06X射线衍射方法
- 格式:pdf
- 大小:8.91 MB
- 文档页数:56
x射线衍射的三种基本方法X射线衍射是一种非常重要的材料分析技术,它可以用来研究材料的晶体结构、晶体缺陷、晶体取向等信息。
在X射线衍射中,有三种基本方法,分别是粉末衍射、单晶衍射和薄膜衍射。
粉末衍射是最常用的X射线衍射方法之一。
在这种方法中,样品是一些细小的晶体粉末,这些晶体粉末被均匀地散布在一个样品台上。
当X射线照射到样品上时,它们会被散射到不同的角度,形成一系列的衍射峰。
这些衍射峰的位置和强度可以用来确定样品的晶体结构和晶格参数。
粉末衍射适用于大多数晶体材料,因为它们通常是以粉末的形式存在的。
单晶衍射是一种更加精确的X射线衍射方法。
在这种方法中,样品是一个完整的晶体,而不是晶体粉末。
当X射线照射到样品上时,它们会被散射到不同的角度,形成一系列的衍射斑。
这些衍射斑的位置和强度可以用来确定样品的晶体结构和晶格参数,同时还可以确定晶体的取向和缺陷。
单晶衍射适用于高质量的晶体样品,因为它需要一个完整的晶体。
薄膜衍射是一种用于研究薄膜结构的X射线衍射方法。
在这种方法中,样品是一个非常薄的薄膜,通常只有几纳米到几微米的厚度。
当X射线照射到样品上时,它们会被散射到不同的角度,形成一系列的衍射峰。
这些衍射峰的位置和强度可以用来确定薄膜的晶体结构和晶格参数,同时还可以确定薄膜的厚度和取向。
薄膜衍射适用于研究各种类型的薄膜,包括金属薄膜、氧化物薄膜和有机薄膜等。
X射线衍射是一种非常重要的材料分析技术,它可以用来研究材料的晶体结构、晶体缺陷、晶体取向等信息。
在X射线衍射中,粉末衍射、单晶衍射和薄膜衍射是三种基本方法,它们分别适用于不同类型的样品。
通过这些方法,我们可以更好地理解材料的结构和性质,为材料科学和工程提供更好的基础。
X射线衍射分析的实验方法及其应用自1896年X射线被发现以来,可利用X 射线分辨的物质系统越来越复杂。
从简单物质系统到复杂的生物大分子,X射线已经为我们提供了很多关于物质静态结构的信息。
此外,在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。
由于晶体存在的普遍性和晶体的特殊性能及其在计算机、航空航天、能源、生物工程等工业领域的广泛应用,人们对晶体的研究日益深入,使得X射线衍射分析成为研究晶体最方便、最重要的手段。
本文主要介绍X射线衍射的原理和应用。
1、 X射线衍射原理1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。
当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。
这就是X射线衍射的基本原理。
衍射线空间方位与晶体结构的关系可用布拉格方程表示:1.1 运动学衍射理论Darwin的理论称为X射线衍射运动学理论。
该理论把衍射现象作为三维Frannhofer衍射问题来处理,认为晶体的每个体积元的散射与其它体积元的散射无关,而且散射线通过晶体时不会再被散射。
虽然这样处理可以得出足够精确的衍射方向,也能得出衍射强度,但运动学理论的根本性假设并不完全合理。
因为散射线在晶体内一定会被再次散射,除了与原射线相结合外,散射线之间也能相互结合。
Darwin不久以后就认识到这点,并在他的理论中作出了多重散射修正。
1.2 动力学衍射理论Ewald的理论称为动力学理论。
该理论考虑到了晶体内所有波的相互作用,认为入射线与衍射线在晶体内相干地结合,而且能来回地交换能量。
两种理论对细小的晶体粉末得到的强度公式相同,而对大块完整的晶体,则必须采用动力学理论才能得出正确的结果。