陶瓷电容器
- 格式:ppt
- 大小:2.94 MB
- 文档页数:42
陶瓷电容和高分子固态电容
陶瓷电容和高分子固态电容两者之间存在一定的区别。
具体分析如下:
陶瓷电容:陶瓷电容器通常采用陶瓷材料作为电介质,具有较好的温度特性和稳定性。
陶瓷电容器不受使用环境的温度和湿度影响,在高低温稳定性方面表现良好。
它们通常用于需要稳定性能和可靠性的应用中,如滤波、去耦和能量存储等。
陶瓷电容器的尺寸可以做得很小,适合表面贴装技术(SMT),在便携设备和高密度印刷电路板中广泛使用。
高分子固态电容:高分子固态电容也称为导电聚合物电容,采用高分子材料作为电介质。
与传统的电解电容相比,高分子固态电容在高温下的稳定性更高,几乎不可能出现爆浆现象。
此外,高分子固态电容在等效串联电阻(ESR)上的表现更优异,特别是在高频运作时,具有更低的阻抗和热输出特性。
陶瓷电容因其良好的温度特性和稳定性而被广泛应用于各种电子设备中,而高分子固态电容则因其优异的高频性能和稳定性在电源和信号处理电路中得到青睐。
陶瓷电容工作原理
陶瓷电容是一种常见的电子元器件,用于存储和放电电荷。
它由陶瓷介质和两个电极组成,其中一个电极是正极,另一个是负极。
陶瓷电容的工作原理是基于电场的原理。
当陶瓷电容器处于断电状态时,两个电极之间没有电流流动,且电荷不会发生改变。
但是,当电压施加到电容器上时,会在陶瓷介质中形成一个电场。
电场的强度与电压成正比。
在施加电压之后,陶瓷电容器会开始吸收电荷,并在电场的作用下将电荷存储在陶瓷介质中。
这个存储的电荷量与施加的电压成正比。
当移除电压源后,陶瓷电容器会保持存储的电荷,直到需要时才释放。
当需要释放电荷时,将电容器连接到一个负载电阻上。
电荷会通过负载电阻流动,陶瓷电容器会逐渐失去存储的电荷,直到达到零电荷状态。
陶瓷电容器的容量大小取决于陶瓷介质的特性以及电极的尺寸和形状。
通常,较大的电容器能够存储更多的电荷。
另外,陶瓷电容器具有快速响应和稳定性的特点,因此被广泛应用于电子电路中的滤波、耦合和去耦等功能。
总之,陶瓷电容器是一种基于电场原理工作的电子元器件,能够存储和释放电荷。
它通过陶瓷介质和两个电极实现电场的形成和电荷的存储,具有快速响应和稳定性的特点。
陶瓷电容分级:NPO(COG)X7R X5R Y5V Z5U这个是按美国电工协会(EIA)标准,不同介质材料的MLCC按温度稳定性分成三类:超稳定级(工类)的介质材料为COG或NPO;稳定级(II类)的介质材料为X7R;能用级(Ⅲ)的介质材料Y5V。
X7R电容器被称为温度稳定型的陶瓷电容器。
当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。
X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。
X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。
它的主要特点是在相同的体积下电容量可以做的比较大。
COG,X7R,X5R,Y5V均是电容的材质,几种材料的温度系数和工作范围是依次递减的,不同材质的频率特性也是不同的。
NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。
在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。
所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。
一NPO电容器NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。
它的填充介质是由铷、钐和一些其它稀有氧化物组成的。
NPO电容器是电容量和介质损耗最稳定的电容器之一。
在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。
NPO电容的漂移或滞后小于±0.05%,NPO(COG) 多层片式陶瓷电容器,它只是一种电容COG(Chip On Glass)即芯片被直接邦定在玻璃上。
这种安装方式可以大大减小LCD模块的体积,且易于大批量生产,适用于消费类电子产品的LCD,如:手机,PDA等便携式产品,这种安装方式,在IC生产商的推动下,将会是今后IC与LCD的主要连接方式。
104陶瓷电容是电子电路中常见的一种电容器,其全称为104兆皮法(104 pF)陶瓷电容器。
在此,我们将详细介绍104陶瓷电容的特性、参数以及应用。
一、特性参数1. 容量与误差:104陶瓷电容的实际电容量为100000皮法(pF),即0.1微法(μF)。
其容量误差通常为J级5%,K级10%,M级20%。
这意味着在实际使用过程中,104陶瓷电容的容量可能会在一定范围内波动。
2. 额定工作电压:104陶瓷电容在电路中能够长期稳定、可靠工作,所承受的最大直流电压称为耐压。
对于结构、介质、容量相同的器件,耐压越高,体积越大。
3. 温度系数:在一定温度范围内,温度每变化1°C,电容量的相对变化值。
104陶瓷电容的温度系数越小越好,这有助于保持电容的稳定性。
4. 绝缘电阻:绝缘电阻用来表明漏电大小。
一般而言,小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆。
而电解电容的绝缘电阻一般较小。
相对而言,绝缘电阻越大越好,漏电也小。
二、应用104陶瓷电容广泛应用于各种电子电路中,如滤波、耦合、振荡、延时等。
其优点包括高频性能好、电容稳定性好、工作温度范围广等。
然而,钽电容的价格较高,容易出现烧毁现象,因此在一些应用场合,104陶瓷电容可以替代钽电容。
三、测试要测试104陶瓷电容的耐压值,可以使用绝缘电阻表与直流电压表配合的方法进行测量。
具体操作如下:将直流电压表和被测电容器并联到绝缘电阻表的两个端钮上,接好后缓慢加速摇动绝缘电阻表手柄,察看电压表指示值,如指针不再上升或上升又降低,此时测出的即是该电容器的最高耐压值,也是它的临界击空值。
陶瓷电容器用途陶瓷电容器是一种广泛使用的电子元件,它具有容量小、失谐小、负载稳定性好、耐高温、耐震动、寿命长等优点。
因此,它被广泛应用于电子产品中,如计算机、手机、平板电视、电子游戏机、家用电器等等。
以下是陶瓷电容器的用途介绍。
1. 电源滤波在电子设备中,电源滤波是一项重要的任务,它可以去除电源中的高频噪音,确保电路工作的稳定性和可靠性。
陶瓷电容器可以作为电源滤波电容器,减小电源输出的噪声和纹波电压,提高设备的稳定性和运行效率。
2. 振荡电路振荡电路是将电能转换为振荡信号的电路,其应用广泛,例如电子时钟、无线电收发信机等。
陶瓷电容器常被用作振荡电路中的谐振电容器或补偿电容器,它可以帮助调整电路的共振频率、阻尼系数和相位差,以确保振荡电路的可靠性和稳定性。
3. 耦合电容器在两个电路之间传输信号时,需要使用耦合电容器。
陶瓷电容器在耦合电容器中应用广泛,它可以充当电路之间的介质,有效传递信号,提高电路的灵敏度和增益。
4. 调节电容器在需要调节电路特定电容时,可以使用可调电容器进行调节,其中陶瓷电容器是最常见的可调电容器之一。
通过调整陶瓷电容器的容量值,可以改变电路的带宽、中心频率和通带等参数,对于要求高精度和稳定性的应用场合,可选择具有特殊结构和材料的陶瓷电容器。
5. 脉冲电路脉冲电路是电子器件中应用广泛的电路之一,例如触发器、计数器、时序电路等。
陶瓷电容器在这些电路中起着重要的角色,它可以充当脉冲信号的触发器或耦合电容器,实现脉冲信号的精确控制和传输。
6. 传感器电路传感器电路用于将环境参数转换为电信号,例如光、温度、湿度等。
在传感器电路中,陶瓷电容器可以作为传感器的信号处理部分,通过计算电容差异来测量环境参数,帮助实现各种传感器的功能。
总的来说,陶瓷电容器是电子领域中不可替代的元件之一,它的应用广泛,从通用电路到高精密电路,都可以看到它的身影。
随着技术的不断更新,陶瓷电容器将继续在电子行业中发挥重要的作用。
MLCC—搜狗百科 MLCC是⽚式多层陶瓷电容器英⽂缩写.(Multi-layer ceramic capacitors)⼀、瓷介的分类 陶瓷电容⼀般是以其温度系数作为主要分类。
Class I - ⼀类陶瓷(超稳定)EIA称之为COG 或NPO。
⼯作温度范围 -55℃~+125℃,容量变化不超过±30ppm/℃。
电容温度变化时,容值很稳定,被称作具有温度补偿功能,适⽤于要求容值在温度变化范围内稳定和⾼Q值的线路以及各种谐振线路。
Class II/III - ⼆/三类陶瓷(稳定)EIA标称的X7R表⽰温度下限为-55℃;上限温度为+125℃的⼯作温度范围内,容量最⼤的变化为 ±15%,Z5U、Y5V分别表⽰⼯作温度10~+85℃和-30~+85℃;容量最⼤变化为+22~-56%和30~82%,同属于⼆类陶瓷。
优点是体积利⽤率⾼,即在外型尺⼨相同时能提供更⾼的容值,适⽤于⾼容值和稳定性能要求不太⾼的线路。
⼆、瓷介代号陶瓷介质的代号是按其陶瓷材料的温度特性来命名的。
⽬前国际上通⽤美国EIA标准的叫法,⽤字母来表⽰。
常⽤的⼏种陶瓷材料的含义如下:Y5V:温度特性Y代表-25℃; 5代表+85℃;温度系数V代表-80%~+30%Z5U:温度特性Z代表+10℃; 5代表+85℃;温度系数U代表-56%~+22%X7R:温度特性X代表-55℃; 7代表+125℃温度系数R代表 ± 15%NP0:温度系数是30ppm/℃(-55℃~+125℃)三、⼀般电性能1、介电常数不同介质的类别有不同的表现效果。
环境因素,包括温度、电压、频率和时间(⽼化),对不同介质的电容有不同的影响。
介质常数(K值)越⾼,稳定性能、可靠性能和耐⽤性能便越差。
现代多层陶瓷电容器介质最常⽤有以下三类。
· COG或NPO(超稳定) K值10~100· X7R(稳定)K值2000~4000· Y5V或Z5U(⼀般⽤途)K值5000~250002、绝缘电阻(IR)即介质直流电阻,通常测量⽅法是以额定电压将电容充电⼀分钟,电容充电以后测量其漏电电流。
i类陶瓷电容
I类陶瓷电容,也被称为高频陶瓷电容器,是一种采用非铁电(顺电)配方的电容器,主要成分为TiO2(介电常数小于150),因此具有非常稳定的性能。
此外,通过添加少量的其他(铁电体)氧化物,如CaTiO3或SrTiO3,可以形成“扩展型”的温度补偿陶瓷,显示出近似线性的温度系数,同时介电常数也可以增加到500。
这两种介质具有低损耗、高绝缘电阻和良好的温度特性。
I类陶瓷电容器的特性包括:
1. 线性温度系数:其电容随温度线性变化。
2. 无电压依赖性:其电容量不依赖于所施加的电压。
3. 无老化:由于制造过程中使用的材料是顺电位材料,因此不会经历严重的老化过程。
由于这些特性,I类陶瓷电容器特别适用于振荡器、谐振回路、高频电路中的耦合电容和其他小损耗和稳定电容量的电路中,或用于温度补偿。
然而,需要注意的是,I类陶瓷电容的容量一般较小。
在封装形式上,I类陶瓷电容可以按照插件和贴片式进行分类。
而在介质材料上,NPO、SL0、COG等通常被认为是I类瓷介电容。
这
些电容器具有极高的容量稳定性,其值基本不随温度、电压、时间的变化而变化。
总的来说,I类陶瓷电容器是一种性能稳定、适用于特定电路应用的电容器。
mlcc 陶瓷电容MLCC陶瓷电容是一种常见的电子元器件,广泛应用于电子设备中。
本文将从MLCC陶瓷电容的概述、特点、应用领域和未来发展等方面进行介绍。
一、概述MLCC陶瓷电容(Multilayer Ceramic Capacitor)是一种以陶瓷为介质的电容器。
它由多层金属电极和陶瓷层交替堆叠组成,外部封装常用的材料有瓷、塑料等。
MLCC陶瓷电容的制造工艺相对简单,成本较低,因此被广泛应用于各种电子设备中。
二、特点1. 小型化:MLCC陶瓷电容的体积小,重量轻,可以满足电子设备对体积要求的需求。
2. 高可靠性:由于采用陶瓷材料,MLCC陶瓷电容具有较高的耐压能力和抗震性能,能够在各种恶劣环境下稳定工作。
3. 容量大:MLCC陶瓷电容的层间绝缘性能好,可以实现较大的电容量。
4. 高频性能好:MLCC陶瓷电容具有快速充放电能力,适用于高频电路的需求。
5. 低损耗:MLCC陶瓷电容的介质损耗小,能够提供较好的信号传输效果。
三、应用领域1. 通信设备:MLCC陶瓷电容广泛应用于移动通信设备、卫星通信设备等,用于滤波、耦合、终端匹配等功能。
2. 汽车电子:MLCC陶瓷电容可以用于汽车电子系统中的脉冲抑制、滤波、稳压等功能,提高汽车电子系统的可靠性。
3. 家电产品:MLCC陶瓷电容被应用于电视、空调、冰箱等家电产品中,用于降噪、滤波、稳压等功能。
4. 工业控制:MLCC陶瓷电容可以应用于各种工业控制设备中,如PLC、变频器、电机驱动器等,用于电源滤波、稳压等功能。
四、未来发展随着电子设备的不断发展和进步,对MLCC陶瓷电容的要求也越来越高。
未来的发展方向主要包括以下几个方面:1. 小型化:随着电子设备的微型化趋势,MLCC陶瓷电容将继续朝着体积更小、重量更轻的方向发展。
2. 高频性能:随着无线通信技术的快速发展,对高频性能要求越来越高,MLCC陶瓷电容需要进一步提高其工作频率范围和快速充放电能力。
3. 高温环境适应性:随着电子设备在高温环境下的应用增多,MLCC 陶瓷电容需要具备更好的高温稳定性和耐热性能。