当前位置:文档之家› 特征函数(Characteristic Function)的性质

特征函数(Characteristic Function)的性质

特征函数(Characteristic Function)的性质
特征函数(Characteristic Function)的性质

特征函数(Characteristic Function )的性质 1.;1)0(|)(|=≤??t

).0(11|||||)(|??==≤≤=E e E Ee t itX itX

2. )()(t t ??=-.

)()(t Ee e E Ee t itX itX itX ??====--.

3. 若Y=aX+b, 其中a 和b 为常数,则

).()(at e t X ibt

Y

??= 4. 若X 的l 阶矩存在,则

.1,|)(0l k EX i t dt

d k

k t k k ≤≤==?

k

k t itX k k t itX k k t k k EX i e X E i Ee dt

d t dt d ======000|)(||)(?. 注意求导和期望可交换的条件. 可利用特征函数求随机变量的各阶矩. 5. 特征函数具有一致连续性. ?

><>?>?M

x dx x p t s M ||)(.

.,0,0εε

?

=-=-+|)()1(||)()(|x dF e e t h t itx ihx ?? ?∞

∞--≤)(|1|x dF e ihx

??

->-+-=M

M

M

x i h x

i h x

x dF e

x dF e

||)(|1|)(|1|

|||2

sin |2)(||1|2

/2

/2

/hx hx

e

e

e e ihx ihx ihx ihx

≤=-=--

x hx

e

e

e

e

ihx ihx ihx ihx ?≤=-=--,2|2

sin |2)(||1|2

/2

/2

/

?

?>-+≤-+M

x M

M

x dF x dF x h t h t ||)(2)(|||)()(|??

?-+≤+≤M

M

hM x dF hM εε22)(.

取,/M εδ=则 对

任意

t ,和),0(δ∈h 有

.3|)()(|ε??≤-+t h t

所以,特征函数是一致连续的. 引理:狄利克雷积分

).

(2

1

21

00

2

1)sin(1)(0a sign a a a dt t at a I =???

????<-=>==?∞+π 证明:

?

=

sin )(1

)(dt t

t

a sign a I π

以下证明

?

+∞

=0

2

sin π

du u u .

?+∞-=0

1ds e u us ?

??

??-+∞+∞-==T

us T

T us

ududs

e ds e u du u

u 0

00

00sin sin sin ?∞

+-++-+=0

2

22)cos sin 11(ds e T

s T T T s s s

?

+∞-++-=

22cos sin 2

ds e T

s T T T s s

π

s s T e e T

s T T T s T s T T T s --∞→<++=++|cos sin |,0cos sin lim 2222 2

sin lim 0

π

=?

∞→T

T du u u 。

Th 4.1.3(逆转定理)

设F(x)和)(t ?分别为随机变量X 的分布函数和特征函数,则对F 的任意两个连续点x 1

.)(21

lim

)()(2

112?---∞→-=-T

T

itx itx T dt t it

e e x F x F ?π

证明:记 ?---=

-T

T itx itx T dt t it e e J )(212

1?π

’则

?----=T T itX

itx itx T dt e it

e e E J 21

21π

?------=T

T x X it x X it dt it

e e

E )

()

(2121π

?----+--=T

x X it x X it x X it x X it dt

it

e

e e

e E 0

)

()

()

()

(221121πdt t

t

x X t x X E T

?

---=

21)sin()sin(1

π

)]()([2

1

lim 21x X sign x X sign E J T T ---=∞→. 不妨设x 1

??

?

??<<==><=---212

12

121210)()(x

X x x X or x X x X or x X x X sign x X sign

.

2

)

0()(2)0()()()0()]()([2

1

lim 11221221-+--+=--+=+==→∞x F x F x F x F x F x F x X P x X P J T T 若x 1和x 2 是F(x)的连续点,则定理得证.

Th (唯一性定理)分布函数有特征函数唯一确定。

证明:将分布函数的连续点集记为)(F C ,设)(t ?是)(x F 的特征函数.当)(,1F C x x ∈时,由反演公式

.)(21

lim

)()(2

112?---→∞-=-T

T itx itx T dt t it e e x F x F ?π

令1x 在)(F C 中趋于∞-,则有对)(2F C x ∈?,)(2x F 由)(t ?唯一确定。当)(F C x ?时,可令2x 在)(F C 中单调减的趋于x ,由)(x F 的右连续性可知,)(x F 由)(t ?唯一确定。

Th. 若特征函数)(t ?绝对可积,即

?

-∞

则其对应的分布函数)(x F 为连续型,且密度函数为

.)(21

)(?

--=dt e t x p itx ?π

证明:对R a ∈?,令a b n ↓,根据反演公式有

?∞

∞--≤-+-≤dt t a b a b F n n |)(|22)0F(F(a))(0?π

由定理条件可知,2

)

0F(F(a))(-+-a b F n 单调减的趋于0,而根

据)(x F 的右连续性可知)()(a F b F n →,故有

).0()(,02

)0F(F(a))(-==-+-a F a F a a F 即

亦即)(x F 处处连续。

对0,≠?∈?x R x ,根据反演公式得

?∞

∞-?+--?-=

?-?+dt t x it e e x x F x x F x x it itx )(21

)()()

(?π

令0→?x 得到

)()()(x p x x F x x F →?-?+;

itx

x x it itx e x

it e e -?+--→?-)( 所以,

.)(21

)(?

--=

dt e t x p itx

二.多元特征函数

若n 维随机变量T n X X X ),...,(1=的分布函数为),...,,(21n x x x F ,则定义其特征函数为

?

?

-∞

-∑=

==),...,(...)(11

n x t i

X

it x x dF e

Ee

t n

k k

k T ?

其中,.),...,,(21T n t t t t =也称为是随机向量T n X X X ),...,(1=的联合特征函数.

Th1. 由随机向量T n X X X ),...,(1=的联合特征函数可求出任意个子向量的边缘特征函数.例如

).0,...,,(),();0,...,0,()(2121,112

1

1

t t t t t t X X X ????==

性质:

;),...,(),...,(;1)0(|),...,(|111n n n t t t t f t t ???=--=≤

0,...,011...1`1

11

1

1|),...,(......==+-

???∑==n n n

n

j j

n t t n n

k k k k k k n

k t t t t i

X EX ? 反演公式

n

n c c n

j j

b it a it

c c c c n n dt dt t t it e e

b X a b X a P j

j j

j n n

n ...),...,(...)2(1

...),...,(111

2

n 1111

1

1lim lim ?π?∏

?-=---∞

→∞

→-=

≤<≤<

Th2. 随机变量X 和Y 相互独立的充要条件为

)()(),(2121,t t t t Y X Y X ???=

三.n 元正态分布

随机向量,),...,(1T n X X =X 定义

,),...,(1T

n EX EX EX =

T EX X EX X E X ))(()cov(--=

1. 设),1,0(~,,...,1N iid X X n 则其联合密度为

n

n

n n n R x x x x x x x f ∈??????++-=),...,(,)...(21exp )2(1),...,(1222212/1πEX=0,cov(X)=I n 密度函数又可写成

}21exp{)

2(1)(2

/Ix x x f T

n -=π

称之为标准n 元正态分布。

Def 如果A 是n 阶非奇异阵,μ是n 维实向量,而随机变量X 服从n 元标准正态分布,则将随机变量

μ+=AX Y

所服从的分布成为n 元正态分布.

易证:0)cov(,>==T

AA Y EY μ.记

,T AA =∑用记号 ),(~∑μN Y 表示Y 服从参数是∑,μ的正态分布.

TH, n

元正态分布),(∑μN 的概率密度为

)}()(2

1exp{||)2(1

)(1

2

/12/μμπ-∑--∑=-x x x f T n . Th. n 元正态分布),(∑μN 的特征函数为

n T

T

R t t t t i t ∈?∑-=},2

1exp{)(μ?

证明:首先,对服从标准多元正态分布的随机向量X,其特征函数为

};

21exp{}21exp{)(}exp{)(121

t t t t X it E t T n j j n

j j X T

i -=-===∑∏==??根据多元正态分布的定义,存在矩阵A ,使得T AA =∑,故所求特征函数为

}.

2

1exp{}

2

1exp{)()

(t t it t AA t e

Ee

e

Ee

t T

T

T T it AX

it it AX it T T T ∑-=-===T +μ?μ

μ

μ

Th. n 元正态分布 ),(∑μN 的任一k 维的边缘分布都是k 元正态分

布,其中n k <≤1. 证明:,),...,,(),,(~21T

i i i k n k X X X X N X

=∑μ k

X

的特征

函数可以通过在X 的特征函数中令},...,,{,021k j j i i i t t ??=得到.有令},...,{,0;),...,(11k j X

it n X i i j t Ee

t t T ??==?

.

),...,(,),

()0,...,,...,0,,0(11

T

i i X X is i X k k k

T k

i t t s s Ee

t t ===其中??

又根据}21exp{)(t t it t T

T

X ∑-=μ?,得到

.

,...,,...,,),...,(},2

1exp{)(11***

*

1列形成的矩阵行和第的第是其中

k k T i i T T

X i i i i s s is s k k ∑∑=∑-=μμμμ?另外,还可以证明多元正态分布的各种形式的条件分布还是正态分布.

Th 设),(~,...,,21∑μn n N X X X ,则它们相互独立的充要条件是它们两两互不相关.

证明:必要性是显然的.下证充分性.

若n X X X ,...,,21两两互不相关,则,,0),cov(j i X X j i ≠?=即

},...,,{2211nn diag σσσ=∑,所以

∏∏∑=-=-==n

k

k X n

k

kk k k k k k kk k T

n t t t i t t i t t k ).

(}

21exp{}21exp{),...,(2

121?σμσμ?

由多元特征函数的性质可知n X X X ,...,,21相互独立.

Th 对于n 维正态随机向量),(~),(21∑=μN X X X T T T ,对∑和μ作相应的分块

???

? ??∑∑

∑∑=∑???? ??=2221121121,

μμμ 则),,(~),,(~22211111∑∑μμN X N X 且.01221=∑相互独立的充要条件是

和X X

Th 多元正态分布经过任意的线性变换后依然服从多元正态分

布.X C Y N X n m m n ?=∑),,(~μ即若,则

).,(~T m n C C C N Y ∑μ

推论:

.

,I),N(~X Y ,0),,(~.12/-12/-1分量相互独立的即则Y N X μμ∑∑=>∑∑

).,(~),,(~.222I A N AX Y A I N X σμσμ=是正交阵,则

Th ).,(~,),(~1

a a a N X a R a N X T

T T n n ∑∈??∑?μμ

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

(完整版)基本初等函数图像及其性质表

函数名 一次函数 二次函数 反比例函数 指数函数 解析式 )0()(≠+=a b ax x f )0()(≠= k x k x f 图像 定义域 R R {}0|≠x x R 值域 R ) ,(∞+0 必过点 )(b ,0 ) ,(c 0 ) 1,(1,--k k ) ( ) (1,0 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 在R 上单增 )2-a b -∞,(为减 ),2+∞-a b (为增 )为减,(0-∞)为减,(∞+0 为减 为增,101<<>a a 最大最小值 在R 不存在最大最小值 开口向上有最小值 a b a c y 442min -= 不存在最大最小值 在R 上不存在最大最小值 奇偶性 非奇非偶函数 为奇函数00≠=b b 偶函数 为非奇非为偶函数,00≠=b b 奇函数 非奇非偶函数 对称性 为常数。 对称, 函数图像关于直线任何一点对称;关于图像上t t x a y +=1 - 对称 直线函数图像关于 a b x 2-= 函数图像关于原点对称; 对称。 直线和关于 对称,直线图像关于x y x y -== 既不成中心对称也不成轴对称。 渐近线 无 无 . 00==y x 直线或者直线 .0=y 直线 ) 0()(2≠++=a c bx ax x f ) 10()(≠=a a a x f x 且>0>a >a 0 >k ) ,44[ 2 +∞-a b a c ),(),(∞+?∞00-x a y =) 10(<a x y O 1

函数名 对数函数 幂函数的一个例子 双钩函数 含绝对值函数 解析式 ) 10(log ≠>=a a y x a 且 ) 0(≥=x x y b a b x a x y <-+-=设为了研究方便 图像 O 1 y x ) 10(log <<=a y x a ) 1(log >=a y x a O y x x y =1 1 定义域 ()∞+,0 [)∞+,0 0}x |{x ≠ R 值域 R [) ∞+,0 (][) ∞+∞,,ab ab 22--Y [)+∞-,a b 必过点 )(0,1 () 1,1 )2,(2,ab a b ab a b -- )( ) ,(,a b b a b a --)( 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 单调递减。 单调递增。,, 101<<>a a 为增函数 定义域内 递增。递减,,递减,递增,,???? ??+∞???? ????? ? ? ????? ??∞,00,---a b a b a b a b (][)函数。 上为常值为增函数。 为减函数。 ,],[,-b a b a +∞∞ 最大最小值 无最大最小值 最小值为 0min =y ,无最 大值 无最大最小值 a b y -=min 奇偶性 非奇非偶 非奇非偶 奇函数 对称性 既不是轴对称也不是中心对称 既不是轴对称也不是中心对称 关于原点成中心对称 关 于 直 线 2 b a x += 对称。 渐近线 直线x=0 ax y =和0=x O y x a b a b -ab 2ab 2-O y x a b a b -的情况 只了解中学研究方便通常 ) (00>>+=b a x b ax y 为偶函数0=+b a

二次函数图像和性质专题训练(答案)

二次函数图象专题训练 1.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论①a 、b 异号;②当x =1和x=3时,函数值相等;③4a +b =0,④当y =4时,x 的取值只能为0.结论正确的个数有( ) 个 A .1 B.2 C.3 D.4 2、已知二次函数2y ax bx c =++(0a ≠)的 图象如图所示,有下列结论: ①240b ac ->; ②0abc >; ③80a c +>; ④930a b c ++<.其中,正确结论的个数是( ) A .1 B .2 C .3 D .4 3.已知二次函数2 y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x , ,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③ 20a c +>;④210a b -+>.其中正确结论的个数是 个. A .1 B .2 C .3 D .4 4、已知抛物线y =ax 2 +bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( ) A . a >0 B . b <0 C . c <0 D . a +b +c >0 5、如图所示的二次函数2 y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)2 40b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。你认为其中错误.. 的有 A .2个 B .3个 C .4个 D .1个 6、已知二次函数y =ax 2 +bx +c (a ≠0)的图象如图,则下列结论中正确的是( ) A .a >0 B .当x >1时,y 随x 的增大而增大 C .c <0 D .3 是方程ax 2 +bx +c =0的一个根

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

凸函数的性质与应用

学院数学与信息科学学院 专业数学与应用数学 年级2009级 姓名zym 论文题目凸函数的性质与应用 指导教师555职称副教授成绩 2011 年06月10日

目录 摘要 (2) 关键词 (2) Abstract (2) Keywords (2) 前言 (2) 1 凸函数的定义 (2) 2 凸函数的性质 (4) 2.1f为I上凸函数的充要条件 (4) 2.2 f为区间I上的可导函数的相关等价论断 (4) 3凸函数的应用 (6) 参考文献 (7)

函数的性质与应用 学生姓名: *** 学号: 20095031390 数学与信息科学学院 数学与应用数学 指导教师: *** 职称: 副教授 摘 要:本文从凸函数的定义出发,总结了凸函数的性质与应用 关键词:凸函数;性质;应用 The properties and application of convex function Abstract: From the definition of convex function, summarizes the convex function of the properties and application. Key word: the definition of convex function; properties; application 前言 我们已经熟悉函数()2f x x =和()f x =的图象,它们不同的特点是:曲线 2y x =上任意两点间的弧段总在这两点连线的下方;而曲线y 则相反,任意两点间的弧段总在这两点连线的下方.我们把具有前一种特性的曲线称为凸的,相应的函数称为凸函数;后一种曲线称为凹的,相应的函数称为凹函数.下面通过一些例子来讨论凸函数的性质及应用,利用凸函数判断不等式的大小. 1 凸函数的定义 定义 1 设f 为定义在区间I 上的函数,若对I 上任意两点1x ,2x 和任意实数 ()0,1λ∈总有 ()()()()()121211f x x f x f x λλλλ+-≤+-, ()1 则称f 为I 上的凸函数.反之,如果总有 ()()()()()121211f x x f x f x λλλλ+-≥+-, ()2 则称f 为I 上的凹函数. 如果若()1、()2中不等式改为严格不等式,则相应的函数称为严格凸函数和严格

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

三角函数的图像与性质专题(含解析)

第讲三角函数的图像与性质 时间:年月日刘老师学生签名: 一、兴趣导入 二、学前测试 1.已知角α的终边上一点的坐标为 22 (sin,cos) 33 ππ ,则角α的最小正角是() A、 5 6 π B、 2 3 π C、 5 3 π D、 11 6 π 解析.D [角α在第四象限且 2 cos3 3 tan 23 sin 3 π α π ==-] 2.若α是第二象限的角,且|cos|cos 22 αα =-,则 2 α 是() A、第一象限角 B、第二象限角 C、第三象限角 D、第四象限角 解析C 22,(),,(), 2422 k k k Z k k k Z ππαπ παππππ +<<+∈+<<+∈ 当2,() k n n Z =∈时, 2 α 在第一象限;当21,() k n n Z =+∈时, 2 α 在第三象限; 而cos cos cos0 222 ααα =-?≤, 2 α ∴在第三象限; 3已知角α的终边与函数)0 (,0 12 5≤ = +x y x决定的函数图象重合,求 α α α sin 1 tan 1 cos- += 解析:在角α的终边上取点 1255 (12,5),13,cos,tan,sin 131213 P rααα -==-=-=

故αααsin 1tan 1cos - + =77 13 - 4.(湛江市实验中学2010届高三第四次月考)已知3 5 cos θ= ,且角θ在第一象限,那么2θ在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:B 3222542cos k k ππθπθπ= <∴+<<+,4242 k k ππθππ∴+<<+故2θ在第二象限. 三、方法培养 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ????π2,1 (π,0) ? ?? ??32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ????π2,0,(π,-1),? ?? ??3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 , k ∈Z } 图象 值域 [-1,1] [-1,1] R 对称性 对称轴:__ x =k π+π 2 (k ∈Z )__ _; 对称中心: _ (k π,0)(k ∈Z )__ _ 对称轴: x =k π(k ∈Z )___; 对称中心: _(k π+π 2,0) (k ∈Z )__ 对称中心:_? ?? ? ?k π2,0 (k ∈Z ) __ 周期 2π_ 2π π 单调性 单调增区间_[2k π- π2 , 2k π + 单调增区间[2k π-π,2k π] (k ∈Z ) ____; 单调增区间_(k π- π 2 ,k π+

正弦函数的图像和性质(一)

正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯。 二、问题导学 1、函数的图像的画法: 描点法 步骤:列表→描点→连线 补全上述表格,并根据表格中数据在直角坐标系中画出的图像。 几何法 阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出的图像。 五点法

观察的图像,发现有五个点起着关键的作用,它们是图像与轴的交点和图像的最高点及最低点: ______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出的图像。 2、 因为正弦函数是以为周期的周期函数,所以函数在区间上的图像与在区间上的图像形状完全一样,只是位置不同,因此我们只需将函数的图像向左、向右平行移动(每次移动个单位)就可以得到的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 3、 合作探究 例1、用五点法画出下列函数在区间上的简图。 (1) (2) 例2、在上,利用的图像求满足下列不等式的的取值范围。 (1) (2)

对数性凸函数的性质及应用解读

对数性凸函数的性质及应用 王传坚 (楚雄师范学院数学系2003级1班) 指导老师郎开禄 摘要:在本文中,得到了对数性凸函数的四个性质,并讨论了对数性凸函数的性质的应用。 关键词:凸函数;.对数性凸函数; 基本性质; 应用. The research and application on some properties of logarithmatic convex function Wang Chuanjian (Department of Math, Chu Xiong Normal University, Chu Xiong,Yun Nan ,675000) Abstract: In this paper, the author gives some properties of logarithmatic convex function by studying the fundamental properties, and give some application about the properties of logarithmatic. Key Words:Convex Function; Logarithmatic Convex Function; Fundamental Property; Application. 导师评语: 凸函数是一类重要的函数,它有许多很好的性质,并有广泛的应用.在文[1]( [1] 刘芳园,田宏 根. 对数性凸函数的一些性质[J].《新疆师范大学学报》,2006,25(3):22-25.)中,刘芳园,田宏根 引入对数性凸函数的概念,研究获得了对数性凸函数的若干基本性质,并讨论了对数性凸函数基本性 质的一些应用. 受文[1]的启发,在文[1]的基础上,王传坚同学的毕业论文<<对数性凸函数的性性质及其应用>>进一步研究了对数性凸函数性质,获得了对数性凸函数的两个性质(推论1,推论2)和四个基本结果(定理3, 定理4, 定理5, 定理6),并讨论了对数性凸函数的性质及其应用. 王传坚同学的毕业论文<<对数性凸函数的性质及其应用>>选题具有理论与实 际意义,通过研究所获结果具有理论与实际意义.该论文的完成需要较好的数学分析基础,主要结果 的证明有一定的技巧,论文的完成有一定的难度,是一篇创新型的毕业论文.论文语言流畅,打印行文 规范.该同学在撰写论文过程中,悟性好,独立性强.

特征函数的概念及意义

特征函数的概念及意义 目录: 一.特征函数的定义。 二.常用分布的特征函数。 三.特征函数的应用。 四.绪论。 一.特征函数的定义 设X 是一个随机变量,称 ()() itX e t E =?, +∞<<∞-t , 为X 的特征函数. 因为=1Xit e ,所以() itX e E 总是存在的,即任一随机变量的特征函数总是存在的. 当离散随机变量X 的分布列为() ,3,2,1,P p k ===k x X k ,则X 的特征函数为 ()∑+∞ ==1k k itx p e t k ?, +∞<<∞-t . 当连续随机变量X 的密度函数为()x p ,则X 的特征函数为 ()()?+∞ ∞-=dx x p e t k itx ?, +∞<<∞-t . 与随机变量的数学期望,方差及各阶矩阵一样,特征函数只依赖于随机变量的分布,分布相同则特征函数也相同,所以我们也常称为某分布的特征函数. 二.常用分布的特征函数 1、单点分布:().1P ==a X 其特征函数为 ().e t it a =?

2、10-分布:()(),10x p 1p x X P x 1x =-==-,,其特征函数为 ()q pe t it +=?,其中p 1q -=. 3、泊松分布()λP :()λλ-= =e k k X P k ! ,k=0,1, ,其特征函数为 ()()∑+∞ =---===0k 1e e k ikt it it e e e e k e t λλλλλ?! . 4、均匀分布()b a U ,:因为密度函数为 ()?????<<-=.;, 0, 1其他b x a a b x p 所以特征函数为 ()() ? --= -=b a iat ibt itx a b it e e dx a b e x ?. 5、标准正态分布()1,0N :因为密度函数为 ()2 221x e x p -= π , +∞<<∞-x . 所以特征函数为 ()() ? ?∞+∞-∞+∞ ---- - ∞== dx it x t x itx e e dx e x 22 22 222121 π ? =? -∞+-∞--- - =it it t t t e dz e e 2 2 2 22221π . 其中 ? -∞+-∞-- =it it x dz e π22 2 . 三.特征函数的应用 1、在求数字特征上的应用 求() 2N σμ,分布的数学期望和方差. 由于()2N σμ,的分布的特征函数为()2 t i 2 2e t σμ ?=,

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ? ?? 24,4ac b a ??--∞ ? ?? 单调区间 ,2b a ? ?-∞- ? ? ?递减 ,2b a ??- +∞ ??? 递增 ,2b a ? ?-∞- ? ? ?递增 ,2b a ?? - +∞ ??? 递减 ①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 叫做幂函数,其中x 为自变量,α是常数. (2

专题08 一元二次函数的图像和性质(原卷版)

专题08 一元二次函数的图像和性质一、知识点精讲 【问题1】函数y=ax2与y=x2的图象之间存在怎样的关系? 为了研究这一问题,我们可以先画出y=2x2,y=1 2 x2,y=-2x2的图象,通过这些函数图象与函数y=x2 的图象之间的关系,推导出函数y=ax2与y=x2的图象之间所存在的关系. 先画出函数y=x2,y=2x2的图象. 先列表: x …-3 -2 -1 0 1 2 3 … x2…9 4 1 0 1 4 9 … 2x2…18 8 2 0 2 8 18 从表中不难看出,要得到2x2的值,只要把相应的x2的值扩大两倍就可以了. 再描点、连线,就分别得到了函数y=x2,y=2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y=2x2的图象可以由函数y=x2的图象各点的纵坐标变为原来的两倍得到. 同学们也可以用类似于上面的方法画出函数y=1 2 x2,y=-2x2的图象,并研究这两个函数图象与函数y= x2的图象之间的关系. 通过上面的研究,我们可以得到以下结论: 二次函数y=ax2(a≠0)的图象可以由y=x2的图象各点的纵坐标变为原来的a倍得到.在二次函数y=ax2(a≠0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小. 【问题2】函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?

同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点. 类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论: 二次函数y =a(x +h)2+k(a≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. 由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c(a≠0)的图象的方法: 由于y =ax 2 +bx +c =a(x 2 +b x a )+c =a(x 2 +b x a +224b a )+c - 24b a 2 24()24b ac b a x a a -=++ , 所以,y =ax 2+bx +c(a≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c(a≠0)具有下列性质: (1)当a >0时,函数y =ax 2 +bx +c 图象开口向上;顶点坐标为2 4(,)24b ac b a a --, 对称轴为直线x =-2b a ;当x <2b a - 时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b a -时,函数取最小值y =2 44ac b a -.

正弦函数的图像和性质(一)

x y 等分圆 平移三角函数线作正弦函数的图像 三角函数线 圆 O O 正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:x y sin =图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数x y sin =的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同 角度观察、研究问题的思维习惯。 二、问题导学 1、函数] 2,0[ sinπ ∈ =x x y,的图像的画法: 补全上述表格,并根据表格中数据在直角坐标系中画出] 2,0[ sinπ ∈ =x x y,的图像。 ②几何法阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出 ] 2,0[ sinπ ∈ =x x y,的图像。 ③五点法 观察] 2,0[ sinπ ∈ =x x y,的图像,发现有五个点起着关键的作用,它们是图像与x轴的 交点和图像的最高点及最低点:______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然 后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出] 2,0[ sinπ ∈ =x x y,的图像。 2、因为正弦函数是以π2为周期的周期函数,所以函数x y sin =在区间 )0 ] )1 2, 2[≠ ∈ +k Z k k k且 ( (π π上的图像与在区间] 2,0[π上的图像形状完全一样,只是位置 不同,因此我们只需将函数] 2,0[ sinπ ∈ =x x y,的图像向左、向右平行移动(每次移动π2 个单位)就可以得到R sin∈ =x x y,的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 三、合作探究 例1、用五点法画出下列函数在区间] 2,0[π上的简图。 (1)x y sin 3 =(2)x y sin -1 =

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用 https://www.doczj.com/doc/9c13789898.html,work Information Technology Company.2020YEAR

凸函数的性质及其在证明不等式中的应用 数学计算机科学学院 摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式 最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果. 关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用 Nature of Convex Function and its Application in Proving Inequalities Chen Huifei, College of Mathematics and Computer Science Abstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which makes it necessary to study convex functions.We discuss definition, lemma, theorem and the nature of some commonly used discriminant methods of the convex function and the logarithmic convex function in this paper(According to known theorems, definitions, nature, Jensen inequality and other methods of convex function and the logarithmic convex function to recognize whether the function is a convex function); In this paper we also try to discuss the equivalent definition and nature of the convex function and the issue of its application in demonstration inequalities of convex function in order to have a better understanding of the nature and role of the convex function in proving inequalities; we also try to discuss some applications of convex function in proving inequalities(Convex function and the use of these convex function theorem, definition, nature, Jensen inequality to prove Inequality).

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

凸函数的性质及其应用

摘要 高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。凸函数的许多良好性质在数学中都有着非常重要的作用。凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。 同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。为了突破其局限性并加强凸函数在实际中的运用,于是在60年代中期便产生了凸分析。 本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。 关键词:凸函数;不等式;经济学;最优化问题

Abstract Convex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research, economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines. Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's. The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply. Key words:Convex function;Inequality;Economics;Optimization problem

相关主题
文本预览
相关文档 最新文档