七年级下册数学冀教版 第11章 因式分解11.3 公式法11.3.1 用平方差公式分解因式【教案】
- 格式:doc
- 大小:130.35 KB
- 文档页数:5
第1课时 利用平方差公式进行因式分解1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a 2-b 2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解 【类型一】 判定能否利用平方差公式分解因式下列多项式中能用平方差公式分解因式的是( )A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9解析:A 中a 2+(-b )2符号相同,不能用平方差公式分解因式,错误;B 中5m 2-20mn 两项都不是平方项,不能用平方差公式分解因式,错误;C 中-x 2-y 2符号相同,不能用平方差公式分解因式,错误;D 中-x 2+9=-x 2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】 利用平方差公式分解因式分解因式:(1)a 4-116b 4;(2)x 3y 2-xy 4. 解析:(1)a 4-116b 4可以写成(a 2)2-(14b 2)2的形式,这样可以用平方差公式分解因式,而其中有一个因式a 2-14b 2仍可以继续用平方差公式分解因式;(2)x 3y 2-xy 4有公因式xy 2,应先提公因式再进一步分解因式.解:(1)原式=(a 2+14b 2)(a 2-14b 2)=(a 2+14b 2)(a -12b )(a +12b ); (2)原式=xy 2(x 2-y 2)=xy 2(x +y )(x -y ).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止. 【类型三】 利用因式分解整体代换求值 已知x 2-y 2=-1,x +y =12,求x -y 的值. 解析:已知第一个等式左边利用平方差公式化简,将x +y 的值代入计算即可求出x -y 的值.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2. 方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】 利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】 利用平方差公式进行简便运算利用因式分解计算:(1)1012-992;(2)5722×14-4282×14. 解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可. 解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000. 方法总结:一些比较复杂的计算,如果通过变形可转化为平方差公式的形式,则可以使运算简便.【类型三】 因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+42-32+22-12=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简;二是分解因式时,每个因式都要分解彻底。
4.3 用乘法公式分解因式第1课时用平方差公式分解因式知识点1平方差公式分解因式把乘法公式(a+b)(a-b)=a2-b2反过来,得a2-b2=(a+b)(a-b).两个数的平方差,等于这两个数的和与这两个数的差的积.我们可以运用这个公式对某些多项式进行分解因式,这种方法叫运用平方差公式法.1.把下列多项式分解因式:(1)x2-36;(2)36-25y2;(3)(x+p)2-(x+q)2.一提公因式与平方差公式综合运用把下列各式分解因式:(1)18a2-8b2;(2)a5-81ab4.[归纳总结] (1)用平方差公式分解因式的条件:①二次(能写成平方的形式);②异号.(2)对于多项式中的两部分不是很明显的平方形式,应先变形为平方形式,再运用公式进行因式分解,以免出现16a2-9b2=(16a+9b)·(16a-9b)的错误.(3)还要注意不要出现分解后又乘开的现象.(4)因式分解应遵循:一提二公式.同时因式分解需彻底.二尝试用平方差公式进行简便运算教材作业题第3题变式题用简便方法计算:(1)3142-2142;(2)3.14×752-3.14×252.探究三平方差公式分解因式的应用教材补充题如图4-3-1所示,在半径为R的大圆内部挖去四个半径为r的小圆.(1)用含R,r的式子表示剩余部分的面积S;(2)当R=35 cm,r=12.5 cm时,应用分解因式的知识计算剩余部分的面积(结果保留π).图4-3-1[反思] 判断下列分解因式的过程是否正确,若不正确,请改正.①4a2-1=(4a-1)(4a+1);②(x-y)2-4x2=x2-2xy+y2-4x2=-3x2-2xy+y2.1.下列各式中,不能用平方差公式分解因式的是( )A.-m4-n4B.-16x2+y2C.1.21-a2D.9a2-64b22.将整式9-x2分解因式的结果是( )A.(3-x)2B.(3+x)(3-x)C.(9-x)2D.(9+x)(9-x)3.将多项式x3-xy2分解因式,结果正确的是( )A.x(x2-y2) B.x(x-y)2C.x(x+y)2D.x(x+y)(x-y)4.已知-(2a-b)(2a+b)是下列一个多项式分解因式的结果,则这个多项式是( )A.4a2-b2B.4a2+b2C.-4a2-b2D.-4a2+b25.观察下面4个分解因式的过程:(1)(x-3)2-y2=x2-6x+9-y2;(2)a2-4b2=(a+4b)(a-4b);(3)4x6-1=(2x3+1)(2x3-1);(4)m4n2-9=(m2n+3)(m2n-3);(5)-a2-b2=(-a+b)(-a-b).其中正确的有( )A.1个B.2个C.3个D.4个6.某同学粗心大意,在分解因式时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A.8,1 B.16,2C.24,3 D.64,8二、填空题7.xx·嘉兴、舟山分解因式:a2-9=__________.8.xx·长沙分解因式:x2y-4y=________.9.xx·荆门分解因式:(m+1)(m-9)+8m=________.10.xx·株洲因式分解:x2(x-2)-16(x-2)=____________________.11.已知58-1能被20~30之间的两个整数整除,则这两个整数是________.三、解答题12.分解因式:(1)a3-16a;(2)16(a+b)2-9(a-b)2;(3)m4(m-2)+16(2-m).13.用简便方法计算:(1)6.42-3.62;(2)1.42×16-2.22×4.14.设n是整数,用因式分解的方法说明:(2n+1)2-25能被4整除.n(m>2n)的小正方形.(1)用含m,n的式子表示剩余部分的面积S;(2)当m=13.2厘米,n=3.4厘米时,利用分解因式计算剩余部分的面积.图4-3-2详解详析【预习效果检测】1.解:(1)x2-36=x2-62=(x+6)(x-6).(2)36-25y2=62-(5y)2=(6+5y)(6-5y).(3)(x+p)2-(x+q)2=[(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).【重难互动探究】例1[解析] 分解因式时,要先观察多项式,有公因式的要先提取公因式再考虑是否符合公式.解:(1)18a2-8b2=2(9a2-4b2)=2(3a+2b)(3a-2b).(2)a5-81ab4=a(a4-81b4)=a(a2+9b2)(a2-9b2)=a(a2+9b2)(a+3b)(a-3b).例2解:(1)原式=(314+214)×(314-214)=52800.(2)原式=3.14×(752-252)=3.14×(75+25)×(75-25)=15700.例3[解析] 剩余部分的面积为大圆面积减去四个小圆的面积.解:(1)剩余部分的面积为S=πR2-4πr2=π(R2-4r2)=π(R+2r)(R-2r).(2)当R=35 cm,r=12.5 cm时,S=π(R+2r)(R-2r)=π(35+2×12.5)×(35-2×12.5)=π·60×10=600π(cm2).【课堂总结反思】[反思] 两个均不正确.改正:①4a2-1=(2a)2-12=(2a-1)(2a+1).②(x-y)2-4x2=(x-y)2-(2x)2=(x-y-2x)·(x-y+2x)=-(x+y)(3x-y).【作业高效训练】[课堂达标]1.A 2.B3.[解析] D x3-xy2=x(x2-y2)=x(x+y)(x-y).4.D 5.B 6.B7.[答案] (a+3)(a-3)8.[答案] y(x+2)(x-2)9.[答案] (m-3)(m+3)10.[答案] (x-2)(x-4)(x+4)11.[答案] 26,24[解析] 58-1=(54+1)(52+1)(52-1),因为52+1=26,52-1=24,所以这两个数是26,24. 12.解:(1)原式=a(a+4)(a-4).(2)原式=(7a+b)(a+7b).(3)原式=m4(m-2)-16(m-2)=(m-2)(m4-16)=(m-2)(m2+4)(m2-4)=(m-2)(m2+4)(m+2)(m-2)=(m-2)2(m+2)(m2+4).13.[解析] 利用平方差公式简化计算过程.解:(1)6.42-3.62=(6.4+3.6)(6.4-3.6)=10×2.8=28.(2)1.42×16-2.22×4=(1.4×4)2-(2.2×2)2=5.62-4.42=(5.6+4.4)(5.6-4.4)=10×1.2=12.14.解:原式=(2n+1)2-52=(2n+1+5)(2n+1-5)=(2n+6)(2n-4)=4(n+3)(n-2),即(2n+1)2-25能被4整除.[数学活动][解析] 剩余部分的面积为大正方形的面积减去四个小正方形的面积.解:(1)S=m2-4n2=(m+2n)(m-2n).(2)当m=13.2厘米,n=3.4厘米时,S=(m+2n)(m-2n)=(13.2+3.4×2)(13.2-3.4×2)=20×6.4=128(厘米2).所以剩余部分的面积为128平方厘米.。
初中中考数学因式分解的九种方法解析初中中考数学因式分解的九种方法解析把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
xx小编整理了初中中考数学因式分解的九种方法,希望能帮助到您。
一、运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
二、平方差公式1、式子:a^2-b^2=(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
四、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2 和(a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2=(a+b)^2 和 a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。
2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。
3、当多项式中有公因式时,应该先提出公因式,再用公式分解。
4、完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
5、分解因式,必须分解到每一个多项式因式都不能再分解为止。
五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
运用公式法因式分解一、选择题(本大题共7小题)1.若多项式x2+mx+4能用完全平方公式分解因式,则m的值可以是()A、4B、﹣4C、±2D、±42.若a+b=4,则a2+2ab+b2的值是()A、8B、16C、2D、43.已知(19x﹣31)(13x﹣17)﹣(13x﹣17)(11x﹣23)可因式分解成(ax+b)(8x+c),其中a,b,c均为整数,则a+b+c=()A、﹣12B、﹣32C、38D、724.将x m+3﹣x m+1分解因式,结果是()A、x m(x3﹣x)B、x m(x3﹣1)C、x m+1(x2﹣1)D、x m+1(x﹣1)(x+1)5.下列各式中,不能用平方差公式分解因式的是()A、﹣a2+b2B、﹣x2﹣y2C、49x2y2﹣z2D、16m4﹣25n2p26.若x2﹣y2=30,且x﹣y=﹣5,则x+y的值是()A、5B、6C、﹣6D、﹣57.直角三角形的三条边的长度是正整数,其中一条直角边的长度是13,那么它的周长为()A、182B、180C、32D、30二、填空题(本大题共17小题)8.分解因式:⑴222x y x y++-+-4()520(1)+-++;⑵2x x x x()4()49.x2﹣y2=48,x+y=6,则x= ,y= .10.如果x+y=﹣1,x﹣y=﹣2022,那么x2﹣y2= .11.记248n=(12)(12)(12)(12)(12)nx=++++⋅⋅⋅+,且128x+=,则______1212.分解因式x(x+4)+4的结果.13.如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式___________.14.化简:(a+1)2﹣(a﹣1)2= .15.化简求值,其中12a =,2b =-,则22()()________a b a b +--=16.224488()()()()()________x y x y x y x y x y -++++=17.填空:⑴222_____4(2)x y x y ++=+;⑵2229_____121(3___)a b a -+=-;⑶2244____(2___)m mn m ++=+;⑷2_____6______(3)xy x y ++=+.18.若214x mx -+是一个完全平方式,则m 的值是19.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式 .20.已知y=2x ,则4x 2﹣y 2的值是 .21.已知248﹣1可以被60到70之间的某两个整数整除,则这两个数分别是 、 . 22.2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭= 23.设a ,b 为有理数,且20a b +=,设22a b +的最小值为m ,ab 的最大值为n ,则m n += .24.分解因式:24()520(1)x y x y ++-+-=三 、解答题(本大题共10小题)25.计算:⑴7373()()2424x y x y -+⑵(35)(35)x y x y ---+26.分解因式:(1)44a b - (2)2249()16()m n m n +--(3)22()()a b c d a b c d +++--+- (4)34xy xy -;(5)22()()a x y b y x -+- 27.利用平方差公式简化计算:⑴59.860.2⨯⑵10298⨯⑶2123461234512347-⨯ ⑷11411515⨯28.计算:⑴2()a b c ++ ⑵2()a b c -- ⑶2(23)a b c -+29.⑴先化简后求值:2()()()2x y x y x y x ⎡⎤-++-÷⎣⎦,其中3x =, 1.5y =.⑵计算:(22)(22)x y y x -+-+.30.计算(1)2(23)x y -+ (2)(2)(2)a b b a --(3)2222()()a ab b a ab b ++-+ (4)(22)(22)x y y x -+-+31.计算:⑴2(811)a b -+⑵2(23)x y --32.计算:⑴2(3)(3)(9)x x x +-+;⑵(23)(45)(23)(54)a b a b a b b a ++--;33.已知实数a 、b 满足2()1a b +=,2()25a b -=,求22a b ab ++的值.34.分解因式:()()22114m n mn --+答案解析一 、选择题1.D ;∵x 2+mx+4=(x ±2)2,即x 2+mx+4=x 2±4x+2,∴m=±4.故选D .2.B3.A ;原式=(13x ﹣17)(19x ﹣31﹣11x+23)=(13x ﹣17)(8x ﹣8),∵可以分解成(ax+b )(8x+c )∴a=13,b=﹣17,c=﹣8∴a+b+c=﹣12.4.D ;x m+3﹣x m+1=x m+1•x 2﹣x m+1=x m+1(x 2﹣1)=x m+1(x+1)(x ﹣1).5.B6.C ;∵x 2﹣y 2=(x+y )(x ﹣y )=30,x ﹣y=﹣5∴x+y=﹣6.故选C .7.A ;设另一条直角边的长度为x ,斜边的长度z ,则z 2﹣x 2=132,且z >x ,∴(z+x )(z ﹣x )=169×1,∴{z +x =169z ﹣x =1,∴三角形的周长=z+x+13=169+13=182.故选A . 二 、填空题8.⑴2222222()4()4(2)(1)(2)x x x x x x x x +-++=+-=-+;⑵2224()520(1)4()20()25(225)x y x y x y x y x y ++-+-=+-++=+-9.∵x 2﹣y 2=(x+y )(x ﹣y )=48,x+y=6∴x ﹣y=8联立{x +y =6x ﹣y =8,解得{x =7y =﹣1. 10.2022;x 2﹣y 2=(x+y )(x ﹣y )∵x+y=﹣1,x ﹣y=﹣2022∴x 2﹣y 2=1×2022=2022.故填空2022.11.248(12)(12)(12)(12)(12)n x =++++⋅⋅⋅+248(21)(12)(12)(12)(12)(12)n =-++++⋅⋅⋅+2(21)(21)21n n n =-+=-∴2212112n n x +=-+=∴2128n =,∴64n =12.x (x+4)+4=x 2+4x+4=(x+2)213.22()()4a b a b ab -=+-或224()()ab a b a b =+--14.(a+1)2﹣(a ﹣1)2=(a+1+a ﹣1)(a+1﹣a+1)=4a .15.-4;原式=2222224a ab b a ab b ab ++-+-=;当12a =,2b =-时,原式14(2)42=⨯⨯-=- 16.1616x y -17.⑴4xy ;⑵66ab ,11b ;⑶2n ,n ;⑷29x ,2y .18.1±19.a 2+2ab+b 2=(a+b )2.20.∵y=2x ,∴2x ﹣y=0,∴4x 2﹣y 2=4x 2﹣y 2=(2x+y )(2x ﹣y )=(2x+y )×0,=0. 21.248﹣1=(224+1)(224﹣1),=(224+1)(212+1)(212﹣1),=(224+1)(212+1)(26+1)(26﹣1);∵26=64,∴26﹣1=63,26+1=65,∴这两个数是65、63.22.原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭. 23.222222()()120()22a b a b a b a b ++-⎡⎤+==+-⎣⎦, 因为2()0a b -≥,所以22a b +最小值200m =;222()()1400()44a b a b ab a b +--⎡⎤==--⎣⎦,所以ab 的最大值100n =,故300m n +=. 24.2224()520(1)4()20()25(225)x y x y x y x y x y ++-+-=+-++=+- 三 、解答题25.⑴原式222273499()()24416x y x y =-=-;⑵原式2222(3)(5)925x y x y =--=-; 26.(1)44222222()()()()()a b a b a b a b a b a b -=-+=-++(2)原式[][]7()4()7()4()m n m n m n m n =++-+--(113)(311)m n m n =++(3)22()()(22)(22)4()()a b c d a b c d a c b d a c b d +++--+-=++=++(4)324(4)(2)(2)xy xy xy y xy y y -=-=-+(5)2222()()()()()()()a x y b x y x y a b x y a b a b ---=--=--+ 27.⑴2259.860.2(600.2)(600.2)600.23599.96⨯=-+=-=⑵2210298(1002)(1002)10029996⨯=+-=-=⑶2222212346123451234712346(123461)(123461)12346(123461)1-⨯=--+=--= ⑷1141111241(1)(1)115151515125125⨯=+-=-= 28.⑴原式222222a b c ab ac bc =+++++⑵原式222222a b c ab ac bc =++--+⑶原式232234618a b c ab ac bc =++-+-29.⑴222222()()()2(2)2(22)2x y x y x y x x xy y x y x x xy x x y ⎡⎤-++-÷=-++-÷=-÷=-⎣⎦又3x =, 1.5y =,故原式3 1.5 1.5x y =-=-=.法2:2()()()2()22 1.5x y x y x y x x y x x x y ⎡⎤-++-÷=-⋅÷=-=⎣⎦⑵原式222[2(2)][2(2)]4(2)444x y x y x y x xy y =+---=--=-+-30.(1)原式222(23)4129x y x xy y =-=-+(2)原式22222(2)(44)44a b a ab b a ab b =--=--+=-+-(3)原始22224224()()a b ab a b ab a a b b ⎡⎤⎡⎤=+++-=++⎣⎦⎣⎦(4)原式222[2(2)][2(2)]4(2)444x y x y x y x xy y =+---=--=-+-31.⑴原式222(118)12117664b a b ab a =-=-+;⑵原式222(23)4129x y x xy y =+=++.32.⑴2224(3)(3)(9)(9)(9)81x x x x x x +-+=-+=-;⑵原式2222(49)(2516)a b b a =--22442242241006422514464244225a b a b a b a a b b =--+=-+-; 33.2222()()132a b a b a b ++-+==,22()()64a b a b ab +--==-,227a b ab ++=. 34.()()22114m n mn --+ 222214m n m n mn =--++222221(2)m n mn m n mn =++-+-22(1)()mn m n =+--(1)(1)mn m n mn m n =+-+++-。
1、化简:(a+b﹣c)(a+b+c)﹣[(a﹣b)2+4ab]考点:平方差公式;完全平方公式。
分析:把(a+b)看成一个整体,利用平方差公式展开,然后再利用完全平方公式计算后化简即可.解答:解:(a+b﹣c)(a+b+c)﹣[(a﹣b)2+4ab],=(a+b)2﹣c2﹣(a﹣b)2﹣4ab,=(a+b)2﹣(a﹣b)2﹣4ab﹣c2,=a2+2ab+b2﹣a2+2ab﹣b2﹣c2,=﹣c2.点评:本题考查了平方差公式,完全平方公式,熟练掌握平方差公式和完全平方公式是解答此题关键,要把(a+b)看成一个整体,计算时要注意运算符号的处理.2、(1)阅读以下材料:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1.根据上面的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=(2)根据这一规律,计算1+2+22+23+24+…+229+230的值.考点:平方差公式。
专题:阅读型;规律型。
分析:仔细观察上式就可以发现得数中x的指数是式子中x的最高指数加1,根据此规律就可求出本题.解答:解:(1)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1;(2)1+2+22+23+24+…+229+230=(2﹣1)(1+2+22+23+24++229+230)=231﹣1.点评:本题主要锻炼学生从已知的题中找规律.所以学生平时要注意培养自己的总结概括能力.3、计算:(1﹣)(1﹣)…(1﹣)(1﹣)=考点:平方差公式。
分析:利用平方差公式对各项分解因式,前一项与后一项出现倒数,然后再根据有理数的乘法计算即可.解答:解:(1﹣)(1﹣)…(1﹣)(1﹣),=(1﹣)(1+)(1﹣)(1+)•…•(1﹣)(1+)(1﹣)(1+),=××××××…××××,=×,=.点评:本题考查了平方差公式的逆运用,利用公式分解成两数的积,并且出现倒数相乘是解题的关键,求解方法灵活巧妙.4、计算:(1)﹣3m(2m+n﹣1);(2)(3x﹣2)(x+4);(3)(x+y﹣2)(x+y+2).考点:平方差公式;单项式乘多项式;多项式乘多项式;完全平方公式。
因式分解讲解一、辅导内容提取公因式法、公式法、分组分解法、十字相乘法四种基本方法的掌握。
二、学习指导因式分解是代数的重要内容,它是整式乘法的逆变形,在通分、约分、解方程以及三角函数式恒等变形中有直接应用。
重点是掌握提取公因式法、公式法、分组分解法、十字相乘法四种基本方法。
难点是根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。
三、考点阐述考点1 提公因式法和公式法 常用公式:(1)))((22b a b a b a +-=- (2)222)(2b a b ab a ±=+± (3)))((2233b ab a b a b a +-+=+ (4)))((2233b ab a b a b a ++-=- 补充公式:(1)2222)(222c b a ca bc ab c b a ++=+++++(2)))((3222333ca bc ab c b a c b a abc c b a ---++++=-++例1 (1)33xy y x -; (2)x x x 2718323+-(3)()112---x x (4)()()3224x y y x ---分析:①因式分解时,无论有几项,首先考虑提取公因式。
提公因式时,不仅注意数,也要注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为“1”③注意()()n na b b a 22-=-,()()1212++--=-n n a b b a④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4)分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
答案:(1)()()y x y x xy -+; (2)()233-x x ;(3)()()21--x x ; (4)()()y x y x -+-222考点2 十字相乘法例2 (1) 893+-x x (2)32231222xy y x y x -+;(3)()222164x x -+ (4)22103y xy x --分析:对于二次三项齐次式,将其中一个字母看作“末知数”,另一个字母视为“常数”。
冀教版七年级数学下册第十一章 因式分解综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知c <a <b <0,若M =|a (a ﹣c )|,N =|b (a ﹣c )|,则M 与N 的大小关系是( )A .M <NB .M =NC .M >ND .不能确定2、下列等式中,从左到右是因式分解的是( )A .2111111x x x ⎛⎫⎛⎫-=+⋅- ⎪ ⎪⎝⎭⎝⎭B .2222()a ab b a b ++=+C .1()1am bm m a b +-=+-D .22()()a b a b a b +-=-3、下列从左边到右边的变形,属于因式分解的是( )A .x 2﹣x ﹣6=(x +2)(x ﹣3)B .x 2﹣2x +1=x (x ﹣2)+1C .x 2+y 2=(x +y )2D .(x +1)(x ﹣1)=x 2﹣14、下列各式中能用平方差公式计算的是( )A .(x +y )(y ﹣x )B .(x +y )(y +x )C .(x +y )(﹣y ﹣x )D .(x ﹣y )(y ﹣x )5、多项式22ax ay -分解因式的结果是( )A .()22a x y +B .()()a x y x y +-C .()()a x y x y ++D .()()ax y ax y +- 6、下列因式分解正确的是( )A .2243(2)1x x x ++=+-B .1(1)(1)ab a b a b -+-=--C .22()()a b a b a b -=+-D .2224(2)x x x -+=-7、下列等式从左到右的变形,属于因式分解的是( )A .(x +1)(x ﹣1)=x 2﹣1B .x 2﹣8x +16=(x ﹣4)2C .x 2﹣2x +1=x (x ﹣1)+1D .x 2﹣4y 2=(x +4y )(x ﹣4y )8、已知m =1﹣n ,则m 3+m 2n +2mn +n 2的值为( )A .﹣2B .﹣1C .1D .29、如图,长与宽分别为a 、b 的长方形,它的周长为14,面积为10,则a 3b +2a 2b 2+ab 3的值为( )A .2560B .490C .70D .4910、下列各式中,正确的因式分解是( )A .2222()()a b ab c a b c a b c -+-=+---B .2()()()(1)x y x y x y x y ----=---+C .2()3()(23)()a b a b a a a b -+-=+-D .222422(222)(1)x x y x y x y ++-=+++-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:32a a -=______.2、在○处填入一个整式,使关于x 的多项式21x ++◯可以因式分解,则○可以为________.(写出一个即可)3、单项式4m 2n 2与12m 3n 2的公因式是________.4、因式分解:(1)22x y -=______; (2)222x xy y ++=______;(3)25a a -=______; (4)276m m -+=______.5、因式分解:23322212820x y x y x y -+=______.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:()22248m p m ÷ (2)计算:25(1)(1)x x x +-(3)因式分解:39x x -(4)因式分解:2(2)8a b ab -+2、阅读下列材料:材料一:对于一个百位数字不为0的四位自然数M ,以它的百位数字作为十位,十位数字作为个位,得到一个两位数m ,若m 等于M 的千位数字与个位数字的平方差,则称数M 为“平方差数”. 例如:7136是“平方差数”,因为227613-=,所以7136是“平方差数”;又如:4251不是“平方差数”,因为22411525-=≠,所以4251不是“平方差数”.材料二:我们有时可以利用分解因数的方法解决求整数解的问题,例如:若p ,q 为两个正整数(p q >),且18pq =,则p ,q 为18的正因数,又因为18可以分解为181⨯或92⨯或63⨯,所以方程18pq =的正整数解为181p q =⎧⎨=⎩或92p q =⎧⎨=⎩或63p q =⎧⎨=⎩. 根据上述材料解决问题:(1)判断9810,6361是否是“平方差数”?并说明理由;(2)若一个四位“平方差数”M ,将它的千位数字、个位数字及m 相加,其和为30,求所有满足条件的“平方差数”M .3、因式分解:(1)263x x -; (2)()()229a x y b y x -+-.4、我们知道,任意一个正整数c 都可以进行这样的分解:c =a ×b (.b 是正整数,且a ≤b ),在c 的所有这些分解中,如果a ,b 两因数之差的绝对值最小,我们就称a ×b 是c 的最优分解并规定:M(c )=b a,例如9可以分解成1×9,3×3,因为9-1>3-3,所以3×3是9的最优分解,所以M (9)=33=1(1)求M (8);M (24);M [(c +1)2]的值;(2)如果一个两位正整数d (d =10x +y ,x ,y 都是自然数,且1≤x ≤y ≤9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M (d )的最大值.5、分解因式:421881a a -+-参考答案-一、单选题1、C【解析】【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:∵c<a<b<0,∴a-c>0,∴M=|a(a﹣c)|=- a(a﹣c)N=|b(a﹣c)|=- b(a﹣c)∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)∵b-a>0,∴(a﹣c)(b﹣a)>0∴M>N方法二:∵c<a<b<0,∴可设c=-3,a=-2,b=-1,∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1∴M>N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.2、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A 、2111111x x x ⎛⎫⎛⎫-=+⋅- ⎪ ⎪⎝⎭⎝⎭,不是整式积的形式,不是因式分解,不符而合题意; B 、2222()a ab b a b ++=+,是因式分解,符合题意;C 、1()1am bm m a b +-=+-,不是乘积的形式,不是因式分解,不符合题意;D 、22()()a b a b a b +-=-,不是乘积的形式,不是因式分解,不符合题意;故选B .【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.3、A【解析】【分析】把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.【详解】解:x 2﹣x ﹣6=(x +2)(x ﹣3)属于因式分解,故A 符合题意;x 2﹣2x +1=x (x ﹣2)+1,右边没有化为整式的积的形式,不是因式分解,故B 不符合题意; x 2+y 2=(x +y )2的左右两边不相等,22x y +不能分解因式,不是因式分解,故C 不符合题意; (x +1)(x ﹣1)=x 2﹣1是整式的乘法运算,不是因式分解,故D 不符合题意;故选A【点睛】本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.4、A【解析】【分析】能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.【详解】解:A 、(x +y )(y ﹣x )=22y x 不符合平方差公式的特点,故本选项符合题意;B 、(x +y )(y +x ),不符合平方差公式的特点,不能用平方差公式计算,故本选项不合题意;C 、(x +y )(﹣y ﹣x )不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;D 、(x ﹣y )(y ﹣x )不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意; 故选A .【点睛】本题考查的是应用平方差公式进行计算的能力,掌握平方差公式的结构特征是正确解题的关键.5、B【解析】【分析】先提取公因式a ,再根据平方差公式进行二次分解.平方差公式:a 2-b 2=(a +b )(a -b ).【详解】解:ax 2-ay 2=a (x 2-y 2)=a (x +y )(x -y ).故选:B .【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.6、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.【详解】解:A 、243(3)(1)x x x x ++=++,错误,故该选项不符合题意;B 、1(1)(1)ab a b a b -+-=+-,错误,故该选项不符合题意;C 、22()()a b a b a b -=+-,正确,故该选项符合题意;D 、224x x -+,不能进行因式分解,故该选项不符合题意;故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.7、B【解析】【分析】根据因式分解的定义“把一个多项式化成几个整式的积的形式叫做因式分解”进行解答即可得.【详解】解:A 、2(1)(1)1x x x +-=-,不是因式分解,选项说法错误,不符合题意;B 、22816(4)x x x -+=-,是因式分解,选项说法正确,符合题意;C 、221(1)1x x x x -+=-+,不是因式分解,选项说法错误,不符合题意;D 、左、右不相等,选项说法错误,不符合题意;故选B .【点睛】本题考查了因式分解,解题的关键是熟记因式分解的定义.8、C【解析】【分析】先化简代数式,再代入求值即可;【详解】∵m =1﹣n ,∴m+n =1,∴m 3+m 2n +2mn +n 2=m 2(m+n )+2mn+n 2=m 2+2mn+n 2=(m+n )2=12=1,故选:C .【点睛】本题主要考查了代数式求值,准确计算是解题的关键.9、B【解析】【分析】利用面积公式得到ab =10,由周长公式得到a +b =7,所以将原式因式分解得出ab (a +b )2.将其代入求值即可.【详解】解:∵长与宽分别为a 、b 的长方形,它的周长为14,面积为10,∴ab =10,a +b =7,∴a 3b +2a 2b 2+ab 3=ab (a +b )2=10×72=490.故选:B .【点睛】本题主要考查了因式分解和代数式求值,准确计算是解题的关键.10、B【解析】【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:A .2222()()a b ab c a b c a b c -+-=-+--,故此选项不合题意;B .2()()()(1)x y x y x y x y ----=---+,故此选项符合题意;C .()()()()2323a b a b a a a b -+-=--,故此选项不合题意;D .()()222422211x x y x y x y ++-=+++-,故此选项不合题意;故选:B .【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.二、填空题1、()21a a -【解析】【分析】根据提取公因式法,提取公因式2a 即可求解.【详解】解:322(1)a a a a -=-,故答案为:2(1)a a -.【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法.2、2x【解析】【分析】可根据完全平方公式或提公因数法分解因式求解即可.【详解】解:∵2221(1)x x x ±+=±,22(21)12(2)x x x x x x +-+=+=+∴○可以为2x 、-2x 、2x -1等,答案不唯一,故答案为:2x .【点睛】本题考查因式分解,熟记常用公式,掌握因式分解的方法是解答的关键.3、4m 2n 2【解析】【分析】找到系数的公共部分,再找到因式的公共部分即可.【详解】解:由于4和12的公因数是4,m 2n 2和m 3n 2的公共部分为m 2n 2,所以4m 2n 2与12m 3n 2的公因式是4m 2n 2.故答案为4m 2n 2.【点睛】本题主要考查公因式,熟练掌握如何去找公因式是解题的关键.4、 ()()x y x y +- 2()x y + (5)a a - (6)(1)m m --【解析】【分析】把一个多项式化成几个整式积的形式叫做这个多项式的因式分解,由此定义因式分解即可.【详解】(1)由平方差公式有22()()x y x y x y -=+-(2)由完全平方公式有222)2(x xy y x y =+++(3)提取公因式a 有25(5)a a a a -=-(4)由十字相乘法分解因式有276(6)(1)m m m m -+=--故答案为:()()x y x y +-;2()x y +;(5)a a -;(6)(1)m m --.【点睛】本题考查了因式分解,常见因式分解的方式有运用平方差公式、运用完全平方公式、提取公因式、十字相乘法,灵活选择因式分解的方式是解题的关键.5、()224325x y y x -+【解析】【分析】直接提取公因式224x y 整理即可.【详解】解:()23322222128204325x y x y x y x y y x -+=-+,故答案是:()224325x y y x -+.【点睛】本题考查了提取公因式因式分解,解题的关键是找准公因式.三、解答题1、(1)222m p (2)4255x x -(3)(3)(3)x x x +-(4)2(2)a b +【解析】【分析】(1)根据幂的运算法则和合并同类项法则计算即可;(2)先用平方差公式计算,再运用单项式乘多项式的法则计算即可;(3)先提取公因式,再运用平方差公式分解即可;(4)先进行整式运算,再因式分解即可.【详解】解:(1)()42222222416882m m p m m p m p =÷=÷ (2)25(1)(1)x x x +-=225(1)x x -=4255x x -(3)32()()(9933)x x x x x x x -=-=+-(4)2(2)8a b ab -+=22448a ab b ab -++=2244a ab b ++=2(2)a b +.【点睛】本题考查了整式的运算和因式分解,解题关键是熟记乘法公式和因式分解的方法,准确熟练的进行计算.2、 (1)9810是“平方差数”,6361不是“平方差数”,理由见解析(2)8157或6204或5250或5241【解析】【分析】(1)直接根据“平方差数”的概念求解即可;(2)设M 的千位数字为a ,个位数字为b ,则22m a b =-,由题意得2230a b a b ++-=,再分解正因数求解即可.(1)9810是“平方差数”,∵229081-=,∴9810是“平方差数”;6361不是“平方差数”,∵22613536-=≠,∴6361不是“平方差数”.(2)设M 的千位数字为a ,个位数字为b ,则22m a b =-,由题意得2230a b a b ++-=,即()()130a b a b +-+=.∵1a b +>,11a b -+>且均为30的正因数,∴将30分解为215⨯或310⨯或56⨯.①()(1)215a b a b +-+=⨯,解得87a b =⎧⎨=⎩,即8157M =; ②()(1)310a b a b +-+=⨯,解得64a b =⎧⎨=⎩,即6204M =; ③()(1)56a b a b +-+=⨯,解得50a b =⎧⎨=⎩,即5250M =; 解得51a b =⎧⎨=⎩,即5241M =. ∴8157M =或6204或5250或5241【点睛】本题考查了因式分解的应用,新定义下的阅读理解,解决问题的关键是找到等量关系.3、(1)()321x x -;(2)()()()33x y a b a b -+-.【解析】【分析】(1)提取公因式3x ,进行因式分解;(2)提取公因式后,再利用平方差公式进行因式分解.【详解】解:(1)()263321x x x x -=-;(2)()()()()222299a x y b y x a x y b x y -+-=---,()()()()()22933x y a b x y a b a b=--=-+-.【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及公式法进行因式分解.4、(1)12;23;1;(2)23;【解析】【分析】(1)根据c=a×b中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称a×b是c的最优分解,因此M(8)=24=12,M(24)=46=23,M[(c+1)2]=111cc+=+;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1≤x≤y≤9,所以满足条件的“吉祥数”有15、24、33所以M(15)=35,M(24)=46=23,M(33)=311,所以所有“吉祥数”中M(d)的最大值为23.【详解】解:(1)由题意得,M(8)=24=12;M(24)=46=23;M[(c+1)2]=111cc+=+;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,∵x,y都是自然数,且1≤x≤y≤9,∴满足条件的“吉祥数”有15、24、33∴M(15)=35,M(24)=46=23,M(33)=311,∵23>35>311,∴所有“吉祥数”中M(d)的最大值为23.【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键.5、(a-3)2(a+3)2【解析】【分析】直接利用完全平方公式以及平方差公式分解因式得出答案.【详解】解:a4-18a2+81=(a2-9)2=(a-3)2(a+3)2.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.。
第二章分解因式第三节运用公式法总体说明本节是用公式法分解因式的第2小节,它主要由教师引导学生探求解题途径,培养学生观察、分析、判断和创新的能力,发展学生智能,深化学生逆向思维能力和综合运用能力。
一、学生知识状况分析学生在七年级下册已经学习了整式的运算及乘法公式,对乘法公式的特征有了一定的认识。
在本节课之前又学习了用提取公因式法和运用平方差公式分解因式,对因式分解的概念及意义有了初步的理解,这些都为本节课的学习奠定了必要的基础。
再者,经过初中一年多的学习,八年级学生对中学数学学习的基本方法也有了一定的体验和了解,具备了初步的观察、类比、归纳、概括、表达能力。
同时,在上节课学习用平方差公式分解因式时,又经历的逆向思维的训练,这些都为本节课的学习做了能力和方法上的准备。
二、教学任务分析学生在学习了用平方差公式进行因式分解的基础上,本节课又安排了用完全平方公式进行因式分解,旨在让学生能熟练地应对各种形式的多项式的因式分解,为下一章分式的运算以及今后的方程、函数等知识的学习奠定一个良好的基础,因此,本课时的教学目标是:知识与技能:(1)理解因式分解的概念和意义。
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
数学能力:经历通过整式乘法的完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力。
进一步体会整式乘法与分解因式之间的联系。
情感与态度:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
三、教学流程安排本节课设计了六个教学环节:做一做——辨一辨——试一试——想一想——练一练——归纳反思。
第一环节做一做活动内容:填空:(1)(a+b)(a-b) = ;(2)(a+b)2= ;(3)(a–b)2= ;根据上面式子填空:(1)a2–b2= ;(2)a2–2ab+b2= ;(3)a2+2ab+b2= ;结论:形如a2+2ab+b2与a2–2ab+b2的式子称为完全平方式。
《因式分解》单元分类总复习考点一因式分解知识总结:1.因式分解与整式乘法的关系:互为逆运算(故:将因式分解的结果乘出来可以用来检验因式分解的正误)2.因式分解基本步骤:一“提”→提取公因式(公因式可以是单独数字、单独字母、数字与字母乘积类的单项式;也可以是一个整体的多项式;提公因式一定要一次提完)二“套”→套用乘法公式(两项想平方差公式、三项想完全平方公式)3.分解因式时,一定要按照步骤,先观察能否提取公因式,再考虑用公式法分解,对于结果,一定要进行检查,看是否已分解彻底【例题典析】1.(2021春•拱墅区校级期中)下列各式由左边到右边的变形中,是因式分解的是()A.x3﹣xy2=x(x﹣y)2B.﹣x2﹣2x﹣1=﹣(x+1)2C.x2+4x﹣4=x(x+4)﹣4D.4x2+2xy+y2=(2x+y)2【分析】根据因式分解的概念进行逐项分析解答即可.(把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解)【解答】解:A、x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),是因式分解不完全,故这个选项不符合题意;B、﹣x2﹣2x﹣1=﹣(x+1)2,是因式分解,故这个选项符合题意;C、结果不是整式的积的形式,不是因式分解,故这个选项不符合题意;D、4x2+4xy+y2=(2x+y)2,左右两边不相等,所以因式分解错误,故这个选项不符合题意.故选:B.2.(2021春•罗湖区校级期末)下列各式从左到右因式分解正确的是()A.2x﹣6y+2=2(x﹣3y)B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4=(x﹣2)2D.x3﹣x=x(x+1)(x﹣1)【分析】直接利用公式法以及提取公因式法分解因式进而得出答案.【解答】解:A、2x﹣6y+2=2(x﹣3y+1),故原式分解因式错误,不合题意;B、x2﹣2x+1=(x﹣1)2,故原式分解因式错误,不合题意;C、x2﹣4=(x+2)(x﹣2),故原式分解因式错误,不合题意;D、x3﹣x=x(x+1)(x﹣1),正确.故选:D.3.(2020春•绍兴期中)下列多项式可以用平方差公式进行因式分解的有()①﹣a2+b2;②x2+x+;③x2﹣4y2;④(﹣m)2﹣(﹣n)2;⑤﹣121a2+36b2;⑥﹣s2+2s.A.2个B.3个C.4个D.5个【分析】直接利用平方差公式分别分解因式得出答案.【解答】解:①﹣a2+b2=(b+a)(b﹣a),可以用平方差公式进行因式分解;②x2+x+=(x+)2,不可以用平方差公式进行因式分解;③x2﹣4y2=(x+2y)(x﹣2y),可以用平方差公式进行因式分解;④(﹣m)2﹣(﹣n)2=(m+n)(m﹣n),可以用平方差公式进行因式分解;⑤﹣121a2+36b2=(6b﹣11a)(6b+11a),可以用平方差公式进行因式分解;⑥﹣s2+2s=﹣s(s﹣4),不可以用平方差公式进行因式分解;故选:C.4.下列多项式能分解因式的是()A.﹣m2﹣n2B.m2+2m+1C.m2﹣m+D.m2﹣n【分析】根据因式分解的方法逐个判断即可.【解答】解:A.不能分解因式,故本选项不符合题意;B.能用完全平方公式分解因式,故本选项符合题意;C.不能分解因式,故本选项不符合题意;D.不能分解因式,故本选项不符合题意;故选:B.5.(2021秋•十堰期末)下列多项式中,不能在有理数范围进行因式分解的是()A.﹣a2+b2B.﹣a2﹣b2 C.a3﹣3a2+2a D.a2﹣2ab+b2﹣1【分析】根据提公因式法,公式法进行分解即可判断.【解答】解:A.﹣a2+b2=(b﹣a)(b+a),故A不符合题意;B.﹣a2﹣b2在有理数范围不能进行因式分解,故B符合题意;C.a3﹣3a2+2a=a(a﹣1)(a﹣2),故C不符合题意;D.a2﹣2ab+b2﹣1=(a﹣b+1)(a﹣b﹣1),故D不符合题意;故选:B.6.(2021秋•黄石港区期末)如图1,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是()A.a2+b2=(a+b)(a﹣b)B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b2【分析】根据左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b),利用面积相等即可解答.【解答】解:∵左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a ﹣b)=(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b).故选:B.7.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1B.a2+a C.(a﹣1)2﹣a+1D.(a+2)2﹣2(a+2)+1【分析】根据因式分解的意义求解即可.【解答】解:A、原式=(a+1)(a﹣1),故A不符合题意;B、原式=a(a+1),故B不符合题意;C、原式=(a﹣1)(a﹣1﹣1)=(a﹣2)(a﹣1),故C符合题意;D、原式=(a+1)2,故D不符合题意;故选:C.8.(2021春•拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.【分析】(1)运用平方差公式进行因式分解.(2)先提公因式,再运用完全平方公式.(3)先运用平方差公式,再提公因式.(4)运用十字相乘法进行因式分解,注意分解彻底.【解答】解:(1)﹣a2+1=(1+a)(1﹣a).(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2.(3)4(x+2y)2﹣25(x﹣y)2=[2(x+2y)+5(x﹣y)][2(x+2y)﹣5(x﹣y)]=(2x+4y+5x﹣5y)(2x+4y﹣5x+5y)=(7x﹣y)(﹣3x+9y)=﹣3(7x﹣y)(x﹣3y).(4)(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).9.(2021春•长清区期末)因式分解:(1)mx2﹣my2;(2)2m(a﹣b)﹣3n(b﹣a).【分析】(1)直接提取公因式m,再利用平方差公式分解因式得出答案;(2)直接提取公因式(a﹣b),进而分解因式即可.【解答】解:(1)mx2﹣my2=m(x2﹣y2)=m(x+y)(x﹣y);(2)2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n).10.(2021春•北仑区期中)分解因式:(1)4x2﹣;(2)3a﹣6a2+3a3.【分析】(1)直接利用平方差公式分解因式得出答案;(2)直接提取公因式3a,再利用完全平方公式分解因式即可.【解答】解:(1)4x2﹣=(2x﹣)(2x+);(2)3a﹣6a2+3a3=3a(1﹣2a+a2)=3a(1﹣a)2.考点二因式分解方法拓展知识总结:分组分解因式:当多项式有四项及以上时常需要分组。
1、因式分解第1讲因式分解(1)【竞赛导航】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
本讲主要涉及用提公因式法和公式法分解因式.一、提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律。
多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数取各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
二、把乘法公式反过来,就可以得到因式分解的公式。
主要有:平方差公式:a 2-b 2=(a +b )(a -b )完全平方公式:a 2 ±2a b+b 2=(a ±b )2推广公式:a 2+b 2+c 2+2ab+2ac+2bc=(a+b+c)2立方和、立方差公式: a 3±b 3=(a ±b )( a 2 μa b+b 2)和(差)的立方公式:33223)(33b a b ab b a a ±=±+±补充:欧拉公式: a 3+b 3+c 3= (a +b +c )(a 2+b 2+c 2-ab -ac -bc ) +3abc ])()())[((21222a c c b b a c b a -+-+-++=+3abc 特别地:(1)当a +b +c =0时,有a 3+b 3+c 3=3abc(2)当0=c 时,欧拉公式变为两数立方和公式。
运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。
但有时需要经过适当的组合、变形后,方可使用公式。
用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。
因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。
【典例解析】例1. 把下列各式因式分解(1)-+--+++a x abx acx ax m m m m 2213;(2))(2)(2)(223a b ab a b a b a a ---+-例2. 计算:1368987521136898745613689872681368987123?+?+?+?例3. 不解方程组23532x y x y +=-=-,求代数式()()()22332x y x y x x y +-++的值。
用平方差公式分解因式
[师生共析]
[例1](1)
(教师可以通过多媒体课件演示(1)中的2x,(2)中的x+p•相当于平方差公式中的a;(1)中的3,(2)中的x+q相当于平方差中的b,进而说明公式中的a与b•可以表示一个数,也可以表示一个单项式,甚至是多项式,渗透换元的思想方法)
[例2](1)x4-y4可以写成(x2)2-(y2)2的形式,这样就可以利用平方差公式进行因式分解了.但分解到(x2+y2)(x2-y2)后,部分学生会不继续分解因式,针对这种情况,可以回顾因式分解定义后,•让学生理解因式分解的要求是必须进行到多项式的每一个因式都不能再分解为止.
(2)不能直接利用平方差公式分解因式,但通过观察可以发现a3b-ab•有公因式ab,应先提出公因式,再进一步分解.
解:(1)x4-y4
=(x2+y2)(x2-y2)
=(x2+y2)(x+y)(x-y).
(2)a3b-ab=ab(a2-1)=ab(a+1)(a-1).
学生解题中可能发生如下错误:
(1)系数变形时计算错误;
(2)结果不化简;
(3)化简时去括号发生符号错误.
§14.3.2 用平方差公式分解因式
一、1.复习提公因式法分解因式.
2.将a2-b2分解因式.
用平方差公式分解因式:a2-b2=(a+b)(a-b)二、例题讲解。