矩阵论(华中科技大学)课后习题问题详解(1)
- 格式:doc
- 大小:1.01 MB
- 文档页数:34
习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。
2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。
解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
证明:因为dim U 1=dim U 2,故设{}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=而()()1212r r C αααβββ=,C 为过渡矩阵,且可逆于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈由此,得 21U U ⊆又由题设12U U ⊆,证得U 1=U 2。
习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。
2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。
解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
证明:因为dim U 1=dim U 2,故设{}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=而()()1212r r C αααβββ=,C 为过渡矩阵,且可逆于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈由此,得21U U ⊆又由题设12U U ⊆,证得U 1=U 2。
2011年《矩阵论》习题解答 一、 掌握线性空间的定义及判断是否为线性空间。
二、 在4R 中有两组基,()()()()12341,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1αααα====()()()()12342,1,1,1,0,3,1,0,5,3,2,1,6,6,1,3ββββ=-===求 (1)由基1234,,,αααα到基1234,,,ββββ的过渡矩阵;(2)向量()1234,,,x ξξξξ=在基1234,,,ββββ之下的坐标;(3)在两组基下有相同坐标的非零向量。
解:(1)因为()()()12341234123420561336,,,,,,,,,1121113C ββββαααααααα⎛⎫ ⎪ ⎪== ⎪- ⎪⎝⎭ 所以由基123,,,αααα到基123,,,ββββ的过渡矩阵20561********13C ⎛⎫ ⎪⎪= ⎪- ⎪⎝⎭(2) ()()()112211234123412343344,,,,,,,,,x C ξξξξξξξξααααββββξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以向量()1,0,1,0在基1234,,,ββββ之下的坐标为12134C ξξξξ-⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭或解 非齐次线性方程组的解11223344k k C k k ξξξξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(3)由 (2)式有112213344C ξξξξξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则有()12340C E ξξξξ⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭,该方程组的通解为()1,1,1,1Tk -,对两个基有相同坐标的非零向量为()1234k x xx x ++-,k 非零常数。
二、已知线性空间V 是矩阵空间22R ⨯,(1)证明:123410010000,,00001001E E E E ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦是V 的一组基;(2) 求向量1223A ⎡⎤=⎢⎥⎣⎦在基1234,,,E E E E 下的坐标。
第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。
(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。
(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。
(2)由得
所以
,求 e , e ,sinA。
解:由的特征值
由此得
对,对 f ,
对 f ,
2cos
已知 A2=A,求 sinA。
解:设为 A 的特征值,为特征向量由得
因 A2=A,故有于是为矩阵 A 的化零多项式(最小多项式),且为一次银子乘积,所以 A 可对角化即有
这里
10.求解微分方程组
解:
习题五
设,求解:
取矩阵 A 的第1、3 列构成列满秩矩阵 B,取矩阵 F 第 1、2 行构成行满秩矩阵
证明非齐次线性方程组有解的充分必要条件是。
证明:必要性设有解,由得,,即有
充分性设,则有,令 x,于是,故方程组
有解
设,且 A 的 n 个列是标准正交的,证明。
证明:因为矩阵 A 的 n 个列向量是标准正交的,则矩阵 A 为列满秩的矩阵,且有于是是幂等且为 Hermite 矩阵,证明。
证明:因为,且,矩阵 A 是正规阵,可酉相似对角阵,即于是,U 为酉矩阵,并设
求线性方程组的最佳的最小二乘解。
解:
最佳最小二乘解为。
矩阵论引论习题答案矩阵论引论习题答案矩阵论是线性代数中的重要分支,它研究的是矩阵的性质和运算规律。
在实际应用中,矩阵论有着广泛的应用,涉及到各个领域,如物理学、经济学、计算机科学等。
在学习矩阵论时,习题是巩固知识和提高技能的重要途径。
下面,我将为大家提供一些矩阵论引论的习题答案。
1. 习题一已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求A的转置矩阵AT。
解答:A的转置矩阵AT = [1 4 7; 2 5 8; 3 6 9]。
2. 习题二已知矩阵A = [2 4; 6 8],求A的逆矩阵A-1。
解答:由于A是一个2x2的矩阵,我们可以使用伴随矩阵法来求解A的逆矩阵。
首先,计算A的行列式det(A) = 2*8 - 4*6 = 16 - 24 = -8。
然后,计算A的伴随矩阵adj(A) = [8 -4; -6 2]。
最后,计算A的逆矩阵A-1 = adj(A)/det(A) = [8/(-8) -4/(-8); -6/(-8) 2/(-8)] = [-1/2 1/2; 3/4 -1/4]。
3. 习题三已知矩阵A = [1 2 3; 4 5 6],矩阵B = [1 0; 0 1; 1 1],求矩阵C = AB。
解答:由于A是一个2x3的矩阵,B是一个3x2的矩阵,所以C是一个2x2的矩阵。
计算C的每个元素,C = [1*1 + 2*0 + 3*1 1*0 + 2*1 + 3*1; 4*1 + 5*0 + 6*1 4*0 + 5*1 + 6*1] = [4 5; 10 11]。
4. 习题四已知矩阵A = [1 2; 3 4],求A的特征值和特征向量。
解答:首先,求A的特征值λ。
计算A的特征多项式det(A - λI) = (1-λ)(4-λ) - 2*3 = λ^2 - 5λ + 2。
解特征多项式得到λ1 = (5 + √17)/2,λ2 = (5 - √17)/2。
然后,求A的特征向量v。
习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。
2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。
解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩L L L ⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
证明:因为dim U 1=dim U 2,故设{}12,,,r αααL 为空间U 1的一组基,{}12,,,r βββL 为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=L L而()()1212r r C αααβββ=L L ,C 为过渡矩阵,且可逆 于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈L L L L L L由此,得 21U U ⊆又由题设12U U ⊆,证得U 1=U 2。
4.设111213315A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,讨论向量(2,3,4)Tα=是否在R (A )中。
解:构造增广矩阵()111|2111|2|213|3011|1315|4000|0A α⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭矩阵A 与其增广矩阵秩相同,向量α可由矩阵A 的3个列向量线性表示,α在列空间R (A )中。
5.讨论线性空间P 4[x ]中向量3211P x x x =+++,32223Px x x =-+,323452P x x x =+++的线性相关性。
解:()23123102135(1)111124P P P x x x ⎛⎫⎪ ⎪= ⎪-⎪⎝⎭而102102135011111000124000⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪→ ⎪ ⎪-⎪ ⎪⎝⎭⎝⎭,该矩阵秩为2 所以向量组P 1,P 2,P 3线性相关。
6.设m nA R⨯∈,证明dim R (A )+dim N (A )=n 。
证明:12(){,,,}n R A L A A A =L ,(){|0,}nN A X AX X R ==∈ 假定dim R (A )=r ,且设12,,,r A A A L 为R (A )的一组基 则存在 12,,,(1,,)i i rik k k i r n =+L L ,其中12,,,i i ri k k k L 不全为零使11220(1,,)i i ri r i k A k A k A A i r n ++++==+L L显然1,11,21,2,12,22,,1,2,()100010001r r n r r n r r r r r n k k k k k k k k k N A ++++++⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭M M M L M M M 上述n -r 个向量线性无关,而()121,,,,1,0,0Ts k k k -L L ,s <r 不为N (A )中的向量,否则与12,,,r A A A L 线性无关矛盾,故dim N (A )=n -r 所以dim R (A )+dim N (A )=n7.设113021211152A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭,求矩阵A 的列空间R (A )和零空间N (A )。
解:通过矩阵的行初等变换将矩阵A 化为行阶梯形113011302121014111520000A --⎛⎫⎛⎫ ⎪ ⎪=--→- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭矩阵A 的秩为2,从A 中选取1、2列(线性无关)作为R (A )的基,于是 ()(){}()121,111T TR A L =----由0AX =,1234(,,,)T X x x x x =,rank(A )=2,有12323434x x x x x x -=-⎧⎨-=--⎩分别取341,0x x ==和340,1x x ==,求得齐次方程0AX =解空间的一组基()()1410,1101T T所以A 的零空间为()(){}()1410,1101T TN A L =8.在22R⨯中,已知两组基11000E ⎛⎫= ⎪⎝⎭,20100E ⎛⎫= ⎪⎝⎭,30010E ⎛⎫= ⎪⎝⎭,40001E ⎛⎫= ⎪⎝⎭10111G ⎛⎫= ⎪⎝⎭,21011G ⎛⎫= ⎪⎝⎭,31101G ⎛⎫= ⎪⎝⎭,41110G ⎛⎫= ⎪⎝⎭ 求基{E i }到基{G i }的过渡矩阵,并求矩阵0123⎛⎫⎪-⎝⎭在基{G i }下的坐标X 。
解:()()()4123412341234,i G G G G E E E E C C C C C R =∈由此,得过渡矩阵111101111011110C ⎛⎫⎪⎪= ⎪ ⎪⎝⎭再由123401011011112311110110x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭解得 ()0123TX =--9.判别下列集合是否构成子空间。
(1)2221{(,,)|1,,,}W x y z x y z x y z R α==++≤∈; (2)22{|,}n n W A A I A R ⨯==∈; (3)3R 中,231231230{(,,)|(}0}tW x x x x x x d ατττ==++=⎰;(4)411{()|0}m nij m n iji j W A a a⨯=====∑∑。
解:(1)不是3R 子空间,对加法及数乘运算不封闭。
如取k =2,(100)T α=,(200)T k α=,而22241x y z ++=>,1k W α∉。
(2)不是子空间,因为W 2中没有零元。
(3)、(4)为子空间。
10.设1(1,2,1,0)T α=,2(1,1,1,1)T α=-,1(2,1,0,1)T β=-,2(1,1,3,7)T β=-,112{,}W span αα=,212{,}W span ββ=,求12W W ⋂和12W W +。
解:设12W W γ∈⋂,则1122x x γαα=+且3142x x γββ=+于是,有112231420x x x x ααββ+--=即 123411210211101103001170x x x x ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 而11211121211101171103001301170000A ------⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭取41x =,得12341,4,3,1x x x x =-==-= 所以{}{}121212143W W L L ααββ⋂=-+=-+由于rank(A )=3则 {}12121,,W W L ααβ+=11.在矩阵空间22R⨯中,子空间121123434{|0}x x V A x x x x x x ⎛⎫==-+-=⎪⎝⎭,212{,}V L B B =,其中11023B ⎛⎫= ⎪⎝⎭,20201B -⎛⎫= ⎪⎝⎭,求(1)V 1的基和维数;(2)12V V +和12V V ⋂的维数。
解:(1)1V 中,1223422343434111010001001x x x x x x A x x x x x x x -+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫===++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 令123111010,,001001A A A -⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,可验证A 1,A 2,A 3线性无关,它们构成空间V 1的一组基,空间V1的维数dim V 1=3。
(2)212{,}V L B B =中,B 1与B 2线性无关,它们是V 2的一组基,故dim V 2=2,而 V 1+V 2 = L {A 1,A 2,A 3} + L {B 1,B 2} = L { A 1,A 2,A 3,B 1,B 2}在22R ⨯的标准基E 11,E 12,E 21,E 22下,A 1,A 2,A 3,B 1,B 2对应的坐标X 1,X 2,X 3,X 4,X 5排成矩阵()123451111011110100020111201020001320013100001X X X X X --⎛⎫⎛⎫⎪ ⎪----⎪ ⎪=→ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭于是dim(V 1+V 2)=4,由维数定理121212dim()dim dim dim()3241V V V V V V ⋂=+-+=+-=12.设1W 和2W 为n V 的子空间,1121{(,,,)|0}nTn ii W x x x xα====∑L ,21212{(,,,)|}T n n W x x x x x x α=====L L ,证明12n V W W =⊕。
证明:对W 1,由120n x x x +++=L ,解得 ()()()1121110001010010001T T Tn X k k k -=-+-++-LL L L显然W 1的维数dim W 1=n -1,而向量组 ()()()12111000,10100,10001TTTn ααα-=-=-=-L L L L为W 1的一组基。
对W 2,由12n x x x ===L ,解得 ()211111TX k =LW 2的基为()11111Tβ=L ,dim W 2=1于是{}{}{}12121121,,,,,,,n n W W L L L αααβαααβ--+=+=L L这里12111111001det(,,,,)00101011n αααβ----=≠LL L L L L L L L L所以121,,,,n αααβ-L 为W 1+W 2的基,则dim (W 1+W 2)=n ,由维数定理可知12dim()0W W ⋂=,故有 12n V W W =⊕13.n R 中,12(,,,)T n αααα=L ,12(,,,)T n ββββ=L ,判别下面定义的实数(,)αβ是否为积。