地震勘探的野外数据采集系统
- 格式:doc
- 大小:40.51 KB
- 文档页数:2
(此文档为word格式,下载后您可任意编辑修改!)电子班报1 SPS格式标准简介1.1对SPS标准格式数据文件说明SPS是Shell processing support format for land 3d surveys的缩写,SPS格式标准是由英国SHELL 公司制定的。
由于他在国际勘探市场的广泛应用,被SEG年会推荐为国际通用的标准格式。
中国石油天然气总工司于1997年发布了《陆上三维地震勘探辅助数据SPS格式》标准(SY/T 6290-1997)(简称《SPS标准》),将它作为我国石油天然气行业标准在全国行业范围内执行。
采用这种格式,有利于与国际石油勘探市场接轨。
SPS的主要功能是将地震队施工的基础数据(测量设计、静校正数据、地震班报等数据)按照标准的数据格式整理存储于磁记录介质上,并经过质量检查合格后,与野外磁带一起上交处理中心。
处理系统将根据标准格式直接读取数据,更加快速准确地进行数据交流。
SPS格式文件包括四种:炮点数据文件、接收点数据文件、关系数据文件和注释文件。
每一种文件由两部分组成:第一部分是头卡;第二部分是数据卡。
头卡记录了与野外采集相关的信息,数据卡记录了野外采集到的实际数据。
1.2 头卡组成和要求(详细见附录1)头卡大致分成七种:1、基础卡;2、自由卡;3、可选择卡;4、仪器参数卡;5、接收参数卡;6、震源参数卡;7、质量控制卡七种。
⑴每张卡的参数都是以自由格式填写,参数之间以逗号“,”分隔,以分号“;”表示此卡参数填写完成;⑵头卡数据参数要用英文填写;⑶基础卡中有些与测量相关的卡不能用自由格式填写,必须用固定格式填写。
⑷基础卡H00—H20卡必须都有;⑹投影类型卡H18卡与投影参数卡H21到H25卡之间的对应关系正确;⑺仪器卡为:H400—H599,20卡一组,每张卡都不可缺少,最多9组;⑻接收器卡:H600—H699,10卡一组,每张卡都不可缺少,最多9组;⑼震源卡:H700—H899,20卡一组,最多9组;1.3 数据卡的格式SPS标准格式数据卡包括三种:点数据卡(包括炮点数据卡、检波点数据卡)、关系数据卡和注释数据卡。
地震勘探的基本原理地震勘探的基本原理地震勘探是一种利用地震波在地下传播的速度、反射、折射和衍射等特性,来研究地下构造和物性的方法。
其基本原理是将人工产生的地震波通过地表或井口传播到地下,经过不同介质的反射、折射和衍射后,再由接收器记录到地面上,并通过对记录数据的处理与解释,获得关于地下构造和物性的信息。
一、地震波的产生1.1 人工震源人工震源是指人类利用各种手段产生的能量大、频率宽、时间短暂、方向可控制且具有重复性等特点的振动源。
常见的人工震源包括爆炸物、振动器和压缩空气枪等。
1.2 自然震源自然震源是指自然界中产生的能量大而频率宽广,时间持续较长且不可控制且不具有重复性等特点的振动源。
常见自然震源包括火山喷发、海啸和地球内部运动等。
二、地震波在介质中传播2.1 地震波的类型地震波包括纵波、横波和面波等。
其中,纵波是指地震波在介质中传播时,颗粒沿着传播方向来回振动的一种波动形式;横波是指地震波在介质中传播时,颗粒垂直于传播方向来回振动的一种波动形式;面波是指地震波在介质表面上发生反射、折射和衍射等现象后,沿着介质表面传播的一种复杂的振动形式。
2.2 地震波在介质中的速度地震波在不同介质中传播的速度不同。
例如,在固体岩石中,纵波单向速度通常高于横波单向速度,而在液态岩石或水中,则不存在横向速度。
同时,不同类型的地震波也具有不同的速度特性。
三、地震勘探数据采集3.1 接收器接收器是指用于记录地震信号并将其转化为电信号输出的设备。
常见接收器包括地震仪、加速计和压电传感器等。
3.2 数据采集系统数据采集系统是指将接收器记录的地震信号进行放大、滤波和数字化等处理,并存储到计算机或数据采集仪中的设备。
常见的数据采集系统包括模拟型和数字型两种。
四、地震勘探数据处理与解释4.1 数据处理数据处理是指将采集到的地震信号进行滤波、去除噪声、提取地震波到时等预处理工作,以及进行成像和反演等后续分析工作。
常见的数据处理方法包括叠加法、偏移法、共振法和反演法等。
名词解释:1、布格重力异常:是野外重力观测数据经过布格校正以后得到的重力异常,它是由地下矿体或构造等局部地质因素在测点处引起的引力的垂向分量。
2、磁异常:地下含有磁性的地质体在其周围空间引起的磁场变化。
3、地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造、地层岩性等,为寻找油气田或其它勘探目的服务的一种物探方法。
4、地震子波:当地震波传播一定距离后,其形状逐渐稳定,具有2-3个相位,有一定的延续时间的地震波,称为地震子波,它是地震记录的基本元素。
5、纵波(P波):质点的振动方向与波的传播方向一致的波,有时也称为压缩波或疏密波。
6、横波(S波):质点的振动方向与波的传播方向垂直的波,有时也称为切变波。
7、体波:当纵波和横波在介质的整个立体空间中传播时合称体波。
8、面波:在自由表面或不同弹性介质的分界面上传播的一类特殊波。
最常见的面波是沿地面传播的瑞利波。
其特点是低速(通常小于横波速度)、低频、强振,是一种干扰波。
9、多次波:在一个或几个界面中经过两次或两次以上重复反射或折射而到达地面的地震波。
多次波是一种干扰波。
10、波阻抗:地震波传播速度与介质密度的乘积(Z=ρ·V)。
它是研究界面上地震波反射强度的一个重要参数。
11、地震波运动学:研究地震波波前的空间位置与其传播时间关系的一门学科,也叫几何地震学,主要用于地震资料的构造解释。
12、时距曲线:波从震源出发,传播到测线上各观测点的传播时间t与观测点相对于激发点(坐标原点)距离x之间的关系曲线。
t=f(x)=f(x,v,h)13、自激自收:激发点和接收点在同一位置上的野外工作方式。
14、炮检距:观测点相对于激发点(坐标原点)距离x15、地震波动力学:研究地震波在运动状态中的能量、波形、频谱等特征及其变化规律的一门学科,它是地震资料地层、岩性解释的基础。
16、频谱:组成一个复杂振动的各个谐振动分量的特性与其频率关系的总和称为该振动的频谱,包括振幅谱和相位谱。
第一章地震波的运动学第一节地震波的基本概念第二节反射地震波的运动学第三节地震折射波运动学第二章地震波动力学的基本概念第一节地震波的频谱分析第二节地震波的能量分析第三节影响地震波传播的地质因素第四节地震记录的分辨率第三章地震勘探野外数据的野外采集第一节野外工作方法第二节地震勘探野外观测系统第三节地震波的激发和接收第四节检波器组合第五节地震波速度的野外测定第四章共中心点迭加法原理第一节共中心点迭加法原理第二节多次反射波的特点第三节多次叠加的特性第四节多次覆盖参数对迭加效果的影响及其选择原则第五节影响迭加效果的因素第五章地震资料数字处理第一节提高信噪比的数字滤波第二节反滤波第三节水平迭加第四节偏移归位第五节地震波的速度第六章地震资料解释第一节地震资料构造解释工作概述第二节时间剖面的对比第三节地震反射层位的地质解释第四节各种地质现象在时间剖面上的特征和解释第五节地震剖面解释中可能出现的假象第六节反射界面空间位置的确定第七节构造图、等厚图的绘制及地质解释第八节水平切片的解释一、名词解释第一章地震波的运动学1、波动(难度90区分度30)2、波前(难度89区分度31)3、波尾(难度89区分度31) 4、波面(难度89区分度31) 5、等相面(80 、 33) 6、波阵面(81 、 34)7、波线(70 、 33) 8、射线(72 、 40)9、振动曲线(75 、 42) 10、波形曲线(76 、 44) 11、波剖面(65 、 46) 12、子波(60 45)13、视速度(80 、 30) 14、射线平面(60 、 47)15、运动学(70 、 55) 16、时距曲线(68、 40) 17、正常时差(60 、 45) 18、动校正(60、 60) 19、几何地震学(70 、 35)第二章地震波动力学的基本概念1、动力学(70 、 40)2、物理地震学(71、 35)3、频谱(50 、 50)4、波的发散(90 、 30)5、波散(90 、 31)6、频散(80、 35)7、吸收(70 、 40 )8、纵向分辨率(60、40)9、垂向分辨率(60、40)10、横向分辨率(60、40)11、水平分辨率(60、40)12、菲涅尔带(50、45) 13、主频(65、40)第三章地震勘探野外数据的野外采集1、规则干扰波(90、30)2、不规则干扰波(90、30)3、观测系统(80、35)4、多次覆盖(65、50) 5、共反射点道集(70、45)6、检波器组合(90、30)7、方向特性(75、30)8、方向效应(90、30)第四章共中心点迭加法原理1、共中心点迭加(70、40)2、水平迭加(60、40)3、剩余时差(60、50)第五章地震资料数字处理1、偏移迭加(75、30)2、平均速度(85、30)3、均方根速度(80、30)4、迭加速度(70、40)第六章地震资料解释1、标准层(50、40)2、绕射波(40、50)3、剖面闭合(30、60)4、三维地震(70、30) 5、水平切片(45、60) 6、等厚图(65、40) 7、构造图(80、30)二、填空题第一章1、振动在介质中的传播就是()。
Klseis软件在煤田三维地震资料采集特观设计中的应用作者:尚晓光来源:《中国新技术新产品》2012年第22期摘要:KLseis软件是一个是用于三维地震勘探采集的大型工程软件系统,尤其在山地、水网、黄土塬及密集障碍区等复杂地表条件下的三维地震观测系统设计中,其灵活的特殊观测系统设计,为提高叠加次数,确保勘探区内工覆盖次数,满足勘探设计要求提供了保障。
本文以邢台矿某三维地震勘探为例,详细介绍了该软件的使用方法及步骤,针对该区大村庄造成的设计不当形成的“天窗”问题,提出了块状观测系统的方法,以确保覆盖次数满足设计要求,保证了资料采集的完整性,有效提高了野外施工质量。
关键词:KLseis软件;三维地震勘探;束状观测系统;块状观测系统中图分类号:P631.4 文献标识码:A目前三维地震勘探在煤田地质勘探中的地位日益重要,勘探成果的好坏直接关系着矿区构造解释精度,同时也关系着煤矿生产安全。
野外资料采集质量是获得良好勘探成果的重要前提条件,如何在复杂地表条件下对观测系统进行的有针对性的优化设计,从而获得高质量野外采集资料是物探技术人员需要研究的一个重要课题。
Klseis软件在三维地震勘探设计方面有强大的功能,在地表复杂地区,利用Klseis软件进行三维地震勘探特观设计,不仅可以提高效率,而且可以确保完成地质任务。
1 Klseis软件系统简介1.1 地震采集工程软件系统简介Klseis软件系统是用于地震勘探采集的大型工程软件系统,它涵盖了整个地震勘探野外数据采集的全过程,具体包含的内容有:①采集参数分析;②二维、三维观测系统设计;③测量数据处理;④试验资料分析;⑤二维、三维静校正处理;⑥二维、三维地质模型分析;⑦勘探标准辅助格式处理。
1.2 三维观测系统设计子系统简介三维观测系统设计是地震采集工程软件系统的子系统之一,也是采集系统的核心部分。
功能主要有:①创建各种类型模板;②模板分析;③各种观测系统自动布设;④多种CMP面元信息的实时计算、显示、分析;⑤激发点、接收点实时动态编辑;⑥电子表格自动生成;⑦障碍物处理;⑧地理信息处理;⑨工作量统计;⑩输入、输出SPS格式文件和自由文本格式文件。
Sercel 408UL地震数据采集系统简介
杨成珊;黄磊
【期刊名称】《物探装备》
【年(卷),期】2001(011)001
【摘要】Sercel 408UL是Sercel公司最新推出的一种地震数据采集系统.该系统基于一种全新的物探仪器理念,采用了地震区域网络遥测技术,并配备有相应的地震网络软件,其地面设备采用LINK结构,将采集站和电缆作为一个单元使用,且配置可变,使其具有很大的灵活性和可靠性,提高了数据采集的质量和施工效率,特别适合复杂地区的地震勘探作业.本文简要地介绍了Sercel 408UL的主要特点.
【总页数】3页(P66-68)
【作者】杨成珊;黄磊
【作者单位】石油地球物理勘探局特种装备勘探处;石油地球物理勘探局特种装备勘探处
【正文语种】中文
【中图分类】P631
【相关文献】
1.SERCEL 408UL新型遥测地震仪的特点 [J], 王文良
2.408UL地震仪器挂接移动硬盘记录地震数据的方法 [J], 朱保伟
3.408UL地震数据采集系统的FDU [J], 廖声刚
4.408UL地震数据采集系统的地震区域网络 [J], 廖声刚
5.混合遥测地震数据采集系统IT简介--地震工业成本和数据质量的解决方案 [J], 程忆敏;董世泰;杜春;韩志玉
因版权原因,仅展示原文概要,查看原文内容请购买。
GeoPen ®SE2404NT系列分布式地震勘探系统操作说明吉林大学工程技术研究所二OO七年四月特殊说明:1、SE2404NT系列地震勘探系统应尽量避免在雷雨气象条件下工作。
SE2404NTE型4系列采集站配有通道防雷电系统,工作时必须将采集站外壳良好接地。
具体接地方式如下:将一根约五十至八十厘米长,直径一厘米的金属电极打入地下,引线接入采集站接地端子,确保接地状态良好;2、尽量避免触摸采集站、主站、交叉站插口内的插针;3、SE2404NTE型4系列采集站内置电池规格为7.4V,8000mAh,较SE2404NT系列的早期采集站电池容量有所增加,按设计要求可连续工作18小时,当电源电压低于7V时方可充电。
该电池组的放电特性如下:在池电压范围在8.5V~7.8V,可工作6小时;在池电压范围在7.8V~7.4V,可工作8小时;在池电压范围在7.4V~6.9V,可工作6小时。
为了延长电池使用寿命,当电池电压小于6.9V时再进行充电,充电时间不少于9小时,直到充电器指示灯由红变绿。
目录SE2404NT系列遥测地震勘探系统介绍一、SE2404NT系列地震勘探系统简介1、仪器主要技术指标┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈12、仪器安全操作注意事项┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3二、认识仪器1、系统组成┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈32、仪器面板介绍┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈33、端口定义┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈64、仪器连接方式介绍┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈75、系统操作步骤简介┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈7SE2404NT系列地震勘探系统观测系统设计软件说明一、软件简介┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈8二、软件运行环境和安装1、软件运行环境┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈82、软件安装┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈8三、软件操作步骤1、输入文件名┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈102、放炮标识快捷输入┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈113、总道数快捷输入┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈124、炮点桩号快捷输入┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈125、首端桩号快捷输入┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈126、末端桩号快捷输入┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈137、观测系统文件保存┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈13四、其它菜单说明1、编辑┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈142、显示覆盖次数┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈15SE2404NT系列地震勘探系统月检软件操作说明一、软件简介┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈17二、软件运行环境┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈17三、软件操作步骤1、执行软件┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈172、系统初始化┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈183、叫站┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈194、检测┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈195、检测结果存盘┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈216、退出┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈21SE2404NT系列地震勘探系统日检软件操作说明一、软件简介┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈22二、软件运行环境┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈22三、软件操作步骤1、执行软件┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈222、系统初始化┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈223、叫站┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈234、检测┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈235、检测结果保存┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈266、退出┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈27SE2404NT系列地震勘探系统数据采集软件操作说明一、软件简介┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈28二、软件运行环境┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈28三、软件操作步骤1、执行软件┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈282、系统初始化┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈293、叫站┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈294、参数设置┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈305、调入观测系统文件┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈326、爆炸机联机┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈327、定义排列位置┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈338、查线┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈349、数据采集┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3510、数据存盘┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3511、退出┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈37四、其它功能介绍1、垂直叠加┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈362、数据回放┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈36注意:如遇软件及硬件设备有升级,请以实际为准。
三维地震勘探 Prepared on 22 November 2020摘要本文是介绍在山西省屯留县郭庄煤矿进行三维地震勘探的工程设计。
本次三维地震勘探的目的是了解和掌握郭庄煤矿矿区的地质构造、煤层的赋存形态和断层、褶曲、陷落柱发育特征,查明工作区内3#煤层的底板起伏形态、采空区范围、无煤区和煤层冲刷变薄区。
本次野外三维数据采集的基本观测系统为8线8炮制束状规则观测系统。
通过三维地震勘探获得工区地表面以下的信息数字化成果,为矿区后继生产、优化矿井采掘设计方案、提高生产效率提供详实的基础地质资料。
关键字:三维地震勘探;工程设计;断层;褶曲;陷落柱;观测系统Summary ThisAbstractintroducestheengineeringdesignthatthethree-dimensionalearthquakeexploredwillbecarriedoninthecollieryoftheGuo',toisitdepositshape ,faultandpleatsong,subsidethedevelopmentcharacteristicoftheposttocomposecoalseam,col lieryofminingarea,,quarrytheemptydistrictrange,:Thethree-dimensionalseismicsurveyl;Engineeringdesign;Fault;Pleatsong;Subsidethep ost;Observethesystem目录1.前言目的与任务项目来源本次三维地震勘探项目的甲方是山西省屯留县郭庄煤矿,该煤矿是屯留县县办国营煤矿,为了进一步了解和掌握郭庄煤矿煤层的赋存形态和断层、陷落柱发育特征,郭庄煤矿委托山西省第六地质工程勘察院(乙方)进行三维地震勘探,为优化矿井采掘设计方案,提高生产效率提供详实的基础地质资料。
野外地震队采集基础知识及工作流程野外采集是一个系统工程,其中的每一个环节都互相影响互相制约,都对最终采集质量有着不同影响。
为了更好地执行海外地震采集任务,有必要对一些基本的地球物理勘探知识和野外工作流程做一个系统的了解。
本文将针对野外地震采集工程,对一些基本的基础知识和野外采集工作流程做一个系统的介绍1野外采集基础知识系统的掌握野外地震采集的一些必要的基础知识是顺利执行野外地震勘探的基础,不管你处在什么岗位上,要想在野外大显身手,都必须具备必要的理论知识。
下面将从基本概念、观测系统、地震波激发、接收以及野外采集常用软件几个方面概要的介绍一下野外采集的一些基础知识。
1.1基本物探知识1.1.1几个重要的基本概念1.1.1.1 地震波(Seismic Wave)地震波是一种在介质中从一点到另一点传播的弹性扰动。
地震波有几种类型,包括:●两种体波:纵波和横波●面波:瑞利波(地滚波)、斯通莱波、勒夫波、管波1.1.1.2 炮点(Source Point)炮点是指激发地震波能量的位置,激发源可能是炸药、气枪、重锤、可控震源等。
如果采用震源组合,炮点通常指组合中心。
1.1.1.3 炮点距(Source Interval)炮点距指相邻炮点间的距离。
1.1.1.4 炮点线(Source Line)炮点线指炮点沿之布设的一条线,炮点通常等间距布设。
1.1.1.5 炮线距(Source Line Interval)在三维勘探中,相邻炮线间的距离称为炮线距,通常沿垂直于炮线的方向测量该距离。
1.1.1.6 接收点(Receiver Station)接收点指检波器的组合中心位置1.1.1.7 道间距(Receiver Interval)道间距也就是既接收点距,指相邻接收点间的距离。
1.1.1.8 接收线(Receiver Line)接收线指接收点沿之布设的一条线。
1.1.1.9 接收线距(Receiver Line Interval)在三维勘探中,相邻接收线间的距离称为接收线距,通常沿垂直于接收线的方向测量该距离。
§3.3地震勘探的野外数据采集系统
一、地震勘探需要一整套仪器,包括检波器、专用电缆、地震仪器车
检波器将地面接收到的机械振动转化为时间函数的电信号,通过专用电缆送到仪器车,由仪器记录在磁带上,得到地震原始记录。
二、地震数据采集系统的特点
1.高灵敏度和大动态范围
人工地震产生的地震波,在地面引起的振动位移非常小(微米级),来自浅、中、深地层反射波的能量相差很大(几十万——几百万倍)所以地震仪要有高灵敏度和大的动态范围(二进制数位多)
2.宽频带和可选择的滤波器
为记录不同频谱范围的地震信号,所以记录仪频带要宽并且可选择。
3.仪器固有振动延续时间小
为对接踵而至的地震脉冲有良好的分辨力,要求仪器固有振动延续时间尽量小。
4.仪器各道有良好的一致性
为了识别各种类型的波和提高工作效率,地震勘探通常在一条测线上的许多点(几百——上千)同时观测,这要求仪器各道有良好的一致性。
地震道——把对应于每个观测点的地震检波器、电缆、放大系统、记录系统所构成的信号传输记录通道称之为地震道。
如仪器有24、48、96、256、1048、1200×16=9200道。
三、地震检波器
地震检器的作用是将地面机械振动转化成电信号。
垂直检波器只接收垂直分量(主要是纵波成分)。
水平检波器只接收水平分量(主要是横波成分)。
3分量检波器。
4分量检波器
四、地震数据记录系统简介P86图6.3—19框图
1.前置放大器和模拟滤波器
对弱信号放大。
通过高截止和低截止滤波器限制波的频带。
2.多路采样开关
将多道连续信号离散为时间序列,按规定的时间间隔依次接通不同的地震道,将采样信号送唯一的一个输出道记录下来。
先记第1道的第1个采样值,第2道的第1个采样值,…………,第N 道的第1个采样值。
再记第1道的第2个采样值,第2道的第2个采样值,…………,第N 道的第2个采样值。
………………
最后记第1道的第m 个采样值,第2道的第m 个采样值,…………,第N 道的第m 个采样值。
3.瞬时增益放大器
k A A 20⋅=
A ——记录下的振幅采样值
A 0——检波器收到的真振幅采样值
K ——可变参数,浅层k 小,
深层k 大,因为地震数据动态范围大。
×0.3 ×0.5 ×1 ×2 ×3
4.模数转换器
5.磁带记录器。
6.数据显示
波形加变面积显示。
P88图6.3-20a。