华中科技大学研究生矩阵论Matrix6-1
- 格式:ppt
- 大小:721.02 KB
- 文档页数:26
习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。
2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。
解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
证明:因为dim U 1=dim U 2,故设{}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=而()()1212r r C αααβββ=,C 为过渡矩阵,且可逆于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈由此,得21U U ⊆又由题设12U U ⊆,证得U 1=U 2。
习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。
2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。
解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩L L L ⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
证明:因为dim U 1=dim U 2,故设{}12,,,r αααL 为空间U 1的一组基,{}12,,,r βββL 为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=L L而()()1212r r C αααβββ=L L ,C 为过渡矩阵,且可逆 于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈L L L L L L由此,得 21U U ⊆又由题设12U U ⊆,证得U 1=U 2。
习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。
2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。
解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
证明:因为dim U 1=dim U 2,故设{}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=而()()1212r r C αααβββ=,C 为过渡矩阵,且可逆于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈由此,得 21U U ⊆又由题设12U U ⊆,证得U 1=U 2。
矩阵论讲稿讲稿编者:张凯院使用教材:《矩阵论》(第2版)西北工业大学出版社程云鹏等编辅助教材:《矩阵论导教导学导考》《矩阵论典型题解析及自测试题》西北工业大学出版社张凯院等编课时分配:第一章 17学时第四章8学时第二章5学时第五章8学时第三章8学时第六章8学时第一章 线性空间与线性变换§1.1 线性空间 一、集合与映射1.集合:能够作为整体看待的一堆东西. 列举法:},,,{321L a a a S =性质法:}{所具有的性质a a S = 相等(:指下面二式同时成立)21S S =2121,S S S a S a ⊆∈⇒∈∀即 1212,S S S b S b ⊆∈⇒∈∀即交:}{2121S a S a a S S ∈∈=且I 并:}{2121S a S a a S S ∈∈=或U 和:},{22112121S a S a a a a S S ∈∈+==+例1 R}0{2221111∈==j i a a a a A S R}0{2212112∈==j i a a a aA S ,21S S ≠ R},00{2211221121∈==a a a a A S S I R},0{21122221121121∈===j i a a a a a a a A S S U R}{2221121121∈==+j i a a a a a A S S 2.数域:关于四则运算封闭的数的集合.例如:实数域R ,复数域C ,有理数域,等等.Q 3.映射:设集合与,若对任意的1S 2S 1S a ∈,按照法则σ,对应唯一的.)(,2b a S b =∈σ记作 称σ为由到的映射;称为的象, 1S 2S b a a 2为b 的象源.变换:当1S S =时,称映射σ为上的变换. 1S 例2 )2(R})({≥∈==×n a a A S j i nn j i .映射1σ:A A det )(1=σ (R)→S 变换2σ:n I A A )det ()(2=σ ()S S → 二、线性空间及其性质1.线性空间:集合V 非空,给定数域K ,若在V 中(Ⅰ) 定义的加法运算封闭, 即V y x V y x ∈+∈∀)(,,元素对应唯一, 且满足(1) 结合律:)()()(V z z y x z y x ∈∀++=++(2) 交换律:x y y x +=+ (3) 有零元:)(,V x xx V ∈∀=+∈∃θθ使得(4) 有负元:θ=−+∈−∃∈∀)(,)(,x x V x V x 使得.(Ⅱ) 定义的数乘运算封闭, 即V kx K k V x ∈∈∀∈∀)(,,元素对应唯一, 且满足(5) 数对元素分配律:)()(V y ky kx y x k ∈∀+=+ (6) 元素对数分配律:)()(K l lx kx x l k ∈∀+=+(7) 数因子结合律:)()()(K l xkl lx k ∈∀=(8) 有单位数:单位数x x K =∈1,使得1. 则称V 为K 上的线性空间.例3 R =K 时,n R —向量空间; n m ×R —矩阵空间][t P n —多项式空间;—函数空间],[b a CC =K 时,—复向量空间; C —复矩阵空间n C n m ×例4 集合}{是正实数m m =+R ,数域}{R 是实数k k =.加法: mn n m n m =⊕∈+,R ,数乘: k m m k k m =⊗∈∈+R,,R 验证+R 是R 上的线性空间.证 加法封闭,且(1)~(2)成立. (3) 1=⇒=⇒=⊕θθθm m m m(4) m m m m m 1)(1)()(m =−⇒=−⇒=−⊕θ 数乘封闭,(5)~(8)成立.故+R 是R 上的线性空间.例5 集合R}),({212∈==i ξξξαR ,数域R .设R ),,(21∈=k ηηβ.运算方式1 加法: ),(2211ηξηξβα++=+数乘: ),(21ξξαk k k =运算方式2 加法: ),(112211ηξηξηξβα+++=⊕数乘: ))1(21,(2121ξξξα−+=k k k k k o 可以验证与都是)(R 2⋅+)(R 2o ⊕R 上的线性空间.[注] 在R 中, )(2o ⊕)0,0(=θ, . ),(2121ξξξα+−−=−Th1 线性空间V 中的零元素唯一,负元素也唯一.证 设与2θ都是V 的零元素, 则212211θθθθθθ=+=+=1θ设与都是的负元素, 则由1x 2x x θ=+1x x 及θ=+2x x 可得212111)()(x x x x x x x x ++=++=+=θ 22221)(x x x x x x =+=+=++=θθ例6 在线性空间V 中,下列结论成立.θ=x 0:θ=⇒=+=+x x x x x 01)01(01θθ=k :θθθθ=⇒=+=+k kx x k k )(kx)()1(x x −=−:()()(]1)1[()]([)1()1x x x x x x x x −=−++−=−++−=−2.减法运算:线性空间V 中,)(y x y x −+=−.3.线性组合:K c V x x i i ∈∈若存在,,, 使m m x c x c x ++=L 11, 则称x 是的线性组合,或者可由线性表示.m x x ,,1L x m x x ,,1L 4.线性相关:若有不全为零,使得m c c ,,1L θ=++m m x c x c L 11,则称m x x ,,1L 线性相关.5.线性无关:仅当全为零时,才有m c c ,,1L θ=++m m x c x c L 11,则称m x x ,,1L 线性无关.[注] 在R 中, )(2o ⊕)1,1(1=α, )2,2(2=α线性无关;)1,1(1=α, )3,2(2=α线性相关.(自证)三、基与坐标1.基与维数:线性空间V 中,若元素组满足 n x x ,,1L (1) 线性无关;n x x ,,1L (2) V x ∈∀都可由线性表示.n x x ,,1L 称为n x x ,,1L V 的一个基, 为n V 的维数, 记作n V =dim ,或者V . n 例7 矩阵空间n m ×R 中, 易见(1) ),,2,1;,,2,1(n j m i E j i L L ==线性无关;(2) .∑∑==×==mi nj j i j i n m j i E a a A 11)(故),,2,1;,,2,1(n j m i E j i L L ==是n m ×R 的一个基, .mn n m =×dimR2.坐标:给定线性空间V 的基,当时,有n n x x ,,1L n V x ∈n n x x x ξξ++=L 11.称n ξξ,,1L 为在给定基下的x n x ,,1L x 2坐标,记作列向量.Τ1),,(n ξξαL =例8 矩阵空间2R ×中,设22)(×=j i a A .(1) 取基 ,22211211,,,E E E E 2222212112121111E a E a E a E a A +++=坐标为Τ22211211),,,(a a a a =α(2) 取基 , , , =11111B =11102B =11003B=10004B 422432132122111)()()(B a B B a B B a B B a A +−+−+−= 421223122121112111)()()(B a a B a a B a a B a −+−+−+=坐标为Τ21221221111211),,,(a a a a a a a −−−=β[注] 一个元素在两个不同的基下的坐标可能相同,也可能不同. 例如:在上述两个基下的坐标都是;22n n E A =Τ)1,0,0,0(11E A =在上述两个基下的坐标不同.Th2 线性空间V 中,元素在给定基下的坐标唯一. 证 设V 的基为,对于,若 n x x ,,1L n V x ∈ n n x x x ξξ++=L 11n n x x ηη++=L 11则有 θηξηξ=−++−n n n x x )()(111L因为线性无关, 所以n x x ,,1L 0=−i i ηξ, 即),,2,1(n i i i L ==ηξ.故的坐标唯一.x n 例9 设线性空间V 的基为, 元素在该基下的坐标为n x x ,,1L j y ),,2,1(m j j L =α, 则元素组线性相关(线性无关)m y y ,,1L ⇔向量组m αα,,1L 线性相关(线性无关).证 对于数组, 因为m k k ,,1L θαα=++=++))(,,(11111m m n m m k k x x y k y k L L L 等价于θαα=++m m k L 11k , 所以结论成立. 四、基变换与坐标变换1.基变换:设线性空间V 的基(Ⅰ)为, 基(Ⅱ)为, 则n n x x ,,1L n y ,,1L y+++=+++=+++=n nn n n nn n nn x c x c x c y xc x c x c y x c x c x c y L L L L L L 22112222112212211111 C=nn n n n n c c c c c c c c c L M M M L L 212222111211写成矩阵乘法形式为 (C x x y y n n ),,(),,11L L =称上式为基变换公式,C 为由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵.[注] 过渡矩阵C 一定可逆. 否则C 的个列向量线性相关, 从而n n y ,,1L y 1−线性相关(例9).矛盾!由此可得111),,(),,(−=C y y x x n n L L称C 为由基(Ⅱ)改变为基(Ⅰ)的过渡矩阵.2.坐标变换:设在两个基下的坐标分别为n V x ∈α和β,则有 =++=n n x x x ξξL 11α),,(1n x x Ln n y y x ηη++=L 11β),,(1n y y L =βC x x n ),,(1L =由定理2可得βαC =,或者,称为坐标变换公式. αβ1−=C 例10 矩阵空间22R ×中,取基(Ⅰ) , , ,=10011A −=10012A =01103A−=01104A (Ⅱ) , , , =11111B =01112B =00113B=00014B(1) 求由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵; (2) 求由基(Ⅱ)改变为基(Ⅰ)的坐标变换公式. 解 采用中介法求过渡矩阵.基(0):, , ,=000111E =001012E =010021E=100022E (0)→(Ⅰ):1222112114321),,,(),,,(C E E E E A A A A = (0)→(Ⅱ):2222112114321),,,(),,,(C E E E E B B B B =,−−=00111100110000111C=00010011011111112C (Ⅰ)(Ⅱ):→=),,,4321B B B B (2114321),,,(C C A A A A −=−−==−0100012211101112210110011010011001212211C C C C+++++++==332143243214321432122221ηηηηηηηηηηηηηηηξξξξC五、线性子空间1.定义:线性空间V 中,若子集V 非空,且对1V 中的线性运算封闭,即 (1) 11,V y x V y x ∈+⇒∈∀ (2) 11,V kx K k V x ∈⇒∈∀∈∀称V 为1V 的线性子空间,简称为子空间.1[注] (1) 子空间V 也是线性空间, 而且V V dim dim 1≤.(2) }{θ是V 的线性子空间, 规定dim{0}=θ. (3) 子空间V 的零元素就是1V 的零元素. 例11 线性空间V 中,子集V 是1V 的子空间⇔对11,,,,V ly kx K l k V y x ∈+∈∀∈∀.有证 充分性. :1==l k 11,V y x V y x ∈+⇒∈∀0=l :110 ,V y kx kx K k V x ∈+=⇒∈∀∈∀故V 是1V 的子空间.必要性. 11 ,V kx K k V x ∈⇒∈∀∈∀ (数乘封闭)11 ,V ly K l V y ∈⇒∈∀∈∀ (数乘封闭)故 (加法封闭)1V y l x k ∈+例12 在线性空间V 中,设),,2,1(m i V x i L =∈,则 }{111K k x k x k x i mm ∈++==L V是V 的子空间,称V 为由生成的子空间.1m x x ,,1L 证 m m x k x k x V x ++=⇒∈L 111∀m m x l x l y V y ++=⇒∈∀L 111:1111)()(V x l l kk x l l kk y l kx m m m ,K l k ∈∀ ∈++++=+L根据例11知,V 是1V 的子空间.[注] (1) 将V 记作span 或者.1},,{1m x x L ),,(1m x x L L (2) 元素组的最大无关组是的基; m x x ,,1L ),,(1m x x L L (3) 若线性空间V 的基为,则V . n n x x ,,1L ),,(1n n x x L L = 2.矩阵的值域(列空间):划分(),n m n n m j i a A ××∈==C ),,()(1ββL m j C ∈β称),,()(1n L A R ββL =为矩阵的值域(列空间). A 易见A A R rank )(=dim . 例13 矩阵A 的值域}C {)(n x AxA R ∈==β.证 ∈∀β左, 有 右∈= =++=Ax k k k k n n n n M L L 1111),,(βββββ∈∀β右, 有左∈++===n n n n k k k k Ax βββββL M L 1111),,( 3.矩阵的零空间:设,称n m A ×∈C }C ,0{)(n x Ax xA N ∈==为矩阵A 的零空间.易见A n A N rank )(−=dim .Th3 线性空间V 中, 设子空间V 的基为n 1)(,,1n m x x m <L , 则存在n n m V x x ∈+,,1L , 使得为V 的基.n m m x x x x ,,,,,11L L +n 证线性表示不能由m n m x x V x n m ,,11L ∈∃⇒<+ ,,,11线性无关+⇒m m x x x L若,则是V 的基;n n m =+111,,,+m m x x x L n 否则,mn <+1线性表示不能由112,,,++∈∃⇒m m n m x x x V x L ,,,,211线性无关++⇒m m m x x x x L若,则是V 的基;m =+2211,,,,++m m m x x x x L n 否则,m . L L ⇒<+n 2依此类推, 即得所证.六、子空间的交与和1.子空间的交:}{2121V x V x x V ∈∈=且I VTh4 设V 是线性空间21,V V 的子空间,则V 是21V I V 的子空间. 证 212121,V V V V V V I I ⇒∈⇒∈∈θθθ非空∈+⇒∈∈+⇒∈⇒∈∀221121,,,V y x V y x V y x V y x V V y x I 21V V y x I ∈+⇒∈⇒∈∈⇒∈⇒∈∀∈∀221121,V kx V x V kx V x V V x K k I 21V V kx I ∈⇒ 所以V 是21V I V 的子空间.2.子空间的和: },{22112121V x V x x x x V V ∈∈+==+ Th5 设V 是线性空间21,V V 的子空间,则V 21V +是V 的子空间. 证 212121,V V V V V V +⇒+∈+=⇒∈∈θθθθθ非空∈∈+=∈∈+=⇒+∈∀22112122112121,,,,,V y V y y y y V x V x x x x V V y x )()(2211y x y x y x +++=+⇒,222111,V y x V y x ∈+∈+ 21V V y x +∈+⇒22112121,,,V x V x x x x V V x K k ∈∈+=⇒+∈∀∈∀221121,,V kx V kx kx kx kx ∈∈+=⇒ 21V V kx +∈⇒所以V 是21V +V 的子空间. [注] 不一定是21V V U V 的子空间.例如:在2R 中,V )()(2211e L V e L ==与的并集为}R ,0),({212121∈=⋅==i V V ξξξξξαU易见21212121)1,1(,,V V e e V V e e U U ∉=+∈但, 故加法运算不封闭.2Th6 设V 是线性空间1,V V 的有限维子空间,则)(dim dim dim )(dim 212121V V V V V V I −+=+ 证 记 ,dim 11dim n V =22n V =,m V V =21I dim 欲证 m n n V V −+=+2121)(dim (1) :(1n m =121121)V V V V V V =⇒⊂I I22121221)(V V V V V V V V =+⇒⊂⇒⊂Im n n n V V V −+===+212221dim )(dim (2) :(2n m =221221)V V V V V V =⇒⊂I I12112121)(V V V V V V V V =+⇒⊂⇒⊂Im n n n V V V −+===+211121dim )(dim(3) :设V 的基为,那么212L 1,n m n m <<21V I m x x ,,1L 扩充为V 的基: (Ⅰ) m n m y y x x −1,,,,,11L L 扩充为V 的基: (Ⅱ) m n m z z x x −2,,,,,11L L 考虑元素组: (Ⅲ)m n m n m z z y y x x −−21,,,,,,,,111L L L 因为 (Ⅰ),V (Ⅱ) ,所以 V V =1L =2L V =+21(Ⅲ) (自证). 下面证明元素组(Ⅲ)线性无关:设数组k 使得m n m n m q q p p k −−21,,,,,,,,111L L L m n m n m m y p y p x k x k −−+++++111111L L θ=+++−−m n m n z q z q 2211L由 (*)∈++−∈+++++=−−−−21111111)(2211V z q z q V y p y p x k x k x m n m n m n m n m m L L L 得 m m x l x l x V V x ++=⇒∈L I 1121 结合(*)中第二式得θ=+++++−−m n m n m m z q z q x l x l 221111L L(Ⅱ)线性无关0,0211======−m n m q q l l L L ⇒结合(*)中第一式得θ=+++++−−m n m n m m y p y p x k x k 111111L L(Ⅰ)线性无关0,0111======−m n m p p k k L L ⇒故元素组(Ⅲ)线性无关,从而是V 21V +的一个基. 因此 m n n V V −+=+2121)(dim . 3.子空间的直和:},{22112121V x V x x x x V V ∈∈+==+唯一唯一记作:V2121V V V ⊕=+Th7 设V 是线性空间21,V V 的子空间,则V 21V +是直和⇔}{21θ=V I V . 证 充分性.已知}{21θ=V I V :对于21V V z +∈∀,若∈∈+=∈∈+=221121221121,,,,V y V y y y z V x V x x x z 则有 2221112211,,)()(V y x V y x y x y x ∈−∈−=−+−θ22112211212211,,)(y x y x y x y x V V y x y x ==⇒=−=−⇒∈−−=−⇒θθI 故的分解式唯一, 从而V 21V V z +∈2121V V V ⊕=+.必要性.若}{21θ≠V I V ,则有21V V x I ∈≠θ.对于21V V +∈θ,有2121)(,),(,,V x V x x x V V ∈−∈−+=∈∈+=θθθθθθ即21V V +∈θ有两种不同的分解式.这与V 21V +是直和矛盾. 故}{21θ=V I V .2推论1 V 是直和1V +2121dim dim )(dim V V V V +=+⇔推论2 设V 是直和,V 的基为,V 的基为,221V +1k x x ,,1L 2l y y ,,1L 则V 的基为.1V +l k y y x x ,,,,,11L L 证 因为 ,且 2),,,,,(11l k y y x x L L L =1V V + l k V V V V +=+=+2121dim dim )(dim所以线性无关, 故是V 的基. l k y y x x ,,,,,11L L l k y y x x ,,,,,11L L 21V +。