X射线衍射方法全解
- 格式:ppt
- 大小:4.61 MB
- 文档页数:40
X射线衍射分析方法X射线衍射分析是一种常用的材料结构分析方法,通过探测和分析样品对入射的X射线的散射方向和强度,来确定样品中原子的排列方式和晶体结构。
X射线衍射分析方法基于X射线作为电磁波的性质,具有较高的分辨率和广泛的应用领域。
nλ = 2d sinθ其中,n为衍射的阶数,λ为X射线的波长,d为晶格的晶面间距,θ为入射射线与晶面的夹角。
X射线衍射的实验装置通常由一个X射线源、一个单色器(用于选择特定波长的X射线)、一个样品台和一个衍射探测器组成。
实验过程中,样品被放置在样品台上,入射射线照射到样品上后产生散射射线,散射射线被探测器接收,并转化成电信号进行记录和分析。
1. 粉末X射线衍射(Powder X-Ray Diffraction,PXRD):粉末X射线衍射是最常用的X射线衍射分析方法,适用于晶体和非晶态样品。
通过测量样品中X射线的衍射图样,可以确定晶体的结构、晶胞参数和晶格的对称性。
粉末X射线衍射还可以用于定量分析样品中各种组分的含量。
2. 单晶X射线衍射(Single Crystal X-Ray Diffraction,SCXRD):单晶X射线衍射是研究晶体结构最直接、最准确的方法。
通过测量特定晶面上的衍射强度和散射角度,可以获得晶体的精确结构和原子的位置信息。
这种方法对于研究有机小分子、无机晶体和金属晶体的结构非常有价值。
3. 催化剂的X射线衍射(Catalytic X-Ray Diffraction):催化剂的X射线衍射用于研究催化剂的晶体结构和相组成,从而了解催化剂在反应中的性能和活性。
这种分析方法对于设计和优化催化剂非常重要。
4.衍射峰位置和衍射峰宽度分析:X射线衍射分析中,可以通过测量衍射峰在散射角度上的位置和宽度来研究样品的晶体结构和缺陷情况。
衍射峰的位置与晶胞参数相关,而衍射峰的宽度与晶体的结构缺陷和晶体的有序程度有关。
总结起来,X射线衍射分析方法是一种非常重要的材料结构分析方法,通过测量样品对入射X射线的衍射方向和强度,可以确定样品中原子的排列方式和晶体结构。
第五章X射线衍射实验⽅法第五章 X射线衍射实验⽅法常⽤的实验⽅法1.按成相原理分:单晶劳埃法、多晶粉末法、周转晶体法2.按记录⽅式分:照相法:⽤照相底⽚记录衍射花样衍射仪法:⽤各种辐射探测器和电⼦仪表记录。
、第⼀节粉末照相法1.粉末照相法是⽤单⾊X射线照射转动(或固定)多晶体试样,并⽤照相底⽚记录衍射花样的⼀种实验⽅法。
试样可为块、板、丝等形状,但最常⽤粉末,故称粉末法。
2.粉末法成相原理:粉末试样是由数⽬极多的⼩晶粒组成,且晶粒取向完全⽆规则,各晶粒中d值相同的晶⾯取向随机分布于空间任意⽅向,这些晶⾯对应的倒易⽮量也分布于整个倒易空间的各个⽅向,它们的倒易阵点则布满在以倒易⽮量的长度为半径的倒易球⾯上.由于等同晶⾯族{HKL}的⾯间距相等,所以,等同晶⾯族的倒易阵点都分布在同⼀个倒易球⾯上,各等同晶⾯族的倒易阵点分别分布图5-1 粉末法成相原理图在以倒易点阵原点为中⼼的同⼼倒易球⾯上.在满⾜衍射条件时,根据厄⽡尔德原理,反射球与倒易球相交,其交线为⼀毓垂直于⼊射线的圆,从反射球中⼼向这些圆周连线级成数个以⼊射线为公共轴的共顶圆锥,圆锥的母线就是衍射线的⽅向,锥顶⾓等于4θ.这样的圆锥称为衍射圆锥.1.1 德拜照相法(1)德拜照相法(2)圆筒底⽚摄照⽰意图1.2 聚焦照相法o是利⽤发散度较⼤的⼊射线,照射到试样的较⼤区域,由这个区域发射的衍射线⼜能重新聚焦,这种衍射⽅法称为聚焦法。
聚焦相机的基本特征是狭缝光阑、试样和条状底⽚三者位于同⼀个聚焦圆上。
它所依据的⼏何原理是同⼀圆周上的同弧圆周⾓相等,并等于同弧圆⼼⾓的⼀半。
按照这样的⼏何原理,让狭缝光阑、试样和条状底⽚三者采取不同的布置,便可设计出各种不同类型的聚焦相机。
塞曼-波林相机的内壁圆周为聚焦圆,狭缝光阑s、试样表⾯AB和条状底⽚MN三者准确地安置在同⼀个聚焦圆上。
狭缝光阑相当X射线的虚光源,实际光源为x射线管的焦点。
图5-2 塞曼-波林相机的衍射⼏何1.3 平⾯底⽚照相法2.利⽤单⾊(标识)X射线、多晶体试样、平⾯底⽚和针孔光阑,故也称之为针孔法。
X射线衍射分析技术全解首先,X射线衍射分析是利用X射线在物质中的散射现象来研究物质的结构和性质的一种方法。
当X射线穿过物质时,会与物质中的电子发生相互作用,引起X射线的散射。
X射线衍射实验可以得到一种叫做衍射图样的图像,这种图像展示了材料的晶体结构和原子排列情况,从而可以得到材料的晶体结构参数。
2dsinθ = nλ其中,d是晶面的晶格间距,θ是入射角和衍射角的夹角,n为整数,λ为X射线的波长。
通过改变入射角θ和测得的衍射角,可以计算出晶面的晶格间距。
通过X射线衍射实验可以获得的主要信息有:1.晶体结构:通过测量衍射图样中的衍射峰位置和强度,可以确定晶格类型、晶胞参数和晶体结构。
2.晶体缺陷:衍射图样中的衍射峰的形状和位置可以提供晶体缺陷信息,如晶体的位错、脱位和孪晶等。
3.结晶度:通过衍射峰的形状和宽度可以评估晶体的完整程度和结晶度。
4.晶体相组成:不同的晶体表现出不同的衍射图样,通过匹配实验测得的衍射图样与数据库中的标准数据,可以确定材料的组成成分。
X射线衍射实验通常需要在专门的设备中进行,最常用的设备是X射线衍射仪。
X射线衍射仪通常由X射线源、样品台、探测器和数据处理系统组成。
X射线源产生X射线,样品台用于固定和转动样品,探测器用于探测衍射信号,数据处理系统用于处理和分析衍射数据。
在实际应用中,X射线衍射分析技术被广泛应用于材料科学、固态物理、化学、地质学等领域。
它可以用于研究金属、无机材料、有机材料以及生物材料的结构和性质。
例如,X射线衍射可以用于确定合金中的晶体相组成、材料的晶格畸变和晶界的分析。
此外,X射线衍射还可以用于研究材料的动态行为,如晶体的相变、晶体生长和退火等。
总结起来,X射线衍射分析技术是一种重要的材料表征技术,可以通过与材料相互作用的X射线的散射模式来确定材料的晶体结构、晶格参数、晶体缺陷和材料的相组成等信息。
它是一个非常有用和广泛应用的实验方法,对研究材料的结构和性质具有重要意义。