多层片式陶瓷电容器选用得基本知识
- 格式:pdf
- 大小:348.36 KB
- 文档页数:7
陶瓷电容器基础知识简介陶瓷电容器使用要点大全谈论起陶瓷电容器,我们会想到电子元件器工业。
电子元件器工业在在20世纪出现并得到飞速发展,使得整个世界和人们的工作、生活习惯发生了翻天覆地的变化。
继电器、二极管、电容器、传感器等产品的出现,给我们的生活带来了极大地便利。
而电容器,顾名思义,是‘装电的容器’,是一种容纳电荷的器件。
英文名称:capacitor。
电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。
文章开篇所提到的陶瓷电容器(ceramiccapacitor;ceramiccondenser)就是用陶瓷作为电介质,在陶瓷基体两面喷涂银层,然后经低温烧成银质薄膜作极板而制成。
它的外形以片式居多,也有管形、圆形等形状。
一、陶瓷电容器基础知识简介1、陶瓷电容器是用高介电常数的电容器陶瓷〈钛酸钡一氧化钛〉挤压成圆管、圆片或圆盘作为介质,并用烧渗法将银镀在陶瓷上作为电极制成。
它又分高频瓷介和低频瓷介两种。
具有小的正电容温度系数的电容器,用于高稳定振荡回路中,作为回路电容器及垫整电容器。
低频瓷介电容器限于在工作频率较低的回路中作旁路或隔直流用,或对稳定性和损耗要求不高的场合〈包括高频在内〉。
这种电容器不宜使用在脉冲电路中,因为它们易于被脉冲电压击穿。
高频瓷介电容器适用于高频电路。
2、陶瓷电容器又分为高频瓷介电容器和低频瓷介电容器两种。
具有小的正电容温度系数的电容器,用于高稳定振荡电路中,作为回路电容器。
低频瓷介电容器用在对稳定性和损耗要求不高的场合或工作频率较低的回路中起旁路或隔直流作用,它易被脉冲电压击穿,故不能使用在脉冲电路中。
高频瓷介电容器适用于高频电路。
3、陶瓷电容器有四种材质分类:这四种是:Y5V,X5R,X7R,NPO(COG)。
那么这些材质代表什么意思呢?第一位表示低温,第二位表示高温,第三位表示偏差。
Y5V表示工作在-30~+85度,整个温度范围内偏差-82%~+22%X5R表示工作在-55~+85度,整个温度范围内偏差正负15%X7R表示工作在-55~+125度,整个温度范围内偏差正负15%NPO(COG)是温度特性最稳定的电容器,电容温漂很小,整个温度范围容量很稳定,温度也是-55~125度,适用于振荡器,超高频滤波去耦,但容量一般做不大。
贴片电容英贴片电容全称:多层(积层,叠层)片式陶瓷电容器,也称为贴片电容,片容。
英文全称:Multi-layerceramiccapacitors。
英文缩写:MLCC。
目录一、基本概述二、尺寸三、命名四、分类五、MLCC电容品牌及选型六、作用七、内部结构八、封装一、基本概述贴片电容(多层片式陶瓷电容器)是目前用量比较大的常用元件,就AVX公司生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。
下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。
不同的公司对于上述不同性能的电容器可能有不同的命名方法。
二、尺寸贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示,贴片电容的系列型号有0402、0603、0805、1206、1210、1808、1812、2010、2225、2512,是英寸表示法,04 表示长度是0.04 英寸,02 表示宽度0.02英寸,其他类同型号尺寸(mm)三、命名1、贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求。
一般订购贴片电容需提供的参数要有尺寸的大小、要求的精度、电压的要求、容量值、以及要求的品牌即可。
如下华新科(WALSIN)系列的贴片电容的命名:原厂命名料号:0805N102J500CT0805:是指该贴片电容的尺寸套小,是用英寸来表示的08 表示长度是0.08 英寸、05 表示宽度为 0.05 英寸;N:是表示做这种电容要求用的材质,这个材质一般适合于做小于10000PF以下的电容;102:是指电容容量,前面两位是有效数字、后面的2 表示有多少个零102=10×102也就是= 1000PF ;J:是要求电容的容量值达到的误差精度为5%,介质材料和误差精度是配对的;500:是要求电容承受的耐压为50V 同样500前面两位是有效数字,后面是指有多少个零;C:是指端头材料,现在一般的端头都是指三层电极(银/铜层)、镍、锡 T:是指包装方式;T:表示7"盘装编带包装;2、贴片电容的颜色,常规见得多的就是比纸板箱浅一点的黄和青灰色,这在具体的生产过程中会有产生不同差异,贴片电容上面没有印字,这是和他的制作工艺有关(贴片电容是经过高温烧结面成,所以没办法在它的表面印字),而贴片电阻是丝印而成(可以印刷标记)。
MLCC行业介绍多层陶瓷电容器的起源可追逆到二战期间玻璃釉电容器的诞生,由于性能优异的高频发射电容器对云母介质的需求巨大,而云母矿产资源缺以及战争的影响,美国陆军通信部门资助陶瓷实验开展了喷涂下班釉介质和丝网刷银电极经叠层层共烧,再烧附端电极的独石化工艺研究在战后得到进一步推广。
并逐渐变为今天的二种型湿法工艺,干法工艺要追到二战期间诞生的流延工艺技术,在1943---1945后美国开始流延工艺技术的研究并组装一台流延机为钢带流延机,并在1952年获得专利。
二战后苏联与美国电容器技术似入我国并形成一定的生产规模,为了改进性能,扩大生产规模,60年代我国产业界开始尝试用陶瓷介质进行轧膜成型,印刷叠层工艺制造独石结构的瓷介电容器。
在80年代随着SMT与MLC技术的发展,MLC的高比容介质薄层化趋势突破专统厚度范围,二种干法流延方式被世界大多类MLC生产厂家普通使用,80年代以来我国引进了干法流延和湿法印刷成膜及相关生产技术,有效地改善了MLC制造工艺水平。
随后92---96年日本引入了SLOT-DIE流延头的新技术实现厚度为2—25MM代表了流延技术的最高水平(先后有康井、平野、横山生产的流延机)。
独石电容器是由涂有电极的陶瓷膜素坯,以一定的方式叠全起来最后经过一次焙烧成一整体,故称为“独石”也称多层陶瓷电容器(MLCC)独石电容器的特点是具有体积小、比容大、内电感小、耐湿、寿命长、可靠性高的优点;独石电容器的发展取决于材料(包括介质材料、电极浆料、粘合剂)和工艺技术的发展,其中陶瓷介质有差决定性作用。
独石瓷介电容器有两种类型:一种为温度补偿型(是MGTTD3、CATIO3和TIO2或以这些为基础再加入稀土氧化物、氧化铋、粘土等配制成的瓷料;而加一种是高介电系数型,以BATTO3主要成分高温烧成。
料,电导率大、焊接方便、价格不高、工艺性好,但银电极在高温、高湿、强直流电场作用下银离子易迁移,造成电容器失效的主要原因,故目前沿用低温烧结用银钯结合(950---1100度)材料的用途是由其性能所决定的,而材料的性能异不是一成不变的,可以通过改变厚材料的纯度,粒度或各种添加剂和各工艺因素等进行改性。
众所周知,MLCC-英文全称multi-layer ceramic capacitor,就是我们常说的片式多层陶瓷电容器,其以工作温度范围宽,耐高压,微小型化,片式化适合自动化贴装等优点,广泛应用于工业,医疗,通信,航空航天,军工等领域,在电子产品日益小型化及多功能化的趋势下,MLCC成为电容器产业的主流产品。
目前全球主要MLCC厂家主要分布于日本,欧美,韩国和台湾,其中日本企业包括村田,TDK,太阳诱电和日本京瓷等。
欧美主要由Syfer Novacap johson等,韩国三星、台湾国巨及华新科技近年来不断扩大生产规模,也是全球主要的 MLCC 生产商。
而国内的厂家则主要有风华高科,深圳宇阳,潮州三环等。
日本,韩国等地的部分MLCC厂家也在国内成立了独资或合资企业如,厦门- TDK 、天津-三星、上海-京瓷、苏州-国巨、Syfer、无锡-村田等。
鉴于MLCC应用领域越来越广泛,生产厂家及产品系列的越发多样性.其可靠性,选型及应用的问题受到设计工程师及生产工艺人员的重视,因此对MLCC电气特性和生产工艺的深刻认识,是正确选用MLCC的必要条件.多层陶瓷电容器的基本结构如图所示,电容量由公式C=NKA/T计算出(N为层数,K为介电常数,A为正对面积,T是两极板间距),从理论上来讲电极层数越多,介质常数和相对电极覆盖面积越大,电极间距越小,所制作出的电容容量则越大,然而, MLCC的工艺限制及介质的非理想特性决定了电容在容量,体积,耐压强度间的相互制约关系.这里稍微简单介绍下电容量的国际标称法,尽管各个厂家所生产的电容型号不一,但是在容量的表示方法上越来越多厂商使用国际标称法,即用三位数来表示电容量,前两位前二位数为有效值,第三位数为“0”的个数单位为pF,如1μF=1000nF=1000000pF 简化表示为105而小于10pF容值表示在在整数后加“R或P”如:4.7pF=4R7或4p7.陶瓷介质作为MLCC组成部分之一,对电容的相关参数有着重要影响,国际上一般以陶瓷介质的温度系数作为主要分类依据.1类陶瓷,EIA称之为C0G或NP0. 工作温度范围-55~+125℃,容量变化不超过±30ppm/ ℃.电容温度变化时,容值很稳定. 二类陶瓷则包括了我们常见的X7R,Z5U,Y5V,这些标称的依据是根据右图的表格所制定的,如X7R表示温度下限为-55℃;上限温度为+125℃,在工作温度范围内,容量最大变化为+-15%.右下图显示了不同介质的温度特性曲线。
最全面陶瓷贴片电容终极学习篇(干货值得收藏)
最全面陶瓷贴片电容(MLCC)知识篇章,值得电子工程师们珍藏。
多层片式陶瓷电容器
——简称贴片电容、片容
日本及台湾地区常称为积层电容或叠层电容
MLCC—Multi-Layer Ceramic Capacitors
1960’s 由美国人发明,1980’s日本人发扬光大并实现用低成本贱金属量产。
制造流程
内部结构
尺寸系列
标准系列化的外形尺寸
最常用英寸单位系统来表示:
0603—"06"表示:长0.06inch=1.6mm,
"03"表示:宽0.03inch=0.8mm
也有用国际单位系统表示:
1608—"16"表示:长1.6mm
"08"表示:宽0.8mm
表一贴片电容全系列尺寸表
最小规格尺寸01005(长0.25mm*宽0.125mm),目前只有少数几家日本公司在批量生产;0201、0402、0603是目前用量最大的尺寸规格,大型的MLCC企业均可批量生产。
国内,深圳宇阳是专做小尺寸MLCC的厂家;
2220及以上尺寸规格产品,市场占有量很小,大型企业一般不生产,主要是中小MLCC。
多层片式陶瓷电容器执行标准总规范:GB/T2693-2001《电子设备用固定电容器第1部分:总规范》分规范:GB/T9324-1996《电子设备用固定电容器第10部分:分规范》GB/T9325-1996《电子设备用固定电容器第10部分:空白详细规范》分类介绍a、电解质种类容量温度特性是选用电介质种类的一个重要依据。
NPO(CG):I类电介质,电气性能最稳定,基本上不随温度、电压、时间的改变;属超稳定型、低损耗电容材料类型,适用于对稳定性、可靠性要求较高的高频、特高频、甚高频的电路。
产品应用:振荡器、混频器、中频/高频/甚高频/超高频放大器、低噪声放大器、时间电路、高频滤波电路、高频耦合。
X7R(2X1):II类电介质,电气性能较稳定,随温度、电压、时间的改变,其特有性能变化并不显著,属稳定型电容材料类型,适用于隔离、耦合、旁路、滤波电路及可靠性要求较高的中高频电路。
产品应用:电源(滤波、旁路)电路、时间电路、储能电路、中频/低频放大器(隔直、耦合、阻抗匹配),高频开关电源(S.P.S)、DC/DC变换器、滤波、旁路电路、隔直、阻抗匹配电路。
Y5V(2F4):III类电介质,具有较高的介电常数,常用于生产比容比较大的、标称容量较高的大容量电容产品;由于其特有的电介质性能,因而能造出容量比NPO更大的电容器。
属低频通用型电容材料类型,由于成本较低,广泛用于对容量、损耗要求偏低的电路。
产品应用:电源滤波电路、隔直、阻抗匹配电路。
b、电容量与偏差电容量与偏差的选择取决于电路的要求,特别提示,在相同尺寸和容量规格下,偏差较大的电容器的价格相对便宜。
c、电压额定电压的选择也取决于电路本身的要求,电容的耐压虽然在设计时已有一定的安全系数,但电容器额定电压的选择仍须高于实际工作电压。
d、片状电容器的端头电极:片状电容器端头电极的选择至关重要!全银端头:生产工艺简单、成本较低,耐焊性较差、端头物理强度也低,焊接时温度要适当,焊接速度要快,否则会出现银锡熔融现象而损坏端头。
片式多层陶瓷电容器(MLCC)基础知识宇阳科技发展有限公司向勇一、电容器基础电容器基本模型是一种中间被电介质材料隔开的双层导体电极所构成的单片器件,如图1所示。
这种介质必须是纯绝缘材料,它的特性在很大程度上决定了器件的电性能。
介质特性取决于电介质材料对电荷的储存能力(介电常数)和对外电场的本征响应,也就是电容量,损耗特性、绝缘电阻、介质抗电强度、老化速率以及上述性能的温度特性。
图1 单层平板电容器通常,电容器采用的介质材料主要包括:空气(介电常数K几乎与真空相同,定义为1);天然介质:如云母,介电常数(K)为4~8;合成材料:如陶瓷,K值范围由9~1500。
电容器所用陶瓷介质是以钛酸盐为主要成份,可以通过配方调整制成具有极高介电常数和其他适当电特性的介质材料。
这是陶瓷电容器,尤其是片式多层陶瓷电容器(MLCC)技术的基础。
MLCC制造过程中的所有工艺和其它材料的确定原则都趋向于实现其介电性能的最优化。
二、电容量电容器的基本特性是能够储存电荷(Q)。
储存电荷量Q与电容量(C)和外加电压(V)成正比。
Q=CV因此,充电电流被定义为:I=dQ/dt=Q dV/dt当电容器外加电压为1伏特,充电电流为1安培,充电时间为1秒时,电容量定义为1法拉。
C=Q/V=库仑/伏特=法拉由于法拉是一个很大的测量单位,在实用中不会遇到,常用的是法拉的分数,即:微法(μF) = 10-6F毫微法,又称为:纳法(nF) = 10-9F微微法,又称为:皮法(pF) = 10-12F三、影响电容量的因素施加电压的单片电容器如图1,其电容量正比于器件的几何尺寸和相对介电常数:C=KA/f t在这里C=电容量;K=相对介电常数,简称介电常数;A=电极层面积;t=介质厚度;f=换算因子(在基础科学领域:相对介电常数用εr表示。
在工程应用中以K表示,简称为介电常数)在英制度量单位体系中,f=4.452,尺寸A和t用英寸,电容量值用微微法表示。
mlcc多层陶瓷贴片电容MLCC多层陶瓷贴片电容是一种常用的电子元件,广泛应用于电子产品中。
它具有体积小、容量大、频率特性好、温度特性稳定等优点,在电路中起着重要的作用。
MLCC多层陶瓷贴片电容的结构主要由多层陶瓷片和电极组成。
这种结构使得它能够具有很高的电容密度,即在相对较小的体积内拥有较大的电容量。
这对于电子产品的迷你化设计来说非常重要,能够满足现代电子产品对小型化、轻便化的需求。
在电路设计中,MLCC多层陶瓷贴片电容的容值是个重要的参数。
容值是指电容器所能存储的电荷量,它的单位是法拉(F)。
MLCC多层陶瓷贴片电容的容值通常在皮法(F)到微法(F)的范围内,可以根据具体的电路需求进行选择。
在电子产品中,常见的容值有0.1uF、1uF、10uF等。
除了容值外,MLCC多层陶瓷贴片电容还具有电压等级的参数。
电压等级是指电容器所能承受的最大电压,它的单位是伏特(V)。
电压等级的选择要根据电路中的最大工作电压来确定,以确保电容器能够正常工作而不损坏。
在电路设计中,频率特性也是需要考虑的因素之一。
MLCC多层陶瓷贴片电容具有很好的高频特性,能够在高频率下保持较稳定的电容值。
这对于一些高频电路的设计来说非常重要。
温度特性也是MLCC多层陶瓷贴片电容的一个重要指标。
它的温度特性通常用温度系数来表示,单位是ppm/℃。
温度系数是指当温度上升1摄氏度时,电容值的变化量。
MLCC多层陶瓷贴片电容的温度系数一般在几十ppm/℃的范围内,具有较好的温度稳定性。
MLCC多层陶瓷贴片电容在电子产品中的应用非常广泛。
它可以用于滤波电路中,起到抑制高频噪声的作用。
同时,它还可以用于电源电路中,平稳输出电压。
此外,MLCC多层陶瓷贴片电容还可以用于信号耦合、隔直流等电路中,提高电路的性能和稳定性。
虽然MLCC多层陶瓷贴片电容具有很多优点,但也有一些需要注意的地方。
首先,由于其结构特殊,故其频率响应范围有限,不适用于超高频电路。
多层陶瓷片式电容1. 介绍多层陶瓷片式电容是一种常见的 passives 部件,用于各种电子设备中,如电源管理、通信设备、计算机和消费类电子产品等。
本文将详细探讨多层陶瓷片式电容的结构、工作原理、特点以及在不同应用中的优势。
2. 结构2.1 外观多层陶瓷片式电容通常由多个陶瓷层和金属电极组成,外观呈矩形或方形,容量范围从几皮法拉到几微法拉不等。
其尺寸一般小于传统的电解电容器。
2.2 材料陶瓷片式电容通常由高介电常数的陶瓷材料制成,如二氧化铁、二氧化钛等。
这些材料具有优异的绝缘性能和高温稳定性,能够满足各种应用的要求。
2.3 内部结构多层陶瓷片式电容的内部结构由交替排列的陶瓷层和金属电极组成。
陶瓷层可以看作是绝缘层,而金属电极用来引导电流。
电极通过多个孔穿过陶瓷层,形成电容器的结构。
3. 工作原理多层陶瓷片式电容的工作原理基于电介质的极化现象。
当电压施加在电容器的两个不同的端口上时,陶瓷材料中的电介质会极化,导致电荷在电容器内部的陶瓷层和金属电极之间移动。
这种电荷的分布在电压变化时发生变化,从而导致电容器存储和释放电荷的能力。
4. 特点多层陶瓷片式电容具有以下一些特点: 1. 高精度:制造过程精确,使得电容器能够达到较高的精度。
2. 高频特性:陶瓷片式电容的快速响应和低失真使其在高频电路中得到广泛应用。
3. 耐高温:陶瓷材料具有很好的高温稳定性,能够在高温环境下正常工作。
4. 无极性:与电解电容器不同,多层陶瓷片式电容没有极性限制,可以在电路中的任何方向连接。
5. 应用多层陶瓷片式电容由于其优异的性能,在各种电子设备中被广泛应用,主要包括以下几个方面: 1. 电源管理:多层陶瓷片式电容被用作稳压器和滤波器,用于稳定电源电压和滤除噪声。
2. 通信设备:多层陶瓷片式电容在无线通信中扮演重要角色,例如用于滤波、解调和射频调谐等。
3. 计算机:多层陶瓷片式电容被广泛应用于计算机内存模块、主板和硬盘驱动器等电路中。
MLCC基础知识MLCC⾏业介绍多层陶瓷电容器的起源可追逆到⼆战期间玻璃釉电容器的诞⽣,由于性能优异的⾼频发射电容器对云母介质的需求巨⼤,⽽云母矿产资源缺以及战争的影响,美国陆军通信部门资助陶瓷实验开展了喷涂下班釉介质和丝⽹刷银电极经叠层层共烧,再烧附端电极的独⽯化⼯艺研究在战后得到进⼀步推⼴。
并逐渐变为今天的⼆种型湿法⼯艺,⼲法⼯艺要追到⼆战期间诞⽣的流延⼯艺技术,在1943---1945后美国开始流延⼯艺技术的研究并组装⼀台流延机为钢带流延机,并在1952年获得专利。
⼆战后苏联与美国电容器技术似⼊我国并形成⼀定的⽣产规模,为了改进性能,扩⼤⽣产规模,60年代我国产业界开始尝试⽤陶瓷介质进⾏轧膜成型,印刷叠层⼯艺制造独⽯结构的瓷介电容器。
在80年代随着SMT与MLC技术的发展,MLC的⾼⽐容介质薄层化趋势突破专统厚度范围,⼆种⼲法流延⽅式被世界⼤多类MLC⽣产⼚家普通使⽤,80年代以来我国引进了⼲法流延和湿法印刷成膜及相关⽣产技术,有效地改善了MLC制造⼯艺⽔平。
随后92---96年⽇本引⼊了SLOT-DIE流延头的新技术实现厚度为2—25MM代表了流延技术的最⾼⽔平(先后有康井、平野、横⼭⽣产的流延机)。
独⽯电容器是由涂有电极的陶瓷膜素坯,以⼀定的⽅式叠全起来最后经过⼀次焙烧成⼀整体,故称为“独⽯”也称多层陶瓷电容器(MLCC)独⽯电容器的特点是具有体积⼩、⽐容⼤、内电感⼩、耐湿、寿命长、可靠性⾼的优点;独⽯电容器的发展取决于材料(包括介质材料、电极浆料、粘合剂)和⼯艺技术的发展,其中陶瓷介质有差决定性作⽤。
独⽯瓷介电容器有两种类型:⼀种为温度补偿型(是MGTTD3、CATIO3和TIO2或以这些为基础再加⼊稀⼟氧化物、氧化铋、粘⼟等配制成的瓷料;⽽加⼀种是⾼介电系数型,以BATTO3主要成分⾼温烧成。
料,电导率⼤、焊接⽅便、价格不⾼、⼯艺性好,但银电极在⾼温、⾼湿、强直流电场作⽤下银离⼦易迁移,造成电容器失效的主要原因,故⽬前沿⽤低温烧结⽤银钯结合(950---1100度)材料的⽤途是由其性能所决定的,⽽材料的性能异不是⼀成不变的,可以通过改变厚材料的纯度,粒度或各种添加剂和各⼯艺因素等进⾏改性。