 知f ′(x )=2ax +b ,令f ′(x )=0可得x =-b 2a ,则f ⎝ ⎛⎭⎪⎫-b 2a =3,则4ac -b 24a =3;由D 知4a +2b +c =8.假设A 选项错误,则⎩⎪⎨⎪⎧ a -b +c ≠0,2a +b =0,4ac -b 24a =3,4a +2b +c =8,得⎩⎪⎨⎪⎧ a =5,b =-10,c =8,满足题意,故A 结论错误.同理易知当B 或C 或D 选项错误时不符合题意,故选A.2.已知函数f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当x ∈(0,1)时,f (x )取得极大值,当x ∈(1,2)时,f (x )取得极小值,则⎝ ⎛⎭⎪⎫b +122+(c -3)2的取值范围是( )A.⎝ ⎛⎭⎪⎫372,5 B .(5,5) C.⎝ ⎛⎭⎪⎫374,25 D .(5,25)答案 D解析 因为f ′(x )=3x 2+2bx +c ,f ′(x )的两个根分别在(0,1)和(1,2)内,所以f ′(0)>0,f ′(1)<0,f ′(2)>0,即⎩⎪⎨⎪⎧ c >0,3+2b +c <0,12+4b +c >0,作出可行域如图中阴影部分所示(不包括b 轴),⎝ ⎛⎭⎪⎫b +122+(c -3)2表示可行域内一点到点P ⎝ ⎛⎭⎪⎫-12,3的距离的平方,由图象可知,P ⎝ ⎛⎭⎪⎫-12,3到直线3+2b +c =0的距离最小,即⎝ ⎛⎭⎪⎫b +122+(c -3)2的最小值为⎝ ⎛⎭⎪⎫|3-1+3|52=5,P ⎝ ⎛⎭⎪⎫-12,3到点A ⎝ ⎛⎭⎪⎫-92,6的距离最大,此时⎝ ⎛⎭⎪⎫b +122+(c -3)2=25,因为可行域的临界线为虚线,所以所求范围为(5,25),故选D.3.若函数f (x )=x 3-3x 在(a,6-a 2)上有最小值,则实数a 的取值范围是( )A .(-5,1)B .[-5,1)C .[-2,1)D .(-2,1)答案 C 解析 令f ′(x )=3x 2-3=0,得x =±1,且x =-1为函数f (x )的极大值点,x =1为函数f (x )的极小值点.函数f (x )在区间(a,6-a 2)上有最小值,则函数f (x )的极小值点必在区间(a,6-a 2)内,且左端点的函数值不小于f (1),即实数a 满足a <1<6-a 2且f (a )=a 3-3a ≥f (1)=-2,解得-5<a <1,且a ≥-2.故实数a 的取值范围是[-2,1).4.设函数f (x )=e x (sin x -cos x )(0≤x ≤2015π),则函数f (x )的各极小值之和为( )A .-e 2π(1-e 2015π)1-e 2πB .-e 2π(1-e 2015π)1-e πC .-1-e 2016π1-e 2πD .-e 2π(1-e 2014π)1-e 2π答案 D解析 因为f ′(x )=2e x sin x ,所以x ∈(2k π+π,2k π+2π)(k ∈Z )时,f ′(x )<0,f (x )单调递减,x ∈(2k π+2π,2k π+3π)(k ∈Z )时,f ′(x )>0,f (x )单调递增,故当x =2k π+2π(k ∈Z )时,f (x )取极小值,其极小值为f (2k π+2π)=-e 2k π+2π(k ∈Z ),又0≤x ≤2015π,所以f (x )的各极小值之和S =-e 2π-e 4π-…-e 2014π=-e 2π(1-e 2014π)1-e 2π,故选D. 5.已知点M 在曲线y =3ln x -x 2上,点N 在直线x -y +2=0上,则|MN |的最小值为________.答案 2 2解析 当点M 处的曲线的切线与直线x -y +2=0平行时|MN |取得最小值.令y ′=-2x +3x =1,解得x =1,所以点M 的坐标为(1,-1),所以点M 到直线x -y +2=0的距离为|1+2+1|2=22,即|MN |的最小值为2 2.6.函数f (x )=x 3-3x 2+6在x =________时取得极小值. 答案 2解析 依题意得f ′(x )=3x (x -2).当x <0或x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.因此,函数f (x )在x =2时取得极小值.7.设函数f (x )=(x +a )ln x ,g (x )=x 2e x .已知曲线y =f (x )在点(1,f (1))处的切线与直线2x -y =0平行.(1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值.解 (1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2,所以f ′(1)=2,又f ′(x )=ln x +a x +1,所以a =1.(2)k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根.设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x ,当x ∈(0,1]时,h (x )<0,又h (2)=3ln 2-4e 2=ln 8-4e 2>1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0.因为h ′(x )=ln x +1x +1+x (x -2)e x ,所以当x ∈(1,2)时,h ′(x )>1-1e >0,当x ∈[2,+∞)时,h ′(x )>0,所以当x ∈(1,+∞)时,h (x )单调递增.所以k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根.(3)由(2)知方程f (x )=g (x )在(1,2)内存在唯一的根x 0,且x ∈(0,x 0)时,f (x )<g (x ),x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )=⎩⎨⎧ (x +1)ln x ,x ∈(0,x 0],x 2e x ,x ∈(x 0,+∞).当x ∈(0,x 0]时,若x ∈(0,1],m (x )≤0;若x ∈(1,x 0],由m ′(x )=ln x +1x +1>0.可知0<m (x )≤m (x 0).故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )e x ,可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增;x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减.可知m (x )≤m (2)=4e 2,且m (x 0)<m (2).综上可得,函数m (x )的最大值为4e 2.8.设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a 3, x 2=-1+4+3a 3,x 1<x 2, 所以f ′(x )=-3(x -x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0.故f (x )在(-∞,x 1)和(x 2,+∞)内单调递减,在(x 1,x 2)内单调递增.(2)因为a >0,所以x 1<0,x 2>0.①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增.所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减.所以f (x )在x =x 2=-1+4+3a 3处取得最大值. 又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0处和x =1处同时取得最小值;当1<a <4时,f (x )在x =0处取得最小值. 9.设函数f (x )=e x x 2-k ⎝ ⎛⎭⎪⎫2x +ln x (k …是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.解 (1)f ′(x )=e x ·x 2-2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x =(x -2)(e x -kx )x 3(x >0), 由k ≤0,知e x -kx >0,令f ′(x )=0,则x =2,当x ∈(0,2)时,f ′(x )<0,f (x )为减函数,当x ∈(2,+∞)时,f ′(x )>0,f (x )为增函数.综上,f (x )的减区间为(0,2),增区间为(2,+∞).(2)由题意知f ′(x )=0,即e x -kx =0在(0,2)内存在两个不等实根. 令g (x )=e x -kx ,g ′(x )=e x -k ,令g ′(x )=0,x =ln k ,则0<ln k <2,即1<k <e 2.当0<x <ln k 时,g ′(x )<0,g (x )为减函数.当ln k <x <2时,g (x )为增函数.∵g (0)=1>0,只需⎩⎪⎨⎪⎧g (2)>0,g (ln k )<0,即⎩⎪⎨⎪⎧e 2-2k >0,e ln k -k ·ln k <0,得e<k <e 22. 综上可知,k 的取值范围是⎝ ⎛⎭⎪⎫e ,e 22 10.已知函数f (x )=ln x -a (x 2-x )(a ∈R ).(1)当a =1时,求f (x )在点(1,f (1))处的切线方程;(2)求f (x )在[1,2]上的最大值.解 (1)当a =1时,f (x )=ln x -x 2+x ,f ′(x )=1x -2x +1. ∴f (1)=0,f ′(1)=0,即所求切线方程为:y =0.(2)∵f ′(x )=1x -2ax +a =-2ax 2+ax +1x,x >0. ∴当a =0时,f ′(x )>0,f (x )在[1,2]上单调递增.∴f (x )max =f (2)=ln 2.当a ≠0时,可令g (x )=-2ax 2+ax +1,x ∈[1,2],g (x )的对称轴x =14且过点(0,1).∴当a <0时,f ′(x )>0在[1,2]上恒成立,f (x )在[1,2]上单调递增, ∴f (x )max =f (2)=ln 2-2a .当a >0时,若g (1)≤0,即a ≥1时,f ′(x )<0在[1,2]上恒成立. f (x )在[1,2]上单调递减,∴f (x )max =f (1)=0.若g (1)>0,g (2)<0,即16<a <1时,f ′(x )在⎣⎢⎡⎭⎪⎫1,a +a 2+8a 4a 上大于零, 在⎝ ⎛⎦⎥⎤a +a 2+8a 4a ,2上小于零, ∴f (x )在⎣⎢⎡⎦⎥⎤1,a +a 2+8a 4a 上单调递增, 在⎝ ⎛⎦⎥⎤a +a 2+8a 4a ,2上单调递减.∴f (x )max =f ⎝ ⎛⎭⎪⎫a +a 2+8a 4a =ln a +a 2+8a 4a +a 2+8a +a -48. 若g (1)>0,g (2)≥0,即0<a ≤16时,f ′(x )>0在[1,2]上恒成立,f (x )在[1,2]上单调递增,∴f (x )max =f (2)=ln 2-2a .综上:f (x )max =⎩⎪⎨⎪⎧ ln 2-2a ,a ≤16ln a +a 2+8a 4a +a 2+8a +a -48,16<a <10,a ≥1.11.已知函数f (x )=-x 3+ax 2-4(a ∈R ),f ′(x )是f (x )的导函数.(1)当a =2时,对于任意的m ∈[-1,1],n ∈[-1,1],求f (m )+f ′(n )的最小值;(2)若存在x 0∈(0,+∞),使f (x 0)>0,求a 的取值范围.解 (1)由题意得f (x )=-x 3+2x 2-4,f ′(x )=-3x 2+4x .令f ′(x )=0,得x =0或43.当x 在[-1,1]上变化时,f ′(x ),f (x )随x 的变化情况如下表:∵f ′(x )=-3x 2+4x 的对称轴为直线x =23,且抛物线开口向下,∴对于n ∈[-1,1],f ′(n )的最小值为f ′(-1)=-7.∴f (m )+f ′(n )的最小值为-11.(2)∵f ′(x )=-3x ⎝⎛⎭⎪⎫x -2a 3.①若a ≤0,当x >0时,f ′(x )<0,∴f (x )在(0,+∞)上单调递减.又f (0)=-4,则当x >0时,f (x )<-4.∴当a ≤0时,不存在x 0>0,使f (x 0)>0.②若a >0,则当0<x <2a 3时,f ′(x )>0;当x >2a 3时,f ′(x )<0.从而f (x )在⎝ ⎛⎦⎥⎤0,2a 3上单调递增,在⎣⎢⎡⎭⎪⎫2a 3,+∞上单调递减, ∴当x ∈(0,+∞)时,f (x )max =f ⎝ ⎛⎭⎪⎫2a 3=-8a 327+4a 39-4=427a 3-4. 根据题意,得4a 327-4>0,即a 3>27,解得a >3.综上,a 的取值范围是(3,+∞).1 利用导数证明不等式的常用技巧(1)利用给定函数的某些性质,如函数的单调性、最值、极值等,服务于所要证明的不等式.(2)当给出的不等式无法直接证明时,先对不等式进行等价转化后再进行求证.(3)根据不等式的结构特征构造函数,利用函数的最值进行求证,构造函数的方法较为灵活,要结合具体问题,平时要多积累.其一般步骤为:构造可导函数→研究其单调性求最值→得出不等关系→整理得出所证明的结论.2 导数在研究函数零点中的作用(1)研究函数图象的交点、方程的根、函数的零点归根到底是研究函数的性质,如单调性、极值等.(2)用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.3 利用导数求解实际问题中的优化问题生活中求利润最大、用料最省、效率最高等问题称之为优化问题.导数是解决生活中优化问题的有力工具,用导数解决优化问题的基本思路是:优化问题→用函数表示的数学问题→用导数解决数学问题→优化问题的答案.利用导数解决实际应用问题一般有如下几类:(1)给出了具体的函数关系式,只需研究这个函数的性质即可;(2)函数关系式中含有比例系数,根据已知数据求出比例系数得到函数关系式,再研究函数的性质;(3)没有给出函数关系,需要先建立函数关系,再研究函数的性质.注意点 函数定义域的重要性在函数的综合应用中,不论是研究函数的性质,还是构造函数,还是建立新的函数关系时,都要正确求出函数的定义域,再利用导数求解.1.思维辨析(1)2ax +e x≥x +1恒成立,可转化为a ≥x +1-e x2x 恒成立.( ) (2)对任意x ∈R ,f (x )≥g (x )恒成立,则f (x )min ≥g (x )max .( )(3)若函数y =f (x )与y =g (x )的图象有2个交点,则f (x )-g (x )有2个零点.( )答案 (1)× (2)× (3)√2.在区间(0,π)上,sin x 与x 的大小关系是________.答案 sin x <x解析 构造函数f (x )=sin x -x ,则f ′(x )=cos x -1≤0且不恒等于0,故函数f (x )在(0,π)上单调递减,所以f (x )<f (0)=0,故sin x <x .3.已知函数f (x )=x +1e x .(1)讨论函数f (x )的单调性,并求其最值;(2)若对任意的x ∈(0,+∞),有f (x )<ax 2+1恒成立,求实数a的取值范围.解 (1)f (x )=x +1e x ,f ′(x )=1-1e x =0,则x =0.当x ∈(-∞,0)时f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时f ′(x )>0,f (x )单调递增,所以f (x )的最小值为f (0)=1,无最大值.(2)由(1)知,若a =0,则当x >0时f (x )>1=ax 2+1,原不等式不成立.若a <0,则当x >0时,ax 2+1<1,原不等式不成立.若a >0,f (x )<ax 2+1等价于(ax 2-x +1)e x >1.设φ(x )=(ax 2-x +1)e x ,那么φ′(x )=[ax 2+(2a -1)x ]e x .若a ≥12,则φ(x )=(ax 2-x +1)e x 在(0,+∞)上单调递增,φ(x )的最小值大于φ(0)=1,因而(ax 2-x +1)e x >1恒成立.若0<a <12,则当x ∈⎝ ⎛⎭⎪⎫0,1a -2时φ(x )单调递减,φ(x )<φ(0)=1,原不等式不成立.综上所述,实数a 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞. [考法综述] 函数与导数的压轴试题,在每年的高考中属于必考内容,其命题方向主要有两个:一是围绕函数的性质考查函数的奇偶性、单调性、周期性、极值、最值,曲线的切线等问题展开,二是围绕函数与方程、不等式命制探索方程根的个数、不等式的证明、不等式恒成立等问题展开.此类压轴试题难度较大,逻辑推理能力较强,在今后的备考中不可小视.命题法1 利用导数证明不等式问题典例1 已知函数f (x )=e xx e x +1. (1)证明:0<f (x )≤1;(2)当x >0时,f (x )>1ax 2+1,求a 的取值范围. [解] (1)证明:设g (x )=x e x +1,则g ′(x )=(x +1)e x .当x ∈(-∞,-1)时,g ′(x )<0,g (x )单调递减;当x ∈(-1,+∞)时,g ′(x )>0,g (x )单调递增.所以g (x )≥g (-1)=1-e -1>0.又e x >0,故f (x )>0.f ′(x )=e x (1-e x )(x e x +1)2. 当x ∈(-∞,0)时,f ′(x )>0,f (x )单调递增;当x ∈(0,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )≤f (0)=1.综上,有0<f (x )≤1.(2)①若a =0,则x >0时,f (x )<1=1ax 2+1,不等式不成立. ②若a <0,则当0<x <1-a时,1ax 2+1>1,不等式不成立. ③若a >0,则f (x )>1ax 2+1等价于(ax 2-x +1)e x -1>0.(*) 设h (x )=(ax 2-x +1)e x -1,则h ′(x )=x (ax +2a -1)e x .若a ≥12,则当x ∈(0,+∞)时,h ′(x )>0,h (x )单调递增,h (x )>h (0)=0.若0<a <12,则当x ∈⎝ ⎛⎭⎪⎫0,1-2a a 时,h ′(x )<0,h (x )单调递减,h (x )<h (0)=0.不等式不恒成立.于是,若a >0,不等式(*)成立当且仅当a ≥12.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 【解题法】 利用导数证明不等式的方法(1)证明f (x )≥g (x )或f (x )≤g (x ),可通过构造函数h (x )=f (x )-g (x ),将上述不等式转化为求证h (x )≥0或h (x )≤0,从而利用求h (x )的最小值或最大值来证明不等式.(2)关于恒成立问题可以转化为求函数的最值.一般地,f (x )≥a 恒成立,只需f (x )min ≥a 即可;f (x )≤a 恒成立,只需f (x )max ≤a 即可.命题法2 利用导数研究函数的零点问题典例2 已知函数f (x )=4x -x 4,x ∈R .(1)求f (x )的单调区间;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ),求证:对于任意的实数x ,都有f (x )≤g (x );(3)若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-a 3+4 13 .[解] (1)由f (x )=4x -x 4,可得f ′(x )=4-4x 3.当f ′(x )>0,即x <1时,函数f (x )单调递增;当f ′(x )<0,即x >1时,函数f (x )单调递减.所以,f (x )的单调递增区间为(-∞,1),单调递减区间为(1,+∞).(2)证明:设点P 的坐标为(x 0,0),则x 0=4 13 ,f ′(x 0)=-12.曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0),即g (x )=f ′(x 0)(x -x 0).令函数F (x )=f (x )-g (x ),即F (x )=f (x )-f ′(x 0)·(x -x 0),则F ′(x )=f ′(x )-f ′(x 0).由于f ′(x )=-4x 3+4在(-∞,+∞)上单调递减,故F ′(x )在(-∞,+∞)上单调递减.又因为F ′(x 0)=0,所以当x ∈(-∞,x 0)时,F ′(x )>0,当x ∈(x 0,+∞)时,F ′(x )<0,所以F (x )在(-∞,x 0)上单调递增,在(x 0,+∞)上单调递减,所以对于任意的实数x ,F (x )≤F (x 0)=0,即对于任意的实数x,都有f(x)≤g(x).(3)证明:由(2)知g(x)=-12(x-413).设方程g(x)=a的根为x2′,可得x2′=-a12+413.因为g(x)在(-∞,+∞)上单调递减,又由(2)知g(x2)≥f(x2)=a=g(x2′),因此x2≤x2′.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=4x.对于任意的x∈(-∞,+∞),有f(x)-h(x)=-x4≤0,即f(x)≤h(x).设方程h(x)=a的根为x1′,可得x1′=a4.因为h(x)=4x在(-∞,+∞)上单调递增,且h(x1′)=a=f(x1)≤h(x1),因此x1′≤x1.由此可得x2-x1≤x2′-x1′=-a3+413.【解题法】利用导数研究零点问题的方法利用导数研究方程根、函数的零点、图象交点问题的常用方法为:通过导数研究函数的单调性、最值、变化趋势等,根据题目的要求得出图象的走势规律,通过数形结合的思想分析问题,使问题的求解清晰、直观的整体展现.命题法3利用导数求解实际生活中的优化问题典例3某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元,设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.[解] (1)设容器的容积为V ,由题意知V =πr 2l +43πr 3, 又V =80π3,故l =V -43πr 3πr 2=803r 2-43r =43⎝ ⎛⎭⎪⎫20r 2-r . 由于l ≥2r ,因此43⎝ ⎛⎭⎪⎫20r 2-r ≥2r , 整理得40r 2≥5r ,故0<r ≤2.所以建造费用y =2πrl ×3+4πr 2c =2πr ×43⎝ ⎛⎭⎪⎫20r 2-r ×3+4πr 2c . 因此y =4π(c -2)r 2+160πr ,0<r ≤2.(2)由(1)得y ′=8π(c -2)r -160πr 2=8π(c -2)r 2⎝ ⎛⎭⎪⎫r 3-20c -2,0<r ≤2. 由于c >3,所以c -2>0,当r 3-20c -2=0时,r =320c -2. 令 320c -2=m ,则m >0, 所以y ′=8π(c -2)r 2(r -m )(r 2+rm +m 2).①当0<m <2,即c >92时,当r =m 时,y ′=0;当r ∈(0,m )时,y ′<0;当r ∈(m,2)时,y ′>0.所以r =m 是函数y 的极小值点,也是最小值点.②当m ≥2,即3<c ≤92时,当r ∈(0,2]时,y ′<0,函数单调递减,所以r =2是函数y 的最小值点.综合所述,当3<c ≤92时,建造费用最小时r =2;当c >92时,建造费用最小时r =320c -2. 【解题法】 利用导数解决实际生活中的优化问题的方法(1)分析实际问题中各变量之间的关系,建立实际问题的数学模型,写出相应的函数关系式y =f (x ).(2)求导数f ′(x ),解方程f ′(x )=0.(3)判断使f ′(x )=0的点是极大值点还是极小值点.(4)确定函数的最大值或最小值,还原到实际问题中作答.一般地,对于实际问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点.1.设f (x )是定义在R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,则关于x 的函数g (x )=f (x )+1x 的零点个数为( )A .1B .2C .0D .0或2答案 C 解析 由f ′(x )+f (x )x >0,得xf ′(x )+f (x )x>0,当x >0时,xf ′(x )+f (x )>0,即[xf (x )]′>0,函数xf (x )单调递增;当x <0时,xf ′(x )+f (x )<0,即[xf (x )]′<0,函数xf (x )单调递减.∴xf (x )>0f (0)=0,又g (x )=f (x )+x -1=xf (x )+1x ,函数g (x )=xf (x )+1x 的零点个数等价于函数y =xf (x )+1的零点个数.当x >0时,y =xf (x )+1>1,当x <0时,y =xf (x )+1>1,所以函数y =xf (x )+1无零点,所以函数g (x )=f (x )+x -1的零点个数为0.故选C.2.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2014)2f (x +2014)-4f (-2)>0的解集为________.答案 (-∞,-2016)解析 由2f (x )+xf ′(x )>x 2,x <0得2xf (x )+x 2f ′(x )<x 3,∴[x 2f (x )]′<x 3<0.令F (x )=x 2f (x )(x <0),则F ′(x )<0(x <0),即F (x )在(-∞,0)上是减函数,因为F (x +2014)=(x +2014)2f (x +2014),F (-2)=4f (-2),所以不等式(x +2014)2f (x +2014)-4f (-2)>0即为F (x +2014)-F (-2)>0,即F (x +2014)>F (-2),又因为F (x )在(-∞,0)上是减函数,所以x +2014<-2,∴x <-2016.3.已知f (x )=ax -cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,π3.若∀x 1∈⎣⎢⎡⎦⎥⎤π4,π3,∀x 2∈⎣⎢⎡⎦⎥⎤π4,π3,x 1≠x 2,f (x 2)-f (x 1)x 2-x 1<0,则实数a 的取值范围为________. 答案 a ≤-32解析 f ′(x )=a +sin x .依题意可知f (x )在⎣⎢⎡⎦⎥⎤π4,π3上为减函数,所以f ′(x )≤0对x ∈⎣⎢⎡⎦⎥⎤π4,π3恒成立,可得a ≤-sin x 对x ∈⎣⎢⎡⎦⎥⎤π4,π3恒成立.设g (x )=-sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,π3.易知g (x )为减函数,故g (x )min =-32,所以a ≤-32.4.已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1).5.设a >1,函数f (x )=(1+x 2)e x -a .(1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O 是坐标原点),证明:m ≤ 3a -2e -1.解 (1)f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x ≥0,故f (x )是R 上的单调递增函数,其单调增区间是(-∞,+∞),无单调减区间.(2)证明:因为f (0)=(1+02)e 0-a =1-a <0,且f (ln a )=(1+ln 2 a )e ln a -a =(1+ln 2 a )a -a =a ln 2 a >0,由零点存在性定理知,f (x )在(-∞,+∞)上至少有一个零点. 又由(1)知,函数f (x )是(-∞,+∞)上的单调递增函数, 故函数f (x )在(-∞,+∞)上仅有一个零点.(3)证明:设点P (x 0,y 0),由曲线y =f (x )在点P 处的切线与x 轴平行知,f ′(x 0)=0,即f ′(x 0)=(x 0+1)2e x 0=0,(x 0+1)2=0,x 0=-1,即P (-1,2e -1-a ).由点M (m ,n )处的切线与直线OP 平行知,f ′(m )=k OP ,即(1+m )2e m =2e -1-a -0-1-0=a -2e . 由e m ≥1+m 知,(1+m )3≤(1+m )2e m=a -2e , 即1+m ≤ 3a -2e ,即m ≤ 3a -2e -1.6.已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).解 (1)f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0.解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞).则F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x . 由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1. 当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增. 从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1), 综上,k 的取值范围是(-∞,1). 7.设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. 解 (1)由f (x )=x 22-k ln x (k >0),得 f ′(x )=x -k x =x 2-kx . 由f ′(x )=0,解得x =k .f (x )与f ′(x )在区间(0,+∞)上的情况如下:∞);f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. (2)证明:由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2. 因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e. 当k =e 时,f (x )在区间(1,e]上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.。
第5课时 利用导数研究函数的零点问题考点1 讨论函数的零点个数——综合性(2021·海口模拟)已知函数f(x)=.(1)判断f(x)的单调性,并比较2 0202 021与2 0212 020的大小;(2)若函数g(x)=(x-2)2+x(2f(x)-1),其中≤a≤,判断g(x)的零点的个数,并说明理由.参考数据:ln 2≈0.693.解:(1)函数f(x)=,定义域是(0,+∞),故f′(x)=.令f′(x)>0,解得0<x<e;令f′(x)<0,解得x>e,故f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,则f(2 020)>f(2 021),即>,故2 021ln 2 020>2 020ln 2 021,故ln 2 0202 021>ln 2 0212 020,故2 0202 021>2 0212 020.(2)因为g(x)=(x2-4x+4)+2ln x-x,所以g′(x)=ax+-2a-1=.令g′(x)=0,解得x=2或x=,①当a=时,则g′(x)=≥0,g(x)在(0,+∞)上单调递增,且g(2)=2ln 2-2<0,g(6)=2ln 6-2>0,故g(2)g(6)<0,故存在x0∈(2,6),使得g(x0)=0,故g(x)在(0,+∞)上只有1个零点;②当<a<时,则<2,则g(x)在上单调递增,在上单调递减,在(2,+∞)上单调递增,故g(x)在(0,+∞)上有极小值g(2),g(2)=2ln 2-2<0,有极大值g=2a--2ln a-2,且g(2)=2ln 2-2<0,g(6)=8a+2ln 6-6>2ln 6-2>0,故g(2)g(6)<0,故存在x1∈(2,6),使得g(x1)=0,故g(x)在(2,+∞)上只有1个零点,另一方面令h(a)=g=2a--2ln a-2,h′(a)=2+-=2>0,所以h(a)在上单调递增,所以h(a)<h=e--2-2ln <0,则g<0,故g(x)在上没有零点.综上:当≤a≤时,g(x)只有1个零点.已知函数f(x)=x-(e为自然常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)设a∈R,讨论函数g(x)=x-ln x-f(x)的零点个数.解:(1)f(x)=x-,则f′(x)=.因为f(x)在(0,+∞)上单调递增,所以f′(x)≥0在(0,+∞)上恒成立.记φ(x)=e x+ax-a,则φ(x)≥0在(0,+∞)上恒成立,φ′(x)=e x+a.当a≥-1时,φ′(x)=e x+a>1+a≥0,即φ(x)在(0,+∞)上单调递增,所以φ(x)>φ(0)=1-a≥0,所以-1≤a≤1;当a<-1时,令φ′(x)=e x+a=0,解得x=ln(-a).当0<x<ln(-a)时,φ′(x)<0,φ(x)在(0,ln(-a))上单调递减;当x>ln(-a)时,φ′(x)>0,φ(x)在(ln(-a),+∞)上单调递增,所以φ(x)≥φ(ln(-a))=-2a+a ln(-a)≥0,解得-e2≤a<-1.综上可得,实数a的取值范围是[-e2,1].(2)g(x)=x-ln x-f(x)=-ln x(x>0),令g(x)=0,得a=(x>0).令h(x)=,则h′(x)=,当x∈(0,1]时,ln x≤0,x-1≤0,所以h′(x)≥0,h(x)单调递增;当x∈(1,+∞)时,h′(x)>0,h(x)单调递增.所以h(x)在(0,+∞)单调递增,又h(x)=∈R,a∈R,所以y=a与h(x)=的图象只有一个交点,所以a∈R,g(x)只有唯一一个零点.考点2 由函数的零点个数求参数的范围——综合性(2022·湖南模拟)已知函数f(x)=x3+3a(x+1)(a∈R).(1)讨论f(x)的单调性;(2)若函数g(x)=f(x)-x ln x-3a在上有两个不同的零点,求a的取值范围.解:(1)f′(x)=3x2+3a.①当a≥0时,f′(x)≥0,f(x)在R上单调递增;②当a<0时,令f′(x)>0,解得x<-或x>,令f′(x)<0,解得-<x<,所以f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.综上,当a≥0时,f(x)在R上单调递增;当a<0时,f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.(2)g(x)=x3+3ax-x ln x,依题意,x3+3ax-x ln x=0在上有两个不同的解,即3a=ln x-x2在上有两个不同的解.设h(x)=ln x-x2,x∈,则h′(x)=-2x=.当x∈时,h′(x)≥0,h(x)单调递增;当x∈时,h′(x)<0,h(x)单调递减,所以h(x)max=h=-ln 2-,且h=-ln 2-,h(2)=ln 2-4,h>h(2),所以-ln 2-≤3a<-ln 2-,所以-ln 2-≤a<-ln 2-,即实数a的取值范围为.已知函数f(x)=x2+ax+1-,a∈R.(1)若f(x)在(0,1)上单调递减,求a的取值范围;(2)设函数g(x)=f(x)-x-a-1,若g(x)在(1,+∞)上无零点,求整数a的最小值.解:(1)由题知f′(x)=2x+a+≤0在(0,1)上恒成立,即a≤-2x恒成立.令h(x)=-2x,则h′(x)=-2=-2>0,所以h(x)在(0,1)上单调递增,所以a≤h(x)min=h(0)=1.故a的取值范围是(-∞,1].(2)由已知x>1,假设g(x)=0⇔-a=x+,记φ(x)=x+,则φ′(x)=1+.令φ′(x)>0,解得x>1+,所以φ(x)在(1,1+)上单调递减,在(1+,+∞)上单调递增,φ(1+)=1++=1+=1+∈(2,3),由题知-a=φ(x)在(1,+∞)内无解,故-a<φ(1+)<3,所以a>-φ(1+),所以整数a的最小值为-2.考点3 函数极值点的偏移问题——综合性(2021·新高考全国Ⅰ卷)已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<+<e.(1)解:函数f(x)的定义域为(0,+∞),又f′(x)=1-ln x-1=-ln x,当x∈(0,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,故f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)证明:因为b ln a-a ln b=a-b,故b(ln a+1)=a(ln b+1),即=,故f =f .设=x1,=x2,由(1)可知不妨设0<x1<1,x2>1.因为x∈(0,1)时,f(x)=x(1-ln x)>0,x∈(e,+∞)时,f(x)=x(1-ln x)<0,故1<x2<e.先证:x1+x2>2,若x2≥2,x1+x2>2必成立.若x2<2,要证x1+x2>2,即证x1>2-x2,而0<2-x2<1,故即证f(x1)>f(2-x2),即证f(x2)>f(2-x2),其中1<x2<2.设g(x)=f(x)-f(2-x),1<x<2,则g′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)].因为1<x<2,故0<x(2-x)<1,故-ln x(2-x)>0,所以g′(x)>0,故g(x)在(1,2)上单调递增,所以g(x)>g(1)=0,故f(x)>f(2-x),即f(x2)>f(2-x2)成立,所以x1+x2>2成立,综上,x1+x2>2成立.设x2=tx1,则t>1,结合=,=x1,=x2,可得x1(1-ln x1)=x2(1-ln x2),即1-ln x1=t(1-ln t-ln x1),故ln x1=,要证x1+x2<e,即证(t+1)x1<e,即证ln (t+1)+ln x1<1,即证ln (t+1)+<1,即证(t-1)ln (t+1)-t ln t<0.令S(t)=(t-1)ln (t+1)-t ln t,t>1,则S′(t)=ln (t+1)+-1-ln t=ln -.先证明一个不等式:ln(x+1)≤x.设u(x)=ln(x+1)-x,则u′(x)=-1=,当-1<x<0时,u′(x)>0;当x>0时,u′(x)<0,故u(x)在(-1,0)上为增函数,在(0,+∞)上为减函数,故u(x)ma x=u(0)=0,故ln(x+1)≤x成立.由上述不等式可得当t>1时,ln ≤<,故S′(t)<0恒成立,故S(t)在(1,+∞)上为减函数,故S(t)<S(1)=0,故(t-1)ln (t+1)-t ln t<0成立,即x1+x2<e成立.综上所述,2<+<e.对称化构造是解决极值点偏移问题的方法,该方法可分为以下三步:已知函数f(x)=ln x-ax有两个零点x1,x2(x1<x2).(1)求实数a的取值范围;(2)求证:x1·x2>e2.(1)解:f′(x)=-a=(x>0),①若a≤0,则f′(x)>0,不符合题意.②若a>0,令f′(x)=0,解得x=.当x∈时,f′(x)>0;当x∈时,f′(x)<0.由题意知f(x)有两个零点的必要条件为f(x)=ln x-ax的极大值f=ln -1>0,解得0<a<.显然e∈,f(e)=1-a e<0,∈,f=2ln-.设t=>e,g(t)=2ln t-t,g′(t)=-1<0,所以g(t)在(e,+∞)上单调递减,g(t)<g(e)=2-e<0,即f <0.所以实数a的取值范围为.(2)证明:因为f(1)=-a<0,所以1<x1<<x2.构造函数H(x)=f-f=ln -ln -2ax,0<x<.H′(x)=+-2a=>0,所以H(x)在上单调递增,故H(x)>H(0)=0,即f >f.由1<x1<<x2,知-x1>,故f(x2)=f(x1)=f <f=f.因为f(x)在上单调递减,所以x2>-x1,即x1+x2>.故ln (x1x2)=ln x1+ln x2=a(x1+x2)>2,即x1·x2>e2.拓展考点 隐零点求解问题已知函数f(x)=ax2-ax-x ln x,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.(1)解:f(x)的定义域为(0,+∞),设g(x)=ax-a-ln x,则f(x)=xg(x),f(x)≥0等价于g(x)≥0.因为g(1)=0,g(x)≥0,故g′(1)=0,而g′(x)=a-,g′(1)=a-1=0,得a=1.若a=1,则g′(x)=1-.当0<x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增,所以x=1是g(x)的极小值点,故g(x)≥g(1)=0.综上,a=1.(2)证明:由(1)知f(x)=x2-x-x ln x,f′(x)=2x-2-ln x(x>0).设h(x)=2x-2-ln x,h′(x)=2-.当x∈时,h′(x)<0;当x∈时,h′(x)>0,所以h(x)在上单调递减,在上单调递增.又h(e-2)>0,h<0,h(1)=0,所以h(x)在上有唯一零点x0,在上有唯一零点1,且当x∈(0,x0)时,h(x)>0;当x∈(x0,1)时,h(x)<0;当x∈(1,+∞)时,h(x)>0.因为f′(x)=h(x),所以x=x0是f(x)的唯一极大值点.由f′(x0)=0得ln x0=2(x0-1),故f(x0)=x0(1-x0).由x0∈得f(x0)<.因为x=x0是f(x)在(0,1)上的最大值点,由e-1∈(0,1),f′(e-1)≠0得f(x0)>f(e-1)=e-2,所以e-2<f(x0)<2-2.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)·f′(x)+x+1>0,求k的最大值.解:(1)当a≤0时,f(x)的单调递增区间是(-∞,+∞),无单调递减区间;当a>0时,函数f(x)的单调递减区间是(-∞,ln a),单调递增区间是(ln a,+∞).(解答过程略)(2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+(x>0)恒成立.令g(x)=+x(x>0),得g′(x)=+1=(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点),且eα=α+2.当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=+α.又eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.1.按导函数零点能否精确求解可以把零点分为两类:1.已知函数f(x)=e x-a-eln(e x+a),若关于x的不等式f(x)≥0恒成立,求实数a的取值范围.解:由函数f(x)=e x-a-eln(e x+a),求得定义域为,对函数求导可得:f′(x)=e x-,则存在一个x0,使得f′(x0)=0,且-<x<x0时,f′(x)<0,x>x0时,f′(x)>0,则f(x)≥f(x0)=e x0-a-eln(e x0+a)=-a-e·ln e=e x0+-2e-a=e x0+a+-2e-2a.因为e x0+a+≥2e,所以f(x0)≥2e-2e-2a=-2a≥0,则a≤0,所以实数a的取值范围为(-∞,0].2.已知函数f(x)=.(1)求函数f(x)的零点及单调区间;(2)求证:曲线y=存在斜率为6的切线,且切点的纵坐标y0<-1.(1)解:函数f(x)的零点为e.函数f(x)的单调递增区间为(e,+∞),单调递减区间为(0,e).(解答过程略)(2)证明:要证曲线y=存在斜率为6的切线,即证y′==6有解,等价于1-ln x-6x2=0在x>0时有解.构造辅助函数g(x)=1-ln x-6x2(x>0),g′(x)=--12x<0,函数g(x)在(0,+∞)上单调递减,且g(1)=-5<0,g=1+ln 2->0,所以∃x0∈,使得g(x0)=1-ln x0-6x=0.即证明曲线y=存在斜率为6的切线.设切点坐标为,则y===-6x0,x0∈.令h(x)=-6x,x∈,由h(x)在区间上单调递减,则h(x)<h=-1,.所以y0<-1求证:x1x2>e2(e为自然对数的底数).[四字程序]思路参考:转化为证明ln x1+ln x2>2,根据x1,x2是方程f′(x)=0的根建立等量关系.令t=,将ln x1+ln x2变形为关于t的函数,将ln x1+ln x2>2转化为关于t的不等式进行证明.证明:欲证x1x2>e2,需证ln x1+ln x2>2.若f(x)有两个极值点x1,x2,则函数f′(x)有两个零点.又f′(x)=ln x-mx(x>0),所以x1,x2是方程f′(x)=0的两个不等实根.于是,有解得m=.另一方面,由得ln x2-ln x1=m(x2-x1),从而得=,于是,ln x1+ln x2==.又0<x1<x2,设t=,则t>1.因此,ln x1+ln x2=,t>1.要证ln x1+ln x2>2,即证>2,t>1.即当t>1时,有ln t>.设函数h(t)=ln t-,t>1,则h′(t)=-=≥0,所以,h(t)为(1,+∞)上的增函数.又h(1)=0,因此,h(t)>h(1)=0.于是,当t>1时,有ln t>.所以ln x1+ln x2>2成立,即x1x2>e2.思路参考:将证明x1x2>e2转化为证明x1>.依据x1,x2是方程f′(x)=0的两个不等实根,构造函数g(x)=,结合函数g(x)的单调性,只需证明g(x2)=g(x1)<g.证明:由x1,x2是方程f′(x)=0的两个不等实根,且f′(x)=ln x-mx(x>0),所以mx1=ln x1,mx2=ln x2.令g(x)=,g(x1)=g(x2),由于g′(x)=,因此,g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.又x1<x2,所以0<x1<e<x2.令h(x)=g(x)-g(x∈(0,e)),h′(x)=>0,故h(x)在(0,e)上单调递增,故h(x)<h(e)=0,即g(x)<g.令x=x1,则g(x2)=g(x1)<g.因为x2,∈(e,+∞),g(x)在(e,+∞)上单调递减,所以x2>,即x1x2>e2.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量k=t1-t2<0构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设k=t1-t2<0,则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2.即只需证明t1+t2>2,即>2⇔k(1+e k)<2(e k-1)⇔k(1+e k)-2(e k-1)<0.设g(k)=k(1+e k)-2(e k-1)(k<0),则g′(k)=k e k-e k+1.令m(k)=k e k-e k+1,则m′(k)=k e k<0,故g′(k)在(-∞,0)上单调递减,故g′(k)>g′(0)=0,故g(k)在(-∞,0)上单调递增,因此g(k)<g(0)=0,命题得证.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量=k∈(0,1)构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设=k∈(0,1),则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2,即只需证明t1+t2>2,即>2⇔ln k<⇔ln k-<0.设g(k)=ln k-(k∈(0,1)),g′(k)=>0,故g(k)在(0,1)上单调递增,因此g(k)<g(1)=0,命题得证.1.本题考查应用导数研究极值点偏移问题,基本解题方法是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.2.基于课程标准,解答本题一般需要具有良好的转化与化归能力、运算求解能力、逻辑思维能力.本题的解答体现了逻辑推理、数学运算的核心素养.3.基于高考数学评价体系,本题涉及函数与方程、不等式、导数的计算与应用等知识,渗透着函数与方程、转化与化归、分类讨论等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养中起到了积极的作用.已知函数f(x)=x ln x-2ax2+x,a∈R.(1)若f(x)在(0,+∞)内单调递减,求实数a的取值范围;(2)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>.(1)解:f′(x)=ln x+2-4ax.因为f(x)在(0,+∞)内单调递减,所以f′(x)=ln x+2-4ax≤0在(0,+∞)内恒成立,即4a≥+在(0,+∞)内恒成立.令g(x)=+,则g′(x)=.所以,当0<x<时,g′(x)>0,即g(x)在内单调递增;当x>时,g′(x)<0,即g(x)在内单调递减.所以g(x)的最大值为g=e,所以实数a的取值范围是.(2)证明:若函数f(x)有两个极值点分别为x1,x2,则f′(x)=ln x+2-4ax=0在(0,+∞)内有两个不等根x1,x2.由(1),知0<a<.由两式相减,得ln x1-ln x2=4a(x1-x2).不妨设0<x1<x2,则<1,所以要证明x1+x2>,只需证明<,即证明>ln x1-ln x2,亦即证明>ln.令函数h(x)=-ln x,0<x<1,所以h′(x)=<0,即函数h(x)在(0,1)内单调递减.所以当x∈(0,1)时,有h(x)>h(1)=0,所以>ln x,即不等式>ln成立.综上,x1+x2>,命题得证.。