矩阵论_研究生期末考试_2017_安丰稳
- 格式:pdf
- 大小:673.25 KB
- 文档页数:3
矩阵理论矩阵理论 2006-2007 学年第 一 学期末考试试题(A 卷)及答案一、 填空题(共20分,每空2分)1、 在欧氏空间4R 中,与三个向量(1,1,1,1),(1,1,1,1),(2,1,1,3)---都正交的单位向量为:)3,1,0,4(261-±2、 已知122212221A ⎛⎫⎪= ⎪ ⎪⎝⎭, 则12__________;__________;__________;F A A A A ∞====3、 已知三阶方阵A 的初等因子为()()21,1λλ--,则A 的约当标准形为:⎪⎪⎪⎭⎫⎝⎛1100100014、 已知cos sin ()sin cos t t A x t t ⎛⎫=⎪-⎝⎭,则1()______________;()______________;|()|______________;|()|______________.d dA t A t dt dtd dA t A t dt dt-====.1,0,s i n c o s c o s s i n ,s i n c o s c o s s i n ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛---t t t t t t t t 二、解答下列各题((共48分,每小题8分)1. 用最小二乘法求解线性方程组121312312312021x x x x x x x x x x +=⎧⎪+=⎪⎨++=⎪⎪+-=-⎩解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-=121111101011A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=1021,111021011111b A T,-------------(3’) 所以b A x x x Ax A TT =⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=312311164144321-----------------------(7’)求得最小二乘解为.64,613,617321-=-==x x x -------------------------------------(8’) 2. 设111111111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试计算43()322A A A A E φ=-++。
一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。
学科专业代码_ _ 学科专业名称 全校考试科目代码__0806121410_ 考试科目 矩阵理论及其应用(本试卷考试时间为2个小时,卷面分数100分,答案请写在答题本上)一、填空题(每题5分,共25分)________100110001 1=⎥⎥⎦⎤⎢⎢⎣⎡--=F A J A 的有理标准形为,则矩阵的约当标准形为设矩阵、 _________2223221232221的取值范围为为正定二次型,则、设二次型t x tx x x x x x f ++++=_______422 3的奇异值为矩阵、⎥⎦⎤⎢⎣⎡-=i i A ____ ____ ____ 23 21===⎥⎥⎦⎤⎢⎢⎣⎡-=∞x x x i i x ; ;则,设4、 _______)12)(12(14132)2(1 5111的和为矩阵级数、∑∞=--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+k k k k k k k 二、解答题(每题15分,共75分)关组表示其余多项式极大无关组并用极大无的秩、,,,,求中,在、 343 33 74 732 ][ 1235234233222314++--=---=+++=+-=+++=x x x x x x x x x x x x x x F ααααα的通解、求微分方程组⎪⎩⎪⎨⎧+-=-=2122112d d 2d d 2x x t x x x t x 初等因子及标准形行列式因子、的不变因子、求、 111111)( 3⎥⎥⎦⎤⎢⎢⎣⎡------=λλλλA 矩阵在该基下的矩阵为对角的一组标准正交基,使为对称变换,并求证明,且正交基,为内积空间的一组标准,,设、T V T T T T V L T ⎪⎩⎪⎨⎧++=++=++=∈321332113211321444)( 4εεεεεεεεεεεεεεε的谱分解为正规矩阵,并求,证明设、A A i i i i A ⎥⎥⎦⎤⎢⎢⎣⎡----=01010 5。
矩阵论期末试题及答案1. 选择题题目1:矩阵的秩是指矩阵中非零行(列)线性无关的最大个数,下面关于矩阵秩的说法中,错误的是:A. 若矩阵A的秩为r,则只能确定 A 中有r个行(列)线性无关。
B. 若矩阵A的秩为r,则只能确定 A 中有r个坐标线性无关。
C. 设A,B为n×m矩阵,若A的秩为r,B的秩为s,则AB的秩至少为max{r,s}。
D. 同一矩阵的行秩与列秩相等。
题目2:对于阶梯形矩阵,以下说法正确的是:A. 阶梯形矩阵的行秩与列秩相等。
B. 阶梯形矩阵的行秩等于主元的个数。
C. 阶梯形矩阵的列秩等于主元的个数。
D. 阶梯形矩阵的行秩与列秩之和等于矩阵的阶数。
题目3:设A为n阶矩阵,下列说法正确的是:A. 若A为可逆矩阵,则A的行秩和列秩都为n。
B. 若A的行秩和列秩都为n,则A为可逆矩阵。
C. 若对于非零向量 x,都有Ax=0,则称矩阵A为零矩阵。
D. 若A为可逆矩阵,则方程Ax=b存在唯一解。
题目4:对于实对称矩阵A,以下说法正确的是:A. A一定有n个线性无关的特征向量。
B. A的所有特征值都是实数。
C. 若A的特征向量构成的特征子空间的维数为n,则称A为满秩矩阵。
D. A一定可以对角化。
2. 计算题题目1:已知矩阵A = [1, 2; 3, 4],求矩阵A的转置矩阵。
解答:转置矩阵的行与列互换,故矩阵A的转置矩阵为:A^T = [1, 3; 2, 4]题目2:已知矩阵B = [2, 1; -1, 3],求矩阵B的逆矩阵。
解答:逆矩阵满足BB^(-1) = I,其中I为单位矩阵。
对于矩阵B,可以使用伴随矩阵法求解:B^(-1) = (1/(ad-bc)) * [d, -b; -c, a]其中a、b、c、d分别为矩阵B的元素:B^(-1) = (1/(2*3-(-1)*1)) * [3, -1; 1, 2] = [3/7, -1/7; 1/7, 2/7]题目3:已知矩阵C = [1, 2, 3; 4, 5, 6],求矩阵C的行列式的值。
第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。
由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。
故1x ,2x ,3x 是线性无关的。
(2)用反证法。
假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。
所以,1x +2x +3x 不是σ的特征向量。
二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。
四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。
矩阵论试题(整理)(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)矩阵论试题(06,12)一.(18分填空:设1.A-B的Jordan标准形为J=2.是否可将A看作线性空间V2中某两个基之间的过渡矩阵()。
3.是否可将B看作欧式空间V2中某个基的度量矩阵。
()4.(),其中。
5.若常数k使得kA为收敛矩阵,则k应满足的条件是()。
6.AB的全体特征值是()。
7.()。
8.B的两个不同秩的{1}-逆为。
二.(10分设,对于矩阵的2-范数和F-范数,定义实数,(任意)验证是中的矩阵范数,且与向量的2-范数相容。
三.(15分已知。
1.求;2.用矩阵函数方法求微分方程满足初始条件x(0的解。
四.(10分用Householder变换求矩阵的QR分解。
五.(10分)用Gerschgorin定理隔离矩阵的特征值。
(要求画图表示)六.(15分已知。
1.求A的满秩分解;2.求A+;3.用广义逆矩阵方法判断线性方程组Ax=b是否有解;4.求线性方程组Ax=b的极小范数解,或者极小范数最小二乘解x0。
(要求指出所求的是哪种解)七.(15分已知欧式空间R22的子空间R22中的内积为V中的线性变换为T(X=XP+XT, 任意XV,1.给出子空间V的一个标准正交基;2.验证T是V中的对称变换;3.求V的一个标准正交基,使T在该基下的矩阵为对角矩阵.八.(7分设线性空间V n的线性变换T在基下的矩阵为A,T e表示V n的单位变换,证明:存在x00,使得T(x0=(T e-T(x0的充要条件是为A的特征值.矩阵论试题(07,12)一.(18分填空:1.矩阵的Jordan标准形为J=2.设则3.若A是正交矩阵,则cos(A=4.设,A+是A的Moore-Penrose逆,则(-2A, A+=5.设,则AB+I2I3的全体特征值是()。
6.设向量空间R2按照某种内积构成欧式空间,它的两组基为和且与的内积为则基的度量矩阵为()。
硕士研究生考试试卷 2014— 2015学年第一学期 考试科目: 矩阵论 考试时间:120分钟 出卷教师: 出卷时间: 阅卷负责人签名:姓名、学号必须写在指定位置 1 填空题 (18分) (1)123654789A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111X ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = m A ∞= 1AX = AX ∞= (2)1821A -⎡⎤=⎢⎥-⎣⎦,幂级数06k k k k z ∞=∑的收敛半径是 , 矩阵幂级数06k k k k A ∞=∑是 (收敛、发散),理由 (3)1210A -⎡⎤=⎢⎥-⎣⎦,0110B ⎡⎤=⎢⎥⎣⎦,则A B ⊗的全部特征值是(4)123b b b α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是给定的向量,123X ξξξ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是向量变量,且112233()f X b b b ξξξ=++,则dfdX =专业:姓名:学号:2 设110430102A-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,(16分)(1)求A的Jordan标准形J (2)求变换矩阵P,使1P AP J-=3 设221022212A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求A的QR分解(12分)4 设101102221453A-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦(16分)(1)求A的满秩分解(2)求A的More-Penrose逆A+5设20312102810A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(14分)(1)写出A的行盖尔圆,并在复平面上画图表示(2)隔离A的特征值(3)利用实矩阵特征值性质,改进得到的结果6 设()m nij m n A a C ⨯⨯=∈,规定,ijG i j A a = (12分)(1) 证明G ⋅是m n C ⨯上的一种范数(2) 证明矩阵范数与向量2-范数相容7 求解微分方程初值问题 (12分)11221221431dx x x dt dx x x dt ⎧=++⎪⎪⎨⎪=+-⎪⎩,12(0)1,(0)2x x ==。
西南科技大学2016-2017-1学期《线性代数与矩阵分析》研究生期末考试试卷(A 卷)参考答案及评分细则一、单项选择题(每小题5分,共15分) 1、C ;2、B ;3、A 。
二、填空题(每小题5分,共15分)1、()22100010001λλ⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭;2、2;3、1000101012⎛⎫ ⎪- ⎪- ⎪ ⎪-- ⎪⎝⎭。
三、解答题(每小题10分,共70分) 1、解:4max||||311==∑=i ijjaA ;7max ||||31==∑=∞j ij ia A ;1322,1||||()F ij i j A a ===∑5||||22===A A A T A λλ;3})(max{)(==A A λρ。
2、解:(1)因为OA AO =,所以φ≠V ;假设V Y X ∈,,那么Y AY X AX λλ==,,于是)()(Y X Y X AY AX Y X A +=+=+=+λλλ,所以V Y X ∈+;假设R k V X ∈∈,,那么X AX λ=,所以)()()()(kX X k AX k kX A λλ===,所以V kX ∈。
所以V 是nn R⨯的一个线性子空间。
(2)当1≠λ并且2≠λ时,则}{o V=。
没有基,0dim =V 。
当1=λ时,方程组0)(=-X E A 的解为032==X X ,所以一个基为⎪⎪⎪⎭⎫ ⎝⎛001,1dim =V 。
当2=λ时,方程组0)(=-X E A 的解为01=X ,所以一个基为⎪⎪⎪⎭⎫ ⎝⎛010、⎪⎪⎪⎭⎫ ⎝⎛100,2dim =V 。
3、解:(1)3R x ∈∀,因为A 为3阶矩阵,所以3R Ax ∈,所以33:R R T →。
3,R y x ∈∀,Ty Tx Ay Ax y x A y x T +=+=+=+)()(; R k R x ∈∀∈∀,3,kTx Ax k kx A kx T ===)()()(。
所以T 是3R 上的线性变换。
一、填空
1、矩阵的LDU 分解,很简单
2、已知2A A =,求A I e
+α
3、求非零奇异值
二、 三、证明2
22||||||||||||F A A A +=为矩阵范数,且与|| 2||相容。
四、线性子空间的证明题,和08年基本相同,有小的变化,但只要把线性空间的基本概念和计算掌握就行了
五、计算题:
(1)求Hermite 标准型,FG ,A +
(2)Ax = b,求x
以下内容不在期末考试范围内:
第一章:矩阵相似于Jordan标准型的计算;
第二章:近似逆矩阵的误差-----逆矩阵的摄动;
第三章: 3.5节矩阵函数的一些应用;
第四章:§4.2中的“三、矩阵与Hessenberg 矩阵的正交相似问题”
第五章:§5.1中从定理5.11(Ostrongski theorem 1)起至本节末的内容;§5.3中“二、广义特征值的极大极小原理”的所有内容;
第六章:§6.2中“三、Moore-Penrose逆的等价定义”,§6.3中“三、四、五、六和七”
的内容;从§6.5到本章末。