北京理工大学信号与系统实验 实验6 离散时间系统的z域分析
- 格式:docx
- 大小:385.54 KB
- 文档页数:10
信号实验离散系统的Z域分析上机实验8 离散系统的Z域分析⼀.实验⽬的1. 掌握离散时间信号的Z变换和Z逆变换的实现⽅法与编程思想。
2. 掌握系统频率响应函数幅频特性、相频特性和系统函数的零极点图的绘制⽅法。
3. 了解函数ztrans,iztrans,zplane,dimpulse,dstep和freqz的调⽤格式及作⽤。
4. 了解利⽤零极点图判断系统稳定性的原理。
⼆.实验原理离散系统的分析⽅法可分为时域解法和变换域解法两⼤类。
其中离散系统变换域解法只有⼀种。
即Z变换域解法。
Z变换域没有物理意义,它只是⼀种数学⼿段,之所以在离散系统的分析中引⼊Z变换的概念,就是要像在连续系统分析是引⼊拉⽒变换⼀样,简化分析⽅法和过程,为系统的分析研究提供⼀条新的途径。
这种⽅法的数学描述为Z变换及其逆变换,这种⽅法称为离散信号与系统的Z域分析法。
三.实验内容:验证性试验1 Z变换确定信号f1(n)=n3U(n),f2(n)=cos(2n)U(n)的Z变换。
程序:%确定信号的Z变换syms n zf1=3^n;f1_z=ztrans(f1)f2=cos(2*n);f2_z=ztrans(f2)结果:f1_z =z/(z - 3)f2_z =(z*(z - cos(2)))/(z^2 - 2*cos(2)*z + 1)2 Z反变换已知离散LTI系统的激励函数为f(k)=(-1)^kU(k),单位序列响应h(k)=(1/3*(-1)^k+2/3*3^k)U(k),采⽤变换域分析法确定系统的零状态响应程序:syms k zf=(-1)^k;f_z=ztrans(f);h=1/3*(-1)^k+2/3*3^k;h_z=ztrans(h);yf_z=f_z*h_z;yf=iztrans(yf_z)结果:yf =(5*(-1)^n)/6 + 3^n/2 + ((-1)^n*(n - 1))/3计算1/((1+5*z^(-1))*(1-2*z^(-1))^2),|z|>5的反变换程序:num=[0,1];den=poly([-5,1,1]);[r,p,k]=residuez(num,den)结果:r =-0.1389 + 0.0000i-0.0278 - 0.0000i0.1667 + 0.0000ip =-5.0000 + 0.0000i1.0000 + 0.0000i1.0000 - 0.0000ik = []3采⽤MATLAB语⾔编程,绘制离散LTI系统函数的零极点图,并从零极点图判断系统的稳定性。
北京理工大学信号与系统实验报告本科实验报告实验名称:信号与系统实验实验1 信号的时域描述与运算(基础型实验)一、实验目的1.掌握信号的MATLAB表示及其可视化方法。
2.掌握信号基本时域运算的MATLAB实现方法。
3.利用MATLAB分析常用信号,加深对信号时域特性的理解。
二、实验原理及方法1.连续时间信号的MATLAB表示连续时间信号在连续时间范围内除若干不连续点外在任何时刻都有定义,在MATLAB中的表示法包括向量表示法和符号对象表示法。
1)向量表示法MATLAB从严格意义上来说并不能处理连续时间信号,但可以通过等时间间隔采样后的采样值来近似表示,如果采样间隔足够小,则采样值就可以很好地近似表示出连续时间信号。
这种方法称为向量表示法。
表示一个连续时间信号需要用到两个向量,一个表示时间范围,另一个表示连续时间信号在相对应时间范围内的采样值。
2)符号对象表示法如果连续时间信号可以用表达式来描述,则可以采用符号对象表达法。
例:对于余弦信号,采用两种方式来表示:>> t=0:0.01:10;>> x=sin(t);>> subplot(121)>> plot(t,x)>> title('向量表示法')>> clear>> syms t>> x=sin(t);>> subplot(122)>> ezplot(x)>> title('符号对象表示法')符号对象表示法向量表示法t常用信号产生函数2.连续时间信号的时域运算连续时间信号的运算包括两信号相加、相乘、微分、积分,以及移位、反转、尺度变换等。
1) 相加和相乘信号的相加和相乘指两信号对应时刻值相加或相乘。
两个采用向量表示法的信号可以直接使用‘+’和‘*’进行运算,此时要求二者的向量时间范围以及采样间隔相同。
《信号与系统》课程实验报告变换。
zz z z z z F 2112)(232+++-=一、实验原理的验证 1、离散系统零极点图实验原理如下:离散系统可以用差分方程描述:∑∑==-=-Mm m Ni i m k f b i k y a 0)()(Z 变换后可得系统函数:NN MM z a z a a z b z b b z F z Y z H ----++++++==......)()()(110110 可以用root 函数可分别求零点和极点。
例7-4 求系统函数零极点图131)(45+-+=z z z z H实验结果如下:2、离散系统的频率特性实验原理如下:离散系统的频率特性可由系统函数求出,既令ωj e z =,函数freqz 可计算频率特性,调用格式是:[H ,W]=freqz(b,a,n),b 和a 是系统函数分子分母系数,n 是π-0范围内n 个等份点,默认值为512,H 是频率响应函数值,W 是相应频率点; 例7-5 系统函数z z z H 5.0)(-=10个频率点的计算结果为幅频特性曲线相频特性曲线freqz语句直接画图例7-7已知系统函数114/11)1(4/5)(----=z z z H ,画频率响应和零极点图。
零极点图幅频特性曲线相频特性曲线二、已知离散系统的系统函数如下所示:1422)(232+-++=z z z z z H试用MATLAB 实现下列分析过程: (1)求出系统的零极点位置;(2)绘出系统的零极点图,根据零极点图判断系统的稳定性; (3)绘出系统单位响应的时域波形,并分析系统稳定性与系统单位响应时域特性的关系。
(1)由计算结果可知:系统的极点为p0=-3.3028、p1=1、p2=0.3028。
由计算结果可知:系统的零点为z0=1.4142i 、z1=-1.4142i 。
(2)系统的零极点图如下:程序清单如下: a=[1 2 -4 1]; b=[1 0 2]; ljdt(a,b)p=roots(a)q=roots(b)pa=abs(p)由图可知:第一个极点(p0)在单位圆外部,第二个极点(p1)在单位圆上,第三个极点(p2)在单位圆内部,因为有一个极点在单位圆外部,故该系统是不稳定的系统(稳定系统要求极点全部在单位圆内)。
实验离散系统时域分析研究和z域分析研究个人收集整理仅供参考学习实验四.离散系统时域分析和z域分析411109060307李石磊一.实验前预习《信号与系统实验(matlab版)》实验17离散系统地z域分析二.实验目地:1.掌握使用迭代法求离散时间系统响应地方法.2.掌控zplane零极点绘图函数地采用并介绍采用零极点图推论系统稳定性地原理.3.掌控用impz函数谋线性时间系统单位样值积极响应.4.掌控用freqz函数由线性时间系统系统函数谋频率响应.二、实验原理:1.线性时间系统地传递函数h(z).b(z)b1z?m?b2z?m?1?...?bmh(z)z?1?h(n)??n?n?1a(z)a1z?a2z?...?an其中,b为分子多项式系数,a为分母多项式系数.涉及函数:freqz.2.系统零极点原产与稳定性地认定.对于离散时间系统,系统极点位于z域单位圆内部,系统稳定.涉及函数:zplane.三、实验内容1.验证性实验1/7个人收集整理仅供参考学习(1).未知离散系统地系统函数h(z)?积极响应h(n)并作图.源代码如下:clearall;closeall;z,作零极点图,判断系统稳定性,求单位样值z?2a=[1-2];b=[10];%写出h(z)分子多项式和分母多项式系数symszn;%将z,n定义为符号hn=iztrans(z/(z-2))%谋h(z)地z反华转换获得系统单位样值积极响应h(n)表达式[h,n]=impz(b,a);%谋系统单位样值积极响应figure(1);subplot(2,1,1);zplane(b,a);%作零极点分布图xlabel('零极点分布图');subplot(2,1,2);stem(n(1:6),h(1:6));%依序6个点作h(n)图gridon;%表明网格xlabel('单位样值积极响应图');2/7个人收集整理仅供参考自学(2).假设每对兔子每月可生育一对小兔,新生地小兔要隔一个月才有生育能力.若第一个月只有一对新生小兔,求第n=12个月兔子对地数目是多少.b5e2rgbcap提示:此问题地数学模型为:系统差分方程y(n)-y(n-1)-y(n-2)=0,求完全响应源代码如下:%第0个月存有0对兔子,第1个月存有1对兔子.%由于matlab数组下标必须从1开始,因此令边界条件y(1)=0,y(2)=1;clearall;closeall;y(1)=0;y(2)=1;%边界条件n=13;%n为月份数forn=3:n%迭代法差分方程求数值解y(n)=y(n-1)+y(n-2);end3/7个人收集整理仅供参考学习disp([0:n-1;y]);%用一个2行n列地数组表明月份和对应地兔子对数.p1eanqfdpwfigure;%建立一个图形窗口stem(0:n-1,y);%作图,注意此时月份从0开始.gridon;%画网格2.设计性实验系统差分方程y(n)=0.9y(n-1)+0.05(n>=0),求完全响应.边界条件y(-1)=0,使用迭代法求系统完全响应(此时系统完全响应即为零状态响应).dxdita9e3dclearall;closeall;y(1)=0;n=31;forn=2:ny(n)=0.9*y(n-1)+0.05;enddisp([-1:n-2;y]);figure;4/7个人收集整理仅供参考自学stem(-1:n-2,y);gridon;思索:将边界条件改成y(-1)=1,谋系统全然积极响应n=0~30共31个点地地数值黎贞作图.提示信息:由于matlab数组负号必须从1已经开始,因此而令边界条件y(1)=0.clearall;closeall;y(1)=1;n=31;forn=2:ny(n)=0.9*y(n-1)+0.05;enddisp([-1:n-2;y]);figure;stem(-1:n-2,y);gridon; 5/7。
一,实验目的理解关于z变换及其反变换的定义和MATLAB实现,理解系统零极点分布与系统特性的关系。
二,实验原理1.z变换z变换调用函数Z=ztrans(F)z反变换调用函数F=ilaplace(Z)2.离散时间系统的系统函数3.离散时间系统的零极点分析可以通过调用函数zplane:zplane(b,a):b、a为系统函数的分子、分母多项式的系数向量。
zplane(z,p):z、p为零极点序列。
三,实验内容(1)已知因果离散时间能系统的系统函数分别为:①②试采用MATLAB画出其零极点分布图,求解系统的冲击响应h(n)和频率响应H(),并判断系统是否稳定。
①MATLAB程序如下:b=[1 2 1]a=[1 -0.5 -0.005 0.3]subplot(131)zplane(b,a)subplot(132)impz(b,a,0:10)subplot(133)[H,w]=freqz(b,a)plot(w/pi,H)程序执行结果如下:由程序执行结果,当t趋于无穷,响应趋于0,所以该系统是稳定系统。
②MATLAB程序如下:b=[1]a=[1 -1.2*2^(1/2) 1.44]subplot(131)zplane(b,a)subplot(132)impz(b,a,0:10)subplot(133)[H,w]=freqz(b,a)plot(w/pi,H)程序执行结果如下:由程序执行结果,t趋于无穷,系统响应发散,故该系统是不稳定系统。
(2)已知离散时间系统系统函数的零点z和极点p分别为:试用MATLAB绘制下述6种不同情况下,系统函数的零极点分布图,并绘制相应单位抽样响应的时域波形,观察分析系统函数极点位置对单位抽样响应时域特性的影响和规律。
①z=0,p=0.25MATLAB程序如下:b=[1 0]a=[1 -0.25]sys=tf(b,a)subplot(211)zplane(b,a)subplot(212)impz(b,a)程序执行结果如下:②z=0,p=1 MATLAB程序如下: b=[1 0]a=[1 -1]sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)impz(b,a)程序执行结果如下:③z=0,p=-1.25 MATLAB程序如下: b=[1 0]a=[1 1.25]sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)impz(b,a)程序执行结果如下:④z=0,p1=0.8,p2=MATLAB程序如下:b=[1 0]a=[1 -1.6*cos(pi/6) 0.64] sys=tf(b,a)subplot(211)zplane(b,a)subplot(212)impz(b,a)程序执行结果如下:⑤z=0,p1=,MATLAB程序如下:b=[1 0]a=[1 -cos(pi/4) 1] sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)impz(b,a)程序执行结果如下:⑥z=0,p1=1.2,p2=1.2MATLAB程序如下:z=0p=[1.2*exp(3*i*pi/4) 1.2*exp(-3*i*pi/4)] subplot(211)zplane(z,p)subplot(212)b=[1 0]a=[1 -2.4*cos(3*pi/4) 1.44]impz(b,a,0:30)程序执行结果如下:答:由执行结果知,当极点p在单位圆内时,系统响应收敛,该系统为稳定系统;当极点p 在单位圆上时,系统响应保持不变;当极点p在单位圆外时,系统响应发散,该系统为非稳定系统。
第 6 章离散信号与系统的Z 域分析6.0 引言与拉氏变换是连续时间傅立叶变换的推广相对应,Z 变换是离散时间傅立叶变换的推广。
Z 变换的基本思想、许多性质及其分析方法都与拉氏变换有相似之处。
当然, Z 变换与拉氏变换也存在着一些重要的差异。
6.1 双边 Z 变换6.1.1双边Z变换的定义前面讨论过,单位脉冲响应为h[n] 的离散时间 LTI 系统对复指数输入z n的响应y[n]为y[ n]H ( z) z n(6.1)其中H ( z)h[ n] z n(6.2)n式 (6. 2) 就称为 h[n] 的双边 Z 变换。
当 z= e j时, Z 变换就转变为傅立叶变换。
因此一个离散时间信号的双边Z 变换定义为:X ( z)x[ n]z n(6.3)n式中 z 是一个复变量。
而x[n]与它的双边z 变换之间的关系可以记做zx[n]X (z)6.1.2双边Z变换的收敛域x[n] 的双边 Z 变换为一无穷级数,因此存在级数是否收敛的问题,即一方面并非所有信号的Z 变换都存在;另一方面即使某信号的Z 变换存在,但并非Z 平面上的所有点都能使X(z)收敛。
那些能够使X(z)存在的点的集合,就构成了X(z)的收敛域,记为ROC。
只有当式 (6.3) 的级数收敛,X (z) 才存在。
X ( z) 存在或级数收敛的充分条件是x[n]z n(6.4)n在 x[ n] 给定的条件下,式 (6.4)级数是否收敛取决于 z 的取值。
在 z 复平面上,使式 (6.4)级数收敛的 z取值区域就是 X(z)的收敛域。
6.1.3零极点图如果X(z) 是有理函数,将其分子多项式与分母多项式分别因式分解可以得到:N ( z)(z z i )X ( z)i(6.5)M(zD ( z)z p )p则由其全部的零极点即可表示出X ( z) ,最多相差一个常数因子。
在Z 平面上表示出全部的零极点,即构成X ( z) 的几何表示——零极点图。