华中科技大学矩阵论学习辅导与典型题解析
- 格式:pdf
- 大小:1.74 MB
- 文档页数:14
习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。
2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。
解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
证明:因为dim U 1=dim U 2,故设{}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=而()()1212r r C αααβββ=,C 为过渡矩阵,且可逆于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈由此,得 21U U ⊆又由题设12U U ⊆,证得U 1=U 2。
习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。
2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。
解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
证明:因为dim U 1=dim U 2,故设{}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=而()()1212r r C αααβββ=,C 为过渡矩阵,且可逆于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈由此,得21U U ⊆又由题设12U U ⊆,证得U 1=U 2。
习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。
2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。
解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩L L L ⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
证明:因为dim U 1=dim U 2,故设{}12,,,r αααL 为空间U 1的一组基,{}12,,,r βββL 为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=L L而()()1212r r C αααβββ=L L ,C 为过渡矩阵,且可逆 于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈L L L L L L由此,得 21U U ⊆又由题设12U U ⊆,证得U 1=U 2。
习 题 11.验证以下集合对于所指的运算是否构成实数域R 上的线性空间:(1)实数域R 上的全体n 阶对称(反对称)矩阵,对矩阵的加法和数量乘法;实数域R 上的全体n 阶矩阵,对矩阵的加法和数量乘法构成R 上的线性空间n n R ⨯,记},|{A A R A A V T n n =∈=⨯;},|{A A R A A W T n n -=∈=⨯因为,对任意的V B A ∈,,B B A A T T ==,,则B A B A T +=+)(,即V B A ∈+,所以V 对加法运算封闭;对任意的V A ∈,R k ∈,A A T =,则kA kA T =)(,即V kA ∈,所以V 对数乘运算封闭;所以,V 是n n R ⨯的一个线性子空间,故V 构成实数域R 上的一个线性空间。
同理可证,W 也是一个线性空间。
(2)平面上不平行于某一向量的全体向量所组成的集合,对向量的加法和数量乘法; 设2R ∈α,0≠α,记},|{2α不平行于x R x x V ∈=,任取V x ∈0,则V x ∈+0α,V x ∈-0α,但V x x ∉=-++ααα2)()(00,所以,V 对加法运算不封闭,故V 不构成实数域R 上的线性空间。
(3)实数域R 上次数等于n 的多项式全体,对多项式的加法和数量乘法;记][x R n 表示实数域R 上次数不超过n 的多项式全体,则次数等于n 的多项式全体可表示为:][][1x R x R V n n --=,任取V x f ∈)(,均有V x f ∉=⋅0)(0,所以,V 对数乘运算不封闭,故V 不构成实数域R 上的线性空间。
(4)全体实数对},|),{(R b a b a ∈,对于如下定义的加法⊕和数量乘法 :),(),(),(2121212211a a b b a a b a b a +++=⊕,)2)1(,(),(211111a k k kb ka b a k -+= ; 因为该加法⊕和数量乘法 运算满足线性运算的全部性质: i )),(),(),(),(),(11222121212211b a b a a a b b a a b a b a ⊕=+++=⊕; ii )),(),(),()),(),((33212121332211b a a a b b a a b a b a b a ⊕+++=⊕⊕ ))(,(32132121321a a a b a a b b a a a +++++++= ),(323121321321a a a a a a b b b a a a +++++++=)),(),((),(332211b a b a b a ⊕⊕=; iii )),()0,0(),(1111b a b a =⊕;iv ))0,0(),(),(211111=+--⊕a b a b a ;v )),()2)11(11,1(),(111211111b a a b a b a =-+= ; vi )))(2)1(2)1(,()2)1(,()),((212111211111la k k a l l k klb kla a l l lb la k b a l k -+-+=-+= ),()()2)1(,(112111b a kl a kl kl klb kla =-+=; vii ))2)1(,()2)1(,()),(()),((211121111111a l l lb la a k k kb ka b a l b a k -+⊕-+=⊕ )2)1(2)1(,(2121121111k l a a l l lb a k k kb la ka +-++-++= ),()()2)1))((()(,)((112111b a l k a l k l k b l k a l k +=-+++++=; viii )),()),(),((2121212211a a b b a a k b a b a k +++=⊕))(2)1()(),((221212121a a k k a a b b k a a k +-++++= )2)1(2)1(,(22212122121a k k a k k a a k kb kb ka ka -+-++++= )2)1(,()2)1(,(22222111a k k kb ka a k k kb ka -+⊕-+= )),(()),((2211b a k b a k ⊕=。
(2)由得
所以
,求 e , e ,sinA。
解:由的特征值
由此得
对,对 f ,
对 f ,
2cos
已知 A2=A,求 sinA。
解:设为 A 的特征值,为特征向量由得
因 A2=A,故有于是为矩阵 A 的化零多项式(最小多项式),且为一次银子乘积,所以 A 可对角化即有
这里
10.求解微分方程组
解:
习题五
设,求解:
取矩阵 A 的第1、3 列构成列满秩矩阵 B,取矩阵 F 第 1、2 行构成行满秩矩阵
证明非齐次线性方程组有解的充分必要条件是。
证明:必要性设有解,由得,,即有
充分性设,则有,令 x,于是,故方程组
有解
设,且 A 的 n 个列是标准正交的,证明。
证明:因为矩阵 A 的 n 个列向量是标准正交的,则矩阵 A 为列满秩的矩阵,且有于是是幂等且为 Hermite 矩阵,证明。
证明:因为,且,矩阵 A 是正规阵,可酉相似对角阵,即于是,U 为酉矩阵,并设
求线性方程组的最佳的最小二乘解。
解:
最佳最小二乘解为。
矩阵考试题及答案详解一、单项选择题(每题2分,共10分)1. 矩阵的行列式为零,意味着什么?A. 矩阵是奇异的B. 矩阵是偶数阶的C. 矩阵是对称的D. 矩阵是单位矩阵答案:A2. 矩阵A和矩阵B可以相乘的条件是?A. A的列数等于B的行数B. A的行数等于B的列数C. A和B的行数相同D. A和B的列数相同答案:A3. 矩阵的转置操作会改变矩阵的什么?A. 行列数B. 元素位置C. 行列式值D. 秩答案:B4. 矩阵的逆矩阵存在的条件是?A. 矩阵是方阵B. 矩阵是满秩的C. 矩阵的行列式非零D. 所有以上条件答案:D5. 矩阵的秩是指?A. 矩阵中非零行的最大数量B. 矩阵中非零列的最大数量C. 矩阵中最大线性无关行或列的数量D. 矩阵的行数和列数之和答案:C二、填空题(每题3分,共15分)1. 如果矩阵A的行列式为1,则称矩阵A为________矩阵。
答案:单位2. 矩阵的________是指矩阵中任意两行(或两列)的元素对应相乘后求和的结果。
答案:元素3. 矩阵的________是指矩阵中所有元素的平方和的平方根。
答案:范数4. 矩阵A和矩阵B相乘得到单位矩阵,称矩阵B为矩阵A的________。
答案:逆矩阵5. 如果矩阵A和矩阵B的秩相等,则称矩阵A和矩阵B是________的。
答案:等价三、解答题(每题10分,共20分)1. 给定矩阵A和矩阵B,求它们的乘积AB,并说明结果矩阵的行列式。
答案:首先计算矩阵A和矩阵B的乘积AB,然后根据行列式的性质,结果矩阵AB的行列式等于矩阵A的行列式乘以矩阵B的行列式。
2. 证明矩阵的秩等于其行秩和列秩。
答案:矩阵的秩是指矩阵中最大线性无关行或列的数量。
由于矩阵的行和列可以相互转换(通过转置操作),因此矩阵的行秩和列秩实际上是相等的,即矩阵的秩等于其行秩和列秩。
四、证明题(每题15分,共30分)1. 证明矩阵的行列式等于其转置矩阵的行列式。
答案:设矩阵A的行列式为det(A),矩阵A的转置为A^T。