六年级上册数学试题-小学奥数思维训练题全国通用库赛前冲刺1000题(三十三) 人教版
- 格式:doc
- 大小:37.00 KB
- 文档页数:6
小学奥数思维训练全国通用题库赛前冲刺1000题(十九)1、有一列数按“9453672945367294……”排列,那么前50个数字之和是多少?2、小红买了一本童话书,每两页文字之间有3页插图,也就是说3页插图前后各有1页文字。
如果这本书有128页,而第1页是文字,这本童话书共有插图多少页?3、校门口摆了一排花,每两盆菊花之间摆3盆月季,共摆了112盆花。
如果第一盆花是菊花,那么共摆了多少盆月季花?4、同学们做早操,36个同学排成一列,每两个女生中间是两个男生,第一个是女生,这列队伍中男生有多少人?5、把38面小三角旗按下图排列,其中有多少面白旗?6、2001年6月1日是星期五,9月1日是星期几?7、50个7相乘,积的个位数字是几?8、有一列数“7231652316523165……”,请问从左起第2个数字到第25个数字之间(含第2个与第25个数字)所有数字的和是多少?9、一个圆形花辅周围长30米,沿周围每隔3米插一面红旗,每两面红旗中间插两面黄旗。
花辅周围共插了多少面黄旗?10、食堂存有同样重量的大米和面粉,吃大米的四分之三和60千克面粉后,剩下的面粉的重量是大米的3倍。
原来存有大米和面粉各多少千克?11、如果每人步行的速度相同,2个人一起从学校到儿童乐园要3小时,那么6个人一起从学校到儿童乐园要多少小时?12、3个人同时唱3首歌用9分钟,9个人同时唱同样的3首歌用几分钟?13、5只猫5天能捉5只老鼠,照这样计算,要在100天里捉100只老鼠要多少只猫?14、6个人从甲地到乙地用4小时,如果每人的步行速度相同,那么3个人从甲地到乙地要用几小时?15、一条毛毛早由幼虫长成成虫,每天长大一倍,30天能长到20厘米。
问长到5厘米时要用多少天?16、有一个池塘中的睡莲,每天长大一倍,经过10天可以把整个池塘全部遮住。
问睡莲要遮住半个池塘需要多少天?17、一条小青虫由幼虫长成成虫,每天长大一倍,20天能长到36厘米。
小学奥数思维训练全国通用题库赛前冲刺1000题(十八)1、在下图(左下)各圆空余部分填上3、5、7、8,使每个圆的4个数的和都是21。
2、在图(右下图)中各圆的空余部分分别填上1、2、4、6,使每个圆中4个数的和是15。
3、在图(上图)中各圆空余部分分别填上4、5、7、9,使每个圆中4个数的和是27。
4、在图(上图)中各圆空余部分分别填上6、8、10、11.使每个圆中4个数的和是33。
5、把1——8这八个数,分别填入下图的各个□内,使得每一横行、每一竖行的三个数的和是13。
6、将数字1——8填入右上图中,使横行□中的数之和等于竖行□中的数之和,这个和可以是多少?7、把840本书放在书架的三层里,下层放的本数比上层的3倍多5本,中层放的本数是上层的2倍多1本。
问:上、中、下三层各放书多少本?8、甲、乙两个书架,已知甲书架有书600本,从甲书架借出三分之一,从乙书架借出四分之三后,甲书架的书是乙书架的2倍还多150本。
乙书架原来有书多少本?9、某校有男生630人,选出男生人数的三分之一和女生人数的四分之三去排练团体操,剩下的男生人数是女生人数的2倍。
这个学校共有学生多少人?10、小丁把同样大小的红、白、黑珠子按先2个红的、后1个白的、再3个黑的的规律排列(如下图),请你算一算,第32个珠子是什么颜色?11、如图,算出第20个图形是什么?○△△□□□○△△□□□○△△……12、“数学趣味题数学趣味题……”依次重复排列,第2001个字是什么?13、 2020年10月1日是星期一,问:10月25日是星期几?14、2020年5月3日是星期四,5月20日是星期几?15、2020年8月1日是星期三,8月28日是星期几?16、 100个3相乘,积的个位数字是几?17、23个3相乘,积的个位数字是几?18、100个2相乘,积的个位数字是几?19、有一列数按“432791864327918643279186……”排列,那么前54个数字之和是多少?20、一列数按“294736294736294……”排列,那么前40个数字之和是多少?。
小学六年级奥数竞赛试卷一、填空题(共23小题,每小题3分,满分69分)1.(3分)计算:(12345+23451+34512+45123+51234)÷5=2.(3分)比较大小:(填>、<或=)3.(3分)分数化成循环小数后,小数部分左起第2004个数字是.4.(3分)边长24厘米的等边三角形ABC,被分成面积相等的4个小三角形(如图).那么线段DF比BE长厘米.5.(3分)A、B两点分别是长方形的长和宽的中点,那么,阴影部分(如图)占长方形面积的(填几分之几).6.(3分)三角形ABC中(如图),DE将三角形分成甲、乙两部分.那么乙的面积是甲的面积的倍.7.(3分)计算:.8.(3分)……+++1+2+4+8+16+……+256+512=.9.(3分)一个长方形,如果长和宽都增加4米,则面积增加88平方米.原来长方形的周长是米.10.(3分)某个自然数与10的和与差均为完全平方数,这个自然数是.11.(3分)一筐苹果不足60个,若把它平均分给几个同学,则每人恰好分6个;若只分给其中几个女同学,则每个女同学可分到10个.共有位男同学.12.(3分)小王与甲、乙、丙、丁四人一起打乒乓球,每两人打一局,已知甲已打4局,乙已打3局,丙已打2局,丁已打1局.那么小王已打了局.13.(3分)100以内只有10个不同约数的自然数是.14.(3分)分母小于10且最接近1.14的最简分数是.15.(3分)两个自然数的和与差的积是41,那么这两个自然数的积是.16.(3分)两个循环小数0.96925和0.925,在小数点后第数位上首次同时出现数字7?17.(3分)等腰直角三角形的面积是4.5平方厘米,由8个这样的三角形组成一个正方形,这个正方形的周长是厘米.18.(3分)一个六位数的左边第一位数字是1.如果把这个数字移到最右边,所得的新六位数是原数的3倍.原数是.19.(3分)对于小数0.0123456,要使它成为循环小数且小数部分左起第100位上数字是4,那么两个循环点应分别加在和这两个数字上.20.(3分)甲、乙两个自然数,它们的和被3除余1,它们的差能被3整除.那么甲数被3除的余数是.21.(3分)有四个分数:,其中最大的分数与最小的分数之和是.22.(3分)有两堆棋子,若从第一堆拿1枚放到第二堆中去,则第二堆的棋子数是第一堆的2倍;若从第二堆拿1枚放到第一堆中去,则两堆棋子数恰好相同.第一堆有枚,第二堆有枚.23.(3分)长方形的长和宽各是9厘米和4厘米,要把它剪成大小、形状都相同的两块,并使它们拼成一个正方形.2018年小学六年级奥数竞赛试卷参考答案与试题解析一、填空题(共23小题,每小题3分,满分69分)1.【分析】根据题意,被除数中的五个加数,每个数位上数字的和都是1+2+3+4+5=15,然后再根据数位知识拆分解答即可.【解答】解:(12345+23451+34512+45123+51234)÷5=(1+2+3+4+5)×(10000+1000+100+10+1)÷5=15×11111÷5=3×11111=33333故答案为:33333.【点评】解答此题,应仔细观察,认真分析式中数据,运用运算技巧或运算定律合理简算.2.【分析】根据题意,将这两个数分别转化成与另一个分数的和,然后比较这两个分数的大小,然后推论出原来两个数的大小即可.【解答】解:根据题意得因为所以故答案为>.【点评】本题考查了比较大小.3.【分析】=0.3571428571428…,首先分析循环小数0.3571428571428…的循环节有几位数字,然后用2004除以循环节的位数,余数是几,第2004位上的数字就是循环节的第几位数字.【解答】解: =0.3571428571428…,循环节为571428,有6位数字,因为(2004﹣1)÷6=333…5,循环节中第5个数是2,故答案为:2.【点评】解决这类问题往往是把重复出现的部分看成一组,先找出排列的周期性规律,再根据规律求解.4.【分析】根据等边三角形的特征,以及三角形的高一定时,面积比等于底边比解答即可.【解答】解:根据题意可得:S △ABD =S △BED =S △DEF =S △CEF ,所以,S △BED :(S △DEF +S △CEF )=1:2,所以,BE :EC=1:2所以,BE=24×=8厘米,同理,S △ABD :S △ABC =1:4,所以,AD :AC=1:4,所以,CD :AC=(4﹣1):4=3:4,又因为,DF=CF ,所以,DF=24××=9厘米,所以,DF ﹣BE=9﹣8=1厘米;故答案为:1.【点评】此题考查了三角形的高一定时,三角形的面积与底成正比的性质的灵活应用. 5.【分析】根据题意,设长方形的长和宽分别为a ,b ,则长方形的面积是ab ,小三角形的面积=,阴影部分的面积=长方形面积的一半﹣小三角形的面积=,阴影部分占长方形面积的,据此回答.【解答】解:根据题意设长方形的长和宽分别为a ,b ,则长方形的面积是ab ,小三角形的面积=阴影部分面积=,阴影部分(如图)占长方形面积的.故答案为.【点评】本题考查了长方形的面积和三角形的面积问题.6.【分析】根据三角形的高一定时,面积比等于底边比解答即可.【解答】解:连接BD ,如下图:△ADE 与△BDE 等高,且AE :EB=3:6=1:2,所以,S △ADE =S △BDE =1:2,所以,S △BDE =2×甲,同理,AD :DC=4:4=1:1,所以,S △BCD =S △ABD =(2+1)×S △ADE =3×甲,所以,乙=S △BDE +S △BCD =2×甲+3×甲=5×甲;故答案为:5.【点评】此题考查了三角形的高一定时,三角形的面积与底成正比的性质的灵活应用. 7.【分析】通过观察,可把原式分为两部分,即﹣,约分计算.【解答】解:=﹣=1﹣= 【点评】仔细分析数据,采取灵活的方法,进行简算.8.【分析】本题可以把分数部分和整数部分分开计算,然后再相加即可.【解答】解:+1+2+4+……+256+512=1﹣+210﹣1 =1024﹣=【点评】本题考查的是分数的简算及等比数列的求和.9.【分析】由于原来长方形的长×4+原来长方形的宽×4+4×4=88平方厘米,根据乘法分配律可求原来长方形的长+宽,从而求得原来长方形的周长.【解答】解:根据题意得(88﹣4×4)÷4×2=36(米)故答案为:36.【点评】考查了长方形的周长和面积,本题的关键是运用运算律将原来长方形的长+宽看作一个整体,有一定的难度.10.【分析】根据题意,设这个自然数为m,,两个方程相减可得:A2﹣B2=(A﹣B)×(A+B)=20,把20写成两个数的乘积的形式可得出关于A、B的二元一次方程,由此利用加减消元法即可解答,求出A、B的值即可求出m解决问题.【解答】解:设这个自然数为m,,所以A2﹣B2=(A﹣B)×(A+B)=20,因为20=1×20=2×10=4×5,而(A﹣B)与(A+B)同奇同偶,所以只能是,解得,所以m=62﹣10=26.故答案为:26.【点评】此题较为复杂,关键是利用平方差公式得出(A﹣B)×(A+B)=20进而得出关于A、B的二元一次方程组,解这个方程组即可解答问题.11.【分析】根据题意可知:这筐苹果的总个数,即是6的倍数又是10的倍数,且6和10的最小公倍数是30,据此分析解答即可.【解答】解:[6,10]=3030÷6﹣30÷10=2(个)故填:2【点评】本题考查的是用公倍数解决问题.12.【分析】共5位选手参赛,每两个人都要比赛一场,则每个选手都要与其他四位各赛一局,每个人共赛四局.根据题意通过连线可知:据此解答即可.【解答】解:根据题意画图如下:通过观察连线可知已经打了6局(实线),没打的有4局(虚线),其中小王已打了2局.故答案为:2.【点评】根据赛制及每人比赛的场数之间的逻辑关系进行分析是完成本题的关键.本题用连线画图的方法更加直观具体.13.【分析】此题巧用求一个数约数的方法,从最小的质因数着手,分析不同的情形,得出结论.【解答】解:因数有10个,根据10=2×5=1×10,其中1×10不合要求,舍去;可写成a×b4形式(a、b是质数)这时只能取a=3或5,b=2时符合条件,当a=3,b=2时,这个数为3×25=48当a=5,b=2时,这个数为5×25=80故答案为:48和80.【点评】此题主要考查一个合数的约数个数的计算公式的逆用:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.14.【分析】因为=和1.14的小数部分0.14比较接近,据此分析解答即可.【解答】解:因为=和1.14的小数部分0.14比较接近,所以分母小于10且最接近1.14的最简分数是.故填:【点评】本题考查的是简单的分数问题.15.【分析】从两个自然数的和与差的积是41入手,41是质数,也就是1×41=41,可见它们的差是1,和是41,这是两个连续的自然数分别为20、21.然后计算其乘积即可.【解答】解:首先注意到41是质数,两个自然数的和与差的积是41,可见它们的差是1,这是两个连续的自然数,大数是21,小数是20,所以这两个自然数的积是20×21=420.故答案为:420.【点评】此题考查质数与合数.16.【分析】第一个循环小数出现数字7的周期是7个数字,第二个循环小数出现数字7的周期是5个数字,首次同时出现数字7即是7的倍数又是5的倍数,据此解答即可.【解答】解:[7,5]=35故填:35【点评】本题考查的是周期问题.17.【分析】这个大正方形的面积就是8个小三角形的面积和,求出这个大正方形的面积,再根据正方形的面积求出它的边长,根据正方形的周长公式求出它的周长.【解答】解:拼成的正方形如图:面积是:4.5×8=36(平方厘米);大正方形的面积是36平方厘米,36=6×6,那么它的边长就是6厘米;周长:6×4=24(厘米);故答案为:24.【点评】本题关键是知道拼成正方形的面积就是原来三角形的面积和,由此求解.18.【分析】把这个六位数的后面的五位数设为x,则根据位置原理可知:原来的六位数可以表示为:1000000+x;新的六位数可以表示为:10x+1,据此分析解答即可.【解答】解:设原来六位数的后面的五位数为x,则有:3(10000000+x)=10x+13000000+3x=10x+17x=299999x=42857则原来的六位数是:142857故填:142857.【点评】本题考查的是位置原理.19.【分析】根据题意可知:第100位上的数字是4,则第102位上的数字一定是6,第一个6是在第7位,则中间的95位一定是循环节的倍数,据此分析解答即可.【解答】解:根据题意可知:第100位上的数字是4,则第102位上的数字一定是6,第一个6是在第7位,则中间的95位一定是循环节的倍数.95÷7=13 (4)95÷6=15 (5)95÷5=19即循环节的位数是5位,所以两个循环点分别加在2和6上面.【点评】本题考查的是循环小数的循环节及周期问题.20.【分析】根据同余定理和差能被3整除,得出甲乙除以3的余数是相同的,设甲为3x+a,乙为3y+a,由此求解.【解答】解:设甲为3x+a,乙为3y+a,差能被3整除,所以甲乙除以3的余数是相同的则a的取值为0或者1或者2.甲乙的和为:3(x+y)+2a,其除以3余1,所以2a除以3余1,a只能为2故答案为:2.【点评】此题主要考查同余定理的灵活应用.21.【分析】分数的大小比较有两种方法:①分母相同,分子越大这个分数就越大;②分子相同,分子越大这个分数就越小,据此分析解答即可.【解答】解:首先,且,所以最大的分数是,最小的分数是=故填:【点评】本题考查的是分数的大小比较及异分母的分数相加减.22.【分析】“若从第二堆拿1枚放到第一堆中去,则两堆棋子数恰好相同”这个条件,说明第二堆比第一堆多2个;再结合“若从第一堆拿1枚放到第二堆中去,则第二堆的棋子数是第一堆的2倍”条件得知:当第二堆比第一堆的棋子多2+1×2=4个,此时第二堆的棋子数是第一堆的2倍,这说明第一堆此时有4个,进而即可求得原来有4+1=5个,之后也就可求得第二堆的数量了.【解答】解:1×2+2×2=4(个)4+1=5(个)5+2=7(个)故:两空分别为5、7.【点评】此题并不难,关键是理解好“若从第一堆拿1枚放到第二堆中去,则第二堆的棋子数是第一堆的2倍;若从第二堆拿1枚放到第一堆中去,则两堆棋子数恰好相同”的意思.23.【分析】已知长方形面积9×4=36(平方厘米),所以正方形的边长应为6厘米,因此可以把长方形上半部剪下6厘米,下半部剪下3厘米,分成相等的两块,合起来正好拼成一个边长为6厘米的正方形.【解答】解:如下图所示:【点评】图形拆拼解决的关键点:把一个几何图形剪成几块形状相同的图形,或是把一个几何图形剪开后拼成另一种满足某种条件的图形,完成这样的图形剪拼,需要考虑图形剪开后各部分的形状、大小以及它们之间的位置关系.。
人教版六年级上册数学试题-小学奥数思维训练题全国通用库赛前冲刺1000题(二十二)(无答案)小学奥数思维训练全国通用题库赛前冲刺1000题(二十二)1、商店里有红、白、蓝三种围巾,其中红围巾比白围巾多12条,蓝围巾比红围巾多20条,蓝围巾的条数正好是白围巾的5倍。
红围巾、白围巾、蓝围巾各多少条?2、有甲、乙、丙三筐苹果,甲筐比乙筐多12只苹果,丙筐比甲筐多15只苹果,丙筐苹果个数是乙筐的4倍。
甲、乙、丙筐各有多少只苹果?3、用一批纸装订同样大小的练习本,如果每本16页,可装订400本。
如果每本20页,可以少装订多少本?4、水果市场要将一些水果装箱,如果每箱10千克,可装30箱。
如果每箱15千克,可少装多少箱?5、服装厂有一些布料加工窗帘,如果把窗帘做成3米长,可做140幅。
如果每幅窗帘做成2米长,则可多做多少幅?6、李师傅原计划6小时加工零件480个,实际2小时加工192个。
照这样的效率,可以提前几小时完成?7、王奶奶计划10小时做纸盒400个,实际3小时已加工150个。
照这样的效率,可以提前几小时完成?8、暑假中,小宁30天共要写大字600个,实际12天已写大字360个。
照这样的速度,小宁可以提前几天写完同样多的字?9、少先队员种柳树30棵,种的杨树的棵数比柳树棵数的3倍多14棵。
少先队员种的杨树、柳树共多少棵?10、水果店卖出9筐水果,平均每筐重45千克。
卖出水果的千克数比剩下的3倍还多27千克,还剩多少千克水果?11、男女学生参加小组交流会,如果少去1名女生,男女生人数相等;如果少去一名男生,女生人数是男生的2倍。
参加交流会的男女生各多少人?12、同一批纸装订同样大小的练习本,如果每本16页,可装订400本。
如果每本多装订9页,则少装订多少本?13、自行车制造厂四月份(30天)共生产自行车3600辆,五月份改进技术后9天已生产自行车1350辆。
照这样的效率,可以提前几天完成四月份的任务?14、张家和李家都计划修整各自的田坝,若都是晴天,则张家需要15天完成,李家需要12天完成。
人教版六年级上册数学试题-小学奥数思维训练题全国通用库赛前冲刺1000题(二十三)(无答案)小学奥数思维训练全国通用题库赛前冲刺1000题(二十三)1、甲、乙、丙3人一起买了6个面包分着吃,甲、乙各拿出3个面包的钱,丙没有带钱。
那么吃完后,丙应拿出4元8角钱,他应分别给甲、乙多少钱?2、用一个杯子向空瓶里倒牛奶,如果倒进去2杯牛奶,连瓶共重450克;如果倒进去5杯牛奶,连瓶共重750克。
一杯牛奶和一个空瓶各重多少克?3、有12筐苹果,它们重量相等,我们把它们装入一个大箱子里,如果装进2筐苹果,连箱共重量220千克;如果装进5筐苹果,连箱共重520千克。
1筐苹果和大箱子各重多少千克?4、有一个木桶向一个水缸中倒水,如果倒进4桶水,连缸共重240千克;如果倒进7桶水,连缸共重390千克。
一桶水和一个水缸各重多少千克?5、共有红、黄、绿三种颜色的珠子120粒。
如果把红色珠子分放在9个盒子里,把黄色珠子分放在6个盒子里,把绿色珠子分放在5个盒子里,那么每个盒子里的珠子粒数相等。
三种颜色的珠子各多少粒?6、一共有苹果、梨、橘子共105个,如果把苹果分放到4个盘中,把梨分放到5个盘中,把橘子分放到6个盘中,那么每个盘子的水果个数相等。
三种水果各多少个?7、一共有白兔、灰兔、黑兔共250只,如果把白兔分放到5个笼中,把灰兔分放到11个笼中,把黑兔分放到9个笼中,这样每个笼中的兔子的只数相等。
三种兔子各多少只?8、在6个筐里放着同样多的鸡蛋,如果从每个筐里拿出50个鸡蛋,则6个筐里剩下的鸡蛋个数的总和等于原来两个筐里鸡蛋个数的总和。
原来每个筐里有鸡蛋多少个?9、在6个纸箱中放着同样多的苹果。
如果从每个纸箱里拿出50个苹果,则6个箱里剩下的苹果个数的总和等于原来2个箱子的苹果个数的总和。
原来每个箱里有多少个苹果?10、某商店有5箱皮球,如果从每箱里取出15个,那么5个箱里剩下皮球的个数正好等于原来2箱皮球的个数。
小学奥数思维训练全国通用题库赛前冲刺1000题(四十八)1、两张边长8厘米的正方形纸,一部分叠在一起放在桌上(如下图),桌面被盖住的面积是多少?8884482、求下图中阴影部分的面积。
(单位:分米)3. 一个长方形若长增加2厘米,面积就增加10平方厘米,若宽减少3厘米,面积就减少18平方厘米。
求原来长方形的面积。
3厘米2厘米4、一个长方形,若长减少5厘米,面积就减少50平方厘米,若宽增加7厘米,面积就增加28平方厘米。
原来长方形的面积是多少平方厘米?5、一个正方形若边长都增加4厘米,面积就增加56平方厘米。
原来正方形的面积是多少平方厘米?6、将一张长10厘米、宽8厘米的长方形纸片剪成一个面积最大的正方形,那么剪下的另一个小长方形的面积是多少?7、在公园里有两个花圃,它们的周长相等。
其中长方形花圃长40米,宽20米,求另一个正方形花圃的面积。
8、计算下面图形的面积。
(3)11125149、一个长方形与一个正方形部分重合(如下图),求没有重合的阴影部分面积相差多少?(单位:厘米)10、一个长方形,若宽增加6分米就是一个正方形,面积就增加了66平方分米,求原来长方形的面积。
11.明明早晨起来要完成以下几件事情:洗水壶1分钟,烧开水12分钟,把水灌入水瓶要2分钟,吃早点要8分钟,整理书包2分钟。
应该怎样安排时间最少?最少要几分钟?12、红红早晨起来刷牙洗脸要4分钟,读书要8分钟,烧开水要10分钟,冲牛奶1分钟,吃早饭5分钟。
红红应怎样合理安排?起床多少分钟就能上学了?13、玲玲想给客人烧水沏茶。
洗水壶要2分钟,烧开水要12分钟,买茶叶5分钟,洗茶杯要1分钟,冲茶要1分钟。
要让客人尽早喝上茶,你认为最合理的安排需要多少分钟客人就能喝上茶了?14. 贴烧饼的时候,第一面需要烘3分钟,第二面需要烘2分钟,而贴烧饼的架子上一次最多只能放2个烧饼。
要贴3个烧饼至少需要几分钟?15、用一个平底锅烙饼,锅上只能同时放两个饼。
小学奥数思维训练全国通用题库赛前冲刺1000题(十)1、一项工程,若甲、乙两人合作需要24天完成,若甲、丙合作则需28天。
三人合作过程中,甲休息了1天,乙休息了3天,丙休息了4天,最终完成此项工程用时21天。
那么乙、丙两人的工作效率之比为:A.5:4B.4:3C.3:2D.2:12、某次抽奖活动规则如下,有5个颜色各不相同的小球,抽奖者需将小球依次放入箱子中,再依次拿出全部小球。
若拿出与放入的小球顺序完全一致得一等奖,有3个一致得二等奖,有2个一致得三等奖,5个完全不一致得纪念奖。
小明获得了一次抽奖机会,他中奖的概率为多少?A.6041 B.2411 C.158 D.853、某次活动中招募了100名志愿者,其中不会说英语的志愿者与不会说法语的人数之比为3:4,两种语言都会说的志愿者与两种语言都不会说的人数之比为4:3,只会说法语的为36人,那么会说英语的人数为多少?A.74人B.58人C.52人D.44人4、甲、乙两人分别同时从A 、B 两地出发相向而行,往返行驶于A 、B 两地之间,已知甲的速度较快,两人第一次迎面相遇与第二次迎面相遇的地点相距 2.4千米。
从出发至第二次迎面相遇,乙一共走了7.2千米,问A 、B 两地距离为:A 、12千米B 、7.2千米C 、6千米D 、5千米5、现有浓度15%的盐水,第一次向其中加入质量为m 的水,浓度变为12%;第二次向其中加入质量为m 的盐,盐全部溶解;第三次向其中加入浓度为1%质量依然为m 的盐水,则最终浓度变为多少?A.18%B.20%C.21%D.23%6、某单位职工的工号是各项数字均不相同的三位数(首位不为0),其中满足工号各项数字之和为8的最多有多少人?A.12B.18C.24D.307、健身教练为小龙制定了一份为期三个月(10月1号12月31号)的健身计划,从10月1号开始,逢日期数是3的倍数进行力量训练,4的倍数进行速度训练,5的倍数进行耐力训练,其他时间不安排训练,问在整个计划期间小龙有多少天不需要参加训练?A.39B.38C.37D.358、将完全相同的15个小球放到3个不同的盒子中,每个盒子至少放3个。
人教版六年级上册数学试题-小学奥数思维训练题全国通用库赛前冲刺1000题(二十)(无答案)小学奥数思维训练全国通用题库赛前冲刺1000题(二十)1、老师为共有18人的舞蹈队设计队形,要求分成人数不等的5队,问最多的一队最多可排几人?2、兔妈妈拿来1盘萝卜共25个,分给4只小兔,要使每只小兔分得的个数都不同。
问分得最多的一只小兔至多分得几个?3、把100只桃子分装在7个篮子里,要求每个篮子里装的桃子的只数都带有6字。
想一想,该怎样分?4、把100个鸡蛋分装在6个盒里,要求每个盒里装的鸡蛋的数目都带有6字,想想看,应该怎样分?5、有人认为8是个吉祥数字,他们得到的东西的数量都要含有数字8。
现在有200块糖要分给一些人,请你帮助设计一个吉祥的分糖方案。
6、7只箱子分别放有1只、2只、4只、8只、16只、32只、64只苹果,现在要从这7只箱子里取出87只苹果,但每只箱子内的苹果要么全部取走,要么不取。
你看该怎么取?7、舒舒和思思到书店去买书,两人都想买《动脑筋》这本书,但钱都不够。
舒舒缺2元8角,思思缺1分钱,用两个人合起来的钱买一本,仍然不够。
这本书多少钱?8、小华和娟娟到商店买文具盒,两人看中同一个文具盒,但钱都不够。
小华缺9元4角,娟娟缺1分,两人合起来买一个仍然不够。
这个文具盒多少钱?9、李华和张洁到商店买同一种练本,但发现钱都没带够,李华缺6角,张洁缺2分钱,但两人合起来买一本仍不够。
这种本子一本多少钱?10、王阿姨和李阿姨到商场买电视机,两人都看中同一种电视机,但王阿姨缺600元,李阿姨缺900元,用两人带的钱合起来买这一台电视机正好。
这台电视机多少钱?11、5个小朋友5天做了5个玩具,10个小朋友10天可以做多少个玩具?12、有20名战士要到河的对岸去,河边只有一只小船,每次只能载上5个人,至少要几次才能全部过河?13、商场开展促销活动,买10元送1元,妈妈带了100元最多可以买多少元的商品?期望数学岛14、一条小青虫由幼虫长成成虫,每天长大一倍,20天能长到36厘米。
小学奥数思维训练全国通用题库赛前冲刺1000题(三十)1、妈妈买来一些苹果分给全家人,如果每人分6个,则多了12个;如果每人分7个,则多了6个。
全家有几人?妈妈共买回多少个苹果?2、学校派一些学生去搬一批树苗,如果每人搬6棵,则差4棵;如果每人搬8棵,则差18棵。
学生有几人?这批树苗有多少棵?3、自然课上,老师发给学生一些树叶。
如果每人分5片叶子,则差3片叶子;如果每人分7片叶子,则差25片树叶。
学生有几人?一共有树叶多少片?4、数学兴趣小组的同学做数学题,如果每人做6道,则少4道;如果每人做8道,则少16道。
有几个学生?多少道数学题?5、三(1)班学生去公园划船,如果每条船坐4人,则少一条船;如果每条船坐6人,则多出4条船。
公园里有多少条船?三(1)班有多少学生?6、学校给新生分配宿舍,如果每间住8人,则少2间房;如果每间住10人,则多出2间房。
共有几间房?新生有多少人?7、同学们去划船,如果每条船坐5人,则少2条船;如果每船坐7人,则多出2条船。
共有几条船?有多少个同学?8、年会期间,粉笔的教师组和非教师组分别准备了3个表演节目,其中每组都只有一个小品表演。
现要求教师组表演的3个节目不相邻,且教师组的小品必须作为年会的第一个节目。
问一共有多少种表演顺序?A.36B.8C.16D.129、某型号的无人机在高空飞行时,常规探测的地面范围为半径50米的圆形区域,最大飞行速度为72千米/小时。
现要利用该型号的无人机对一处200×200平方米的正方形区域进行常规探测,飞机进入正方形区域最多转两次弯,问最快需要多少秒即可完成?A、47.5B、40C、25D、2010、某服装店新进一批夏装,以进价的250%进行定价销售。
一周后,为了提前收回资金,将余下的夏装全部打折售出,若没打折销售的夏装数量比打折的多50%,打折部分销售的总利润比没打折少50%,则该服装店对这批夏装所打的折扣是:A.八五折B.八六折C.七八折D.七二折11、某企业男职员的人数是女职员的1.5倍,现由于市场环境等因素,为减少人力成本,按照男女人数之比2:1的比例进行裁员,裁员之后,女职员的人数比男职员少20%,则该企业裁员后的女职员占原企业职员总数的:A.41B.152C.203D.15412、大王从A 地,小王从B 地同时出发匀速相向行驶,第一次相遇距离A 地110米。
人教版六年级上册数学试题-小学奥数思维训练题全国通用库赛前冲刺1000题(二十四)(无答案)人教版六年级上册数学试题-小学奥数思维训练题全国通用库赛前冲刺1000题(二十四)(无答案)小学奥数思维训练全国通用题库赛前冲刺1000题(二十四)1、在10和1000之间有多少个数是3的倍数?2、在1到1000之间有多少个数是4的倍数?3、在10到1000之间有多少个数是7的倍数?4、从1——9九个数中选取,将11写成两个不同的自然数之和,有多少种不同的写法?5、从1——9九个数中选取,将13写成两个不同的自然数之和,有多少种不同的写法?6、将15分拆成不大于9的两个整数之和,有多少种不同的分拆方法,请列出来。
7、2020年2月的一天,有三批同学去植树,每批的人数不相等,没有一个人单独去的,三批人数的乘积正好等于这一天的日期。
想一想,这三批学生各有几人?8、2020年5月的一天,有三批学生去参加助残活动,每批人数不相等,三批人数的乘积正好等于这一天的日期。
想一想,这三批学生最多各有多少人?9、学校进行运动会比赛,三(2)班参加其中三项体育比赛的人数各不相同,而且这三项参赛人数之积在35到45之间。
那么三(2)班最少各有多少人参加这三项比赛?10、小明家有四种水果,每种水果的千克数不相等,这四种水果的千克数的乘积在200到250之间,那么这些水果最少共有多少千克?11、一本连环画共100页,排页码时一个铅字只能排一位数字。
请你算一下,排这本书的页码共要用多少个铅字?12、一本书共200页,排版时一个铅字只能排一位数字,那么排这本书的页码共用了多少个铅字?13、《宇宙历险记》这本书共214页,编排这本书时共用多少个数码?14、两个整数之积为144,差为10,求这两个数。
15、在100到1000之间有多少个数是3的倍数?16、将12分拆成3个不同的自然数相加之和,共有多少种不同的分拆方法?17、编排《儿童漫画》的页码时共用了51个数码,这本书共多少页?18、有三个大小相同的杯子,分别装满浓度为10%、20%和40%的酒精溶液,如果依次将三杯酒精溶液的、和倒入一足够大的空杯子中,则该杯子中的酒精溶液浓度是:A.15%B.25% D.20% D.30% 19、甲、乙两人从相距36千米的两地匀速相向而行,若甲先出发,2小时后乙再出发,则两人在乙动身2个半小时后相遇;若乙先出发,2小时后甲再出发,则在乙动身3个半小时后两人相遇。
小学奥数思维训练全国通用题库赛前冲刺1000题(三十三)
【1】下式中,□和△各代表几?
□+△=28 □=△+△+△□=()△=()练习1:
1.☆+○=18 ☆=○+○☆=()○=()2.△+○=25 △=○+○+○+○△=()○=()3.○+□=36 ○=□+□+□+□+□○=()□=()【2】下式中,□和△各代表几?
□×△=36 □÷△=4 □=()△=()练习2:
1.○和□各表示几?
○×□=16 □÷○=4 ○=()□=()
2.想想,填填。
○×△=20 ○=△+△+△+△+△
○=()△=()
3.□和○各代表几?
□=○+○+○+○○×□=16
□=()○=()
3、用全部210个边长为1的小正方体,最多可以拼成多少种形状不同的长方体?(边长均大于1)
A.6
B.7
C.8
D.9
4、一款手机按定价八折出售,每部可获得200元的利润。
按定价九折出售,则利润率为20%,则该款手机定价为:
A.3000元
B.3200元
C.3600元
D.4000元
5.A 、B 、C 三项工程的工作量相同,由甲、乙、丙三个工程队分别承担。
已知甲、乙、丙三队的效率之比为3:3:5。
三队同时开工,开工前甲队引进新设备效率提高3
1,工作20天后,乙队也引进设备并优化工作流程使得效率变为原来的1.5倍,最终甲、乙两队同时完工。
则丙队的完工时间比甲乙提前了多少天
A.12
B.24
C.36
D.48
6.某化学实验室有A 、B 、C 三个试管分别盛有10克、20克、30克蒸馏水。
将某种浓度的盐溶液10克倒入试管B 中,充分混合均匀后,取出一部分倒入试管A 中,剩余部分倒入试管C 中。
充分混合均匀后试管A 中溶液浓度与试管C 相等,则倒入试管A 中的溶液量为:
A 、6克
B 、25克
C 、7.5克
D 、22.5克
7.甲、乙、丙、丁四个人同时购买了一本书,每个人第一周和第二周阅读的页码数相同。
第一周,甲阅读的页数是其他三个人总和的3
1,乙阅读的页数是其他三个人总和的41,丙阅读的页数是其他三个人总和的5
1,丁阅读的页数比乙丙两人之和还多10页。
则这四人前两周阅读的总页数为多少:
A.1400
B.1200
C.800
D.600
8.某次数学测验满分为100分,得分排名前五的学生共得分475分,分数各不相同且均为正整数,其中第三名得分恰好为前五名学生的平均分,第二名得分比第四名多3分,则第五名至少得了多少分:
A.89分
B.90分
C.91分
D.85分
9.某基层机关有甲、乙两个科室,甲科室有3名男员工,1名女员工;乙科室有2名男员工,4名女员工。
现从甲、乙两个科室中选出2人参加业务培训,问选出的人性别相同且来自不同科室的概率为:
A.
101 B.81 C.91 D.9
2
10.甲、乙、丙三人在环形跑道同一地点开始匀速跑步,甲和乙顺时针出发,丙逆时针出发。
甲和丙首次相遇,过2分钟后乙和丙首次相遇,又过6分钟后甲和丙再次相遇。
问从出发开始到甲首次追上乙,共经过多长时间:
A.20分钟
B.24分钟
C.36分钟
D.40分钟
11.批发市场有大、中、小三种规格的盒装鸡蛋,每个大盒里装有22个鸡蛋,每个中盒里装有18个鸡蛋,每个小盒里装有6个鸡蛋。
采购员小李在该市场买了三种规格的鸡蛋共120个,每种均有购买且盒数各不相同,则小盒装比中盒装:(每种规格均需整盒购买)
A.多1盒
B.多5盒
C.少1盒
D.少5盒
12.为节约用电,某地将路灯设置为如下工作模式:每亮灯20分钟就休息40分钟。
某日小李值夜班,发现路灯共开启11次,凌晨5点最后一次关闭。
则第几次关闭时,手表的时针与分针首次呈60度角:
A.7
B.6
C.5
D.4
【13】下式中,□和△各代表几?
□+□+△=16 □+△+△=14
□=()△=()
练习3:
1.下式中,□、○各代表几?
□+□+○+○=38 □+□+○=22
□=()○=()
2.下式中,□和△各代表几?
□+□+□+△+△=52 □+□+△+△+△=48
□=()△=()
3.下式中,□、○和△各代表几?
○+△+□+□=10 △+□+△+□=12 △+○+□+○=12 ○=()□=()△=()
【14】下式中,□、○各代表几?
□+□+○+○+○=34 ○+○+○+○+□+□+□=48
□=()○=()
练习4:
1.下式中,☆、△各代表几?
☆+☆+△+△+△=24 △+△+△+△+☆+☆+☆=36
☆=()△=()
2.下式中,△和○各代表几?
○+○+○+△+△=54 △+△+△+○+○+○+○=76 ○=()△=()
3.下式中,□、△各代表几?
□+□+□+△+△+△+△=96
△+△+△+△+△+□+□+□+□=123
□=()△=()
【15】下式中,□、☆和△各代表几?
☆+☆=□+□+□
□+□+□=△+△+△+△
☆+□+△+△=80
☆=()□=()△=()
练习5:
1.下式中,□、△和○各代表几?
△+△=○+○+○
○+○+○=□+□+□
○+□+△+△=100
○=()□=()△=()
2.下式中,□、△和○各代表几?
○+○=□+□+□□+□+□=△+△△+□+○=40 △=()□=()○=()
3.下式中,□、☆和○各代表几?
□+□=○+○+○
○+○+○=☆+☆+☆+☆+☆+☆+☆+☆
□+○+☆+☆+☆+☆=320
○=()□=()☆=()
16、下式中,□、☆各代表几?
□+□+☆+☆+☆+☆=38
☆+☆+☆+☆+☆+☆+☆+□+□=53
□=()☆=()
17、下式中,○和△各代表几?
△+△+△+○+○=96
○+○+△+△+△+△+△+△+△=176
△=()○=()
18、下式中,☆和△各代表几?
☆+△+△+△+△=70 △+△+△+△+☆+☆+☆=90
△=()☆=()
19、下式中,△和○各代表几?
△=○+○+○+○○×△=16
△=()○=()
20、下式中,□和○各代表几?
○×□=20 □=○+○+○+○+○○=()□=()。