X射线衍射方法与介绍
- 格式:ppt
- 大小:1.32 MB
- 文档页数:73
X射线衍射方法范文一、X射线衍射的基本原理X射线衍射是基于X射线与物质相互作用的现象而建立的一种表征技术。
X射线是一种具有高能量的电磁辐射,具有波粒二象性。
当X射线通过物质时,会与物质中的电子发生相互作用,其中包括康普顿散射、自由电子衍射、光电效应等。
而X射线衍射主要是通过晶体或者晶体粉末中的晶格对X射线进行多次反射,导致衍射现象的产生。
传统的X射线衍射方法主要包括旋转晶体法、Debye-Scherrer法、Laue法等。
其中,旋转晶体法是最早被使用的一种方法,通过旋转单个大晶体来观察衍射图谱,缺点是需要获得大尺寸、高质量的晶体。
Debye-Scherrer法是通过对粉末样品进行散射实验来获得衍射图谱,优点是可以使用晶体粉末而不需要大尺寸的晶体。
Laue法是在物质中引入一个平行的光成束器,使得X射线束保持平行,并对粉末样品进行散射实验。
二、X射线衍射仪器X射线发生器是X射线衍射实验的核心组件,它产生高能量的X射线。
常见的X射线发生器有射线管和同步辐射源。
射线管是通过在两个极板之间加高电压,使得阳极上的金属靶发射X射线。
同步辐射源则是利用粒子加速器加速电子,产生高能量的X射线。
同步辐射源的优点是能够产生高能量、高亮度的X射线。
样品台用于支撑和稳定待测样品,并且可以对样品进行精确定位。
一般来说,样品台可以固定在一个平台上,然后通过多个调节螺钉进行微调。
检测器是用于检测和记录X射线衍射实验的信号,一般有闪烁探测器、像银河探测器、光电探测器等。
闪烁探测器是最常见的一种检测器,它将入射X射线转化为光子,然后通过光电倍增管产生电流信号。
数据处理系统用于对收集到的X射线衍射数据进行分析和处理。
常用的数据处理方法包括Fourier变换、衍射峰分析等。
三、X射线衍射在材料科学中的应用晶体结构分析是物质科学的一个重要分支,通过分析晶体的衍射图谱,可以获得晶体的结构参数。
晶体结构是物质特性的基础,对于材料性能的理解和优化具有重要意义。
x射线衍射的三种基本方法X射线衍射是一种非常重要的材料分析技术,它可以用来研究材料的晶体结构、晶体缺陷、晶体取向等信息。
在X射线衍射中,有三种基本方法,分别是粉末衍射、单晶衍射和薄膜衍射。
粉末衍射是最常用的X射线衍射方法之一。
在这种方法中,样品是一些细小的晶体粉末,这些晶体粉末被均匀地散布在一个样品台上。
当X射线照射到样品上时,它们会被散射到不同的角度,形成一系列的衍射峰。
这些衍射峰的位置和强度可以用来确定样品的晶体结构和晶格参数。
粉末衍射适用于大多数晶体材料,因为它们通常是以粉末的形式存在的。
单晶衍射是一种更加精确的X射线衍射方法。
在这种方法中,样品是一个完整的晶体,而不是晶体粉末。
当X射线照射到样品上时,它们会被散射到不同的角度,形成一系列的衍射斑。
这些衍射斑的位置和强度可以用来确定样品的晶体结构和晶格参数,同时还可以确定晶体的取向和缺陷。
单晶衍射适用于高质量的晶体样品,因为它需要一个完整的晶体。
薄膜衍射是一种用于研究薄膜结构的X射线衍射方法。
在这种方法中,样品是一个非常薄的薄膜,通常只有几纳米到几微米的厚度。
当X射线照射到样品上时,它们会被散射到不同的角度,形成一系列的衍射峰。
这些衍射峰的位置和强度可以用来确定薄膜的晶体结构和晶格参数,同时还可以确定薄膜的厚度和取向。
薄膜衍射适用于研究各种类型的薄膜,包括金属薄膜、氧化物薄膜和有机薄膜等。
X射线衍射是一种非常重要的材料分析技术,它可以用来研究材料的晶体结构、晶体缺陷、晶体取向等信息。
在X射线衍射中,粉末衍射、单晶衍射和薄膜衍射是三种基本方法,它们分别适用于不同类型的样品。
通过这些方法,我们可以更好地理解材料的结构和性质,为材料科学和工程提供更好的基础。
X射线衍射分析的实验方法及其应用自1896年X射线被发现以来,可利用X 射线分辨的物质系统越来越复杂。
从简单物质系统到复杂的生物大分子,X射线已经为我们提供了很多关于物质静态结构的信息。
此外,在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。
由于晶体存在的普遍性和晶体的特殊性能及其在计算机、航空航天、能源、生物工程等工业领域的广泛应用,人们对晶体的研究日益深入,使得X射线衍射分析成为研究晶体最方便、最重要的手段。
本文主要介绍X射线衍射的原理和应用。
1、 X射线衍射原理1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。
当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。
这就是X射线衍射的基本原理。
衍射线空间方位与晶体结构的关系可用布拉格方程表示:1.1 运动学衍射理论Darwin的理论称为X射线衍射运动学理论。
该理论把衍射现象作为三维Frannhofer衍射问题来处理,认为晶体的每个体积元的散射与其它体积元的散射无关,而且散射线通过晶体时不会再被散射。
虽然这样处理可以得出足够精确的衍射方向,也能得出衍射强度,但运动学理论的根本性假设并不完全合理。
因为散射线在晶体内一定会被再次散射,除了与原射线相结合外,散射线之间也能相互结合。
Darwin不久以后就认识到这点,并在他的理论中作出了多重散射修正。
1.2 动力学衍射理论Ewald的理论称为动力学理论。
该理论考虑到了晶体内所有波的相互作用,认为入射线与衍射线在晶体内相干地结合,而且能来回地交换能量。
两种理论对细小的晶体粉末得到的强度公式相同,而对大块完整的晶体,则必须采用动力学理论才能得出正确的结果。