角的比较与运算第1课时评价作业
- 格式:doc
- 大小:39.00 KB
- 文档页数:3
《角的比较与运算》教学设计一、教学目标1、知识与技能目标理解角的大小比较的方法,会用度量法和叠合法比较角的大小。
掌握角的平分线的概念,会进行角的度数的运算。
2、过程与方法目标通过观察、操作、类比、推理等活动,培养学生的观察能力、动手操作能力和逻辑思维能力。
经历角的比较和运算的过程,体会类比的数学思想方法。
3、情感态度与价值观目标在合作交流中,培养学生的合作意识和团队精神。
让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的信心。
二、教学重难点1、教学重点角的大小比较方法。
角的平分线的概念及应用。
2、教学难点角的度数的运算。
三、教学方法讲授法、演示法、讨论法、练习法四、教学过程1、导入新课展示一些角的图片,如三角板的角、五角星的角等,引导学生观察并思考:如何比较这些角的大小?2、讲授新课(1)角的大小比较度量法:用量角器测量角的度数,度数大的角大。
教师示范用量角器测量角的度数,并让学生练习。
叠合法:将两个角的顶点及一边重合,另一边在重合边的同侧,通过观察另一边的位置来比较角的大小。
教师通过演示,让学生直观地理解叠合法。
(2)角的和差展示两个角,让学生通过观察和思考,得出角的和与差的概念。
进行练习,让学生通过画图和计算,求出两个角的和与差。
(3)角的平分线展示一个角,将其对折,使角的两边重合,折痕所在的射线就是角的平分线。
给出角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
引导学生通过几何语言表示角平分线,并进行相关的计算练习。
3、课堂练习安排适量的练习题,包括角的大小比较、角的和差、角平分线的应用等,让学生巩固所学知识。
4、课堂小结引导学生回顾本节课所学的主要内容,包括角的大小比较方法、角的和差、角的平分线的概念及应用。
5、布置作业布置书面作业,让学生完成课本上的相关习题。
布置拓展作业,让学生思考生活中哪些地方用到了角的比较和运算。
五、教学反思在教学过程中,要注重引导学生通过观察、操作、思考等活动,自主探索角的比较和运算的方法,培养学生的自主学习能力和创新思维能力。
4.3.2角的比拟与运算【课题】:角的比拟与运算方案一:【设计与执教者】:广州市美华中学郑燕 sy1220@21cn【教学时间】:【学情分析】:学生在小学已经学习了周角、平角、钝角、锐角、直角的大小关系。
【教学目标】:〔1〕会比拟角的大小〔2〕会求角的和与差〔3〕会计算角度的和与差【教学重点】:会求角的和与差,会比拟角的大小【教学难点】:会求角的和与差,正确计算角度的和与差【教学突破点】:【教法、学法设计】:启发引导、讨论探究【课前准备】:三角尺、矩形的纸片【教学过程设计】:作业如图,BO 、CO 分别平分∠ABC 和∠ACB , 〔1〕假设∠A =60°,求∠O ; 〔2〕假设∠A =100°、120°,∠BOC 又是多少? 〔3〕由〔1〕、〔2〕你发现了什么规律?当∠A 的度数发生变化后,你的结论仍成立吗?〔提示:三角形的内角和等于180°〕1.假设∠A =20o18′,∠B =20o15′30〞, ∠C =20.25o,那么〔 〕〔A 〕∠A >∠B >∠C 〔B 〕∠B >∠A >∠C 〔C 〕∠A >∠C >∠B 〔D 〕∠C >∠A >∠B 2.OC 平分∠AOB ,那么以下各式①∠AOC =21∠AOB ; ②∠AOC =∠COB ;③∠AOB =2∠AOC ,其中正确的有〔 〕〔A 〕0个 〔B 〕1个 〔C 〕2个 〔D 〕3个3.〔1〕9o 6′+71o 50′= 〔2〕53o 8′-17o5′= 4.∠AOB =∠BOC =21∠A0C ,那么___是___的角平分线. 5.如图1,∠AOB =∠COD ,那么∠AOC 与∠DOB 的大小关系是 6.如图2,∠AOB =∠COD =90°,∠AOD =132°,那么∠BOC = 7.如图3,∠AOB =80°,OD 平分∠BOC ,那么∠BOD =8.如图4是正十六角星,每两个角中心线间的夹角α相等,这个夹角等于 度.9.一条射线OA ,从O 作射线OB 、OC ,使∠AOB =60°,∠COB =20°,那么∠AOC 为〔 〕 〔A 〕40°或80° 〔B 〕20° 〔C 〕80° 〔D 〕40°10.试用两种方法比拟∠ABC 与∠DEF 的大小.11.如图5,∠AOB 是直角,OD 平分∠BOC ,OE 平分∠AOC ,求∠EOD 的度数.4321OCBAF E CD B A图5D C BA O 图1 O D CB A图2 C DBA O 图3 α 图412.如图6,BO 、CO 分别平分∠ABC 和∠ACB , 〔1〕假设∠A =60°,求∠O ;〔2〕假设∠A =100°、120°,∠O 又是多少?〔3〕由〔1〕、〔2〕你又发现了什么规律?当∠A 的度数发生变化后,你的结论仍成立吗?〔提示:三角形的内角和等于180°〕答案:1.A2.D3.80°56′,36°3′4.OC ,∠AOB5.相等6.48°7.50°8.22.59.A10.用度量法和叠合法 11.45° 12.〔1〕120°〔2〕140°,150°〔3〕∠BOC =180°-∠1-∠4=180°-21〔∠ABC +∠ACB 〕=180°-21〔180°-∠A 〕=90°+21∠A4321O CB A图6。
角的比较与运算教案第一章:角的定义与分类1.1 角的概念引入角的定义:由一点引出的两条射线所围成的图形叫做角。
强调角的顶点和两条边。
1.2 角的分类锐角:大于0°且小于90°的角直角:等于90°的角钝角:大于90°且小于180°的角平角:等于180°的角周角:等于360°的角第二章:角的测量2.1 量角器的使用介绍量角器的结构:中心点和两个可转动的刻度盘演示如何测量角的度数:将量角器的中心点对准角的顶点,将刻度盘对准角的一条边,读取另一条边的刻度。
2.2 角的度量单位度、分、秒:角度的度量单位,1度等于60分,1分等于60秒。
第三章:角的比较3.1 角的比较方法比较角的大小:通过观察角的度数或使用量角器进行测量。
强调锐角、直角、钝角的比较。
3.2 角的排序练习将给定的角按照大小进行排序。
第四章:角的运算4.1 角的加法介绍角的两边可以进行加法运算,强调结果仍为角的度数。
示例:30°+ 45°= 75°4.2 角的减法介绍角的两边可以进行减法运算,强调结果仍为角的度数。
示例:135°45°= 90°第五章:综合练习5.1 角的大小比较给出不同大小的角,练习比较它们的大小。
5.2 角的运算练习给出角度的加减运算题目,练习计算结果。
第六章:角的应用6.1 角的实际意义解释角在日常生活中的应用,如钟表、自行车把手、房屋设计等。
引导学生理解角的概念与实际生活的联系。
6.2 角的问题解决提供实际问题,要求学生运用角的知识解决问题。
示例:一个自行车的车把形成的角度是多少?第七章:邻补角的定义与运算7.1 邻补角的定义介绍邻补角的概念:两个角互为邻补角,当它们的度数之和为180°时。
强调邻补角的互补性质。
7.2 邻补角的运算演示如何计算邻补角的度数之和。
示例:若一个角的度数为50°,求其邻补角的度数。
AB E 角的比较与运算及余角和补角一、定义(1) 余角的定义:如果两个角的和是一个直角,这两个角叫做互为余角,简称互余,其中的一个角叫做另一个角的余角 (2) 补角的定义:如果两个角的和是一个平角,这两个角叫做互为补角,简称互补,其中一个角叫做另一个角的补角 二、性质余角的性质:同角(或等角)的余角相等 补角的性质:同角(或等角)的补角相等一、填空:1.已知∠1=200,∠2=300,∠3=600,∠4=1500,则∠2是____的余角,_____是∠4的补角.2.如果∠α=39°31°,∠α的余角∠β =_____,∠α的补角∠γ=_____,∠α-∠β=___.3.若∠1+∠2=90°,∠3+∠2=90°,∠1=40°,则∠3=______°, 依据是_______。
4、(2)若一个角的余角等于它本身,则这个角的度数是 (3)直角的补角是 ,钝角的补角是(4)若一个角的补角度数是101°,则它的余角的度数是 (5)一个角的补角一定比它的余角大 度 5.你记住了吗?⑴∵1∠和2∠互余, ⑵∵1∠和2∠互补,∴=∠+∠21_____(或2_____1∠-=∠) ∴=∠+∠21_____(或2_____1∠-=∠) 6.一个角是︒36,则它的余角是_______,它的补角是_______。
7.一个角的补角的余角等于这个角的52, 求这个角的度数.8.如图所示:(1)∠COD= - 或= - 。
(2)如果∠AOB=∠COD ,则∠AOC 与∠BOD 的大小关系如何?9.如图所示,已知直线AB 、CD 相交于O 点,90=∠BOE °,=∠445°,则=∠1 ,=∠2 ,=∠3 ,21∠∠与互为 角,互为与43∠∠ 角。
东D FA EB 10.如图所示,已知90=∠=∠BOD AOC ° (1)∠∠与AOD BOC 有什么关系?为什么? (2)若DOC ∠=35°,则∠AOB 等于多少度? (3)若150AOB =∠°,则DOC ∠等于多少度?DBA二、选择:11.如果∠α=n °,而∠α既有余角,也有补角,那么n 的取值范围是( ) A.90°<n<180° B.0°<n<90° C.n=90° D.n=180° 12.如图,甲从A 点出发向北偏东70°方向走50m 至点B,乙从A 出发 向南偏西15°方向走80m 至点C,则∠BAC 的度数是( ) A.85° B.160° C.125° D.105°13.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处, 如果∠BAF=60°,则∠DAE 等于( )A.15°B.30°C.45°D.60° 14.如图,点O 在直线PQ 上,OA 是QOB ∠的平分线,OC 是POB ∠的平分线,,那么下列说法错误的是( )A 、AOB ∠与POC ∠互余 B 、POC ∠与QOA ∠互余C 、POC ∠与QOB ∠互补D 、AOP ∠与AOB ∠互补15.若互余的两个角有一条公共边,则这两个角的角平分线所组成的角( )A 、等于︒45B 、小于︒45C 、小于或等于︒45 D 、大于或等于︒4516、如图,已知:∠BOC=2∠AOB ,OD 平分∠AOC ,∠BOD=140求:∠AOB 的度数。
教学过程:一:创设情境,提出问题,引入新课(动)(一)、从实际生活中建立角的概念1.类比联想,提出问题前面学习了线段的概念之后,紧接着就学习了比较线段的大小以及线段的和、差、倍、分的画法问题.上节课我们已经学习了角的概念,类似的,今天我们也要学习如何比较角的大小,以及角的和、差、倍、分的画法问题.(板书课题)2.类比联想,探索解决问题的方法(1)师生共同回忆线段大小比较的方法,以及和、差、倍、分的画法.(2)分组讨论,发现方法.提出问题:如图1-26(a),试比较∠AOB和∠COD的大小并画出∠AOB+∠COD.1.习角的有关概念二:引入新课(动)三:新课:((板书))2:角的大小可以有两种比较方法:重叠比较法和度量法.(1)重叠比较法:由线段的重叠比较法知,将要比较的两条线段一端重合,再看另一端的位置.角的比较也类似,提问谁能用两个三角板演示一下,然后总结,在比较角的大小的过程中,要让角的顶点和角的一条边都重合,看另一条边落在角内还是角外.(让学生自己总结出三种不同的结论,并让学生在黑板上画出图形,量角器可起移角的作用,先测量的度数,然后以的顶点为顶点,其中一边为边作一个角等于.)记作:∠AOB=∠COD记作:∠AOB>∠COD记作:∠AOB<∠COD(2)度量法:因为角可以用量角器来量出度数,度数大的角大于度数小的角,通过角的度数来比较角的大小.(注意写法)例1如图4.6。
8,比较∠AOB与∠CDE的大小.(书上的154页的3图)因为量得∠AOB=35°,∠CDE=65°.所以∠CDE>∠AOB.(当然,书上的角不能剪下来,我们可以把一个角画到一张描图纸上,放在另一个角上面比较比较角的大小,也可以用量角器分别量出角的度数,然后加以比较.1:画角(做一做)3;画特殊的角30;45;60;75 ;15;105;(角的运算的一种)提出问题:如图1-26(a),试比较∠AOB和∠COD的大小并画出∠AOB+∠COD.4:角的运算(和差)我们可以对角进行简单的加减运算,如:(1) 34°34′+21°51′=55°85′=56°25′(2) 180°-52°31′=179°60′-52°31′=127°29′(如图并列式子)4.角的和、差、倍、分也可以有两种方法:作图法和度量计算法.(1)作图法:在图中作出两个角的和、差、倍、分.例2 已知∠AOB ,∠CED 且∠AOB >∠CED ,如图1-28.求作(i)∠AOB 与∠CED 的和;(ii)∠AOB 与∠CED 的差;(iii)∠CED 的二倍.教师在黑板上以草图的形式为学生演示,依照线段的和、差、倍、分的作法,从而发现作图中的问题,怎样做一个角等于已知角.由于这个基本作图没学,因此作图法暂时不能具体操作,所以目前切实可行的方法只有度量计算法.(2)度量计算法.依然选用例2,解法如下解:量得∠AOB=50°,∠CED=20°,∠AOB 与∠CED 的和是70°. ∠AOB 与∠CED 的差是30°.∠CED 的二倍是40°.6:例子练习(1)如图1-29,∠AOB=130°,∠AOE=50°,∠OEA=60°,求∠BOE ,∠OEB .(2)如图1-30,量出∠BAC ,∠ABD ,∠BDC ,∠ACD 的度数,并求出四个角的和,∠BAC 与∠ACD 的和.(3)如图1-31,已知∠A=∠B=25°,若∠A+∠B+∠BCA=180°,求∠ACE .2.如图1-35,1-36,∠AOD=∠BOC=90°,∠COD=42°,求∠AOC ,∠AOB .二、角平分线的概念(由)教师提问:1.回忆怎样求线段的中点.2.怎样平分一个角.总结:在现阶段只能用度量法解决这两个问题,由于在求一个角的几分之几的情况中,最特殊的就是求一个角的二分之一,它的地位相当于求线段的中点,因此我们下面重点研究角的二等分.将线段二等分的点,叫做线段的中点,由此,我们得一个新的概念——角平分线.(由4的和差引入一个特殊关系;做一做)角平分线定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.对这个定义的理解要注意以下几点:1.角平分线是一条射线,不是一条直线,也不是一条线段.如图1-32,它是由角的顶点出发的一条射线,这一点也很好理解,因为角的两边都是射线.2.当一个角有角平分线时,可以产生几个数学表达式.如图1-32,可写成因为 OC 是∠AOB 的角平分线,所以 ∠AOB=2∠AOC=2∠COB(1)∠AOC=∠COB(2)反过来,只要具备上述的式子之一,就能得到OC 为∠AOB 的角平分线.这一点学生要给以充分的注意. (在角的比较中有一个好题)练习:1.画一个三角形ABC ,然后作出这三个角的平分线.观察它们是否交于一点,如果交于一点,则交点的位置在哪里?2.如图1-33,若∠AOB=∠COB=∠DOC ,进行下列填空.(1)∠AOD=( )+( )+( );(2)∠AOB=( )∠AOD ;(3)∠AOD=( )∠COB ;(4)∠DOB=( )=( )+( ).3.如图1-37,OC 是∠AOB 的角平分线,∠CAO=90°,∠CBO=90°,比较∠ACO 与∠BCO 的大小.(三)、总结教师提问:这节课我们都学习了哪些内容和主要的思维方法?学生的回答可能不够全面,或者比较零散,教师最后给以归纳.1.学习的内容有三个:(1)比较角的大小.(2)角的和、差、倍、分.(3)角平分线的概念.2.学习了类比联想的思维方法.七、练习设计1. 156页的中1,2。
《角的比较和运算》说课稿商河实验中学刘洋各位评委老师:大家上午好,今天我说课的题目是《角的比较与运算》,我将从教材分析、教学方法、学情分析、教学环节设计、拓展延伸以及教后反思六个方面进行说课,不足之处请老师们批评指正。
一。
教材分析1.教材的地位与作用本节课是北师版七年级(上册)第四章第四节的内容。
在此之前,学生已经学习了角的基本概念、角的度量以及直线、线段、射线的概念及相关性质。
这为本节课的教学做了知识和思维上的准备,同时为学生进一步学习平面几何图形打下了基础.所以本节内容起到了复习旧知识、承接新知识的承上启下的作用。
2。
教材内容和教材处理本节课是一节新授课,主要介绍角的大小的比较、简单的角度的和差的计算、角的平分线的定义.我对本节课的处理方式是:(1)利用已经掌握的线段长短的比较方法引出角的大小的比较方法;(2)利用图形介绍角的和差以及角度的简单计算;(3)采用动手实践的形式得出角的平分线的定义。
(4)动手操作利用一副三角尺画特殊的角,3.教学目标(1)知识与技能:使学生掌握比较角的大小的方法和角的平分线的定义,能正确计算角度的加减。
(2)过程与方法目标:引导学生在试验、观察、交流、比较等活动的基础上通过类比、总结、逐渐培养学生的动手能力、几何语言的表达能力以及几何识图能力。
让学生认识到用新知识建构新体系的过程。
(3)情感与态度目标:增强学生学数学的愿望和信心,培养学生爱思考,善于交流的良好学习习惯;通过对角的大小比较,使学生进一步体会几何图形的形象直观美。
4.教学重点、难点(1)重点:比较角的大小,计算角度的和与差,角的平分线的定义。
(2)难点:认识复杂图形中角的和差关系,灵活运用角平分线解决求角的问题 . 二.教学方法分析本节课依照新数学课程标准的要求,结合学生已有的知识和能力水平,从提高学生数学兴趣入手,我主要采用启发式、类比式教学。
具体体现在以下几个方面:(1)教学中力求体现“问题情景-——问题解决—--类比分析—--归纳总结”的模式. (2)引导学生经历同化新知识、构建新意义的过程,从而更好的掌握必要的基础知识的基本技能.三.学情分析初一学生刚刚从小学升人初中,还以形象思维能力为主。
§4.3.2 角的比较与运算说课稿一、说教材一)说课内容:我说课的内容是初中数学课本七年级上册第四单元《几何图形初步》第三节。
二)教材分析《角的比较与运算》第一课时是初中数学课本七年级上册第四单元《几何图形初步》第三节,角的比较、角的和与差、角的平分线,这三个内容是本章重要的基础知识,也是后续学习图形与几何必备的基础。
比较两角的大小是本节知识的起点,角的和与差是问题的延伸,等分问题又是角的和与差的特殊化,这三个知识点相互之间是紧密联系的,而且与生活息息相关。
三)学情分析在前面已经学过线段的大小比较、线段的和与差,线段的中点,本节课可以采用类比的学习方法,便于理解与掌握。
这是学生的有利条件。
然而学生处于几何的启蒙阶段,如何正确的用图形语言、文字语言、符号语言综合描述所研究的对象将是他们的难处。
四)教学目标根据学生的年龄特点,认知规律及对教材的剖析与学生的分析,我确立了本课教学目标及重难点。
1、会比较角的大小,理解两个角的和、差、倍、分的意义,掌握角平分线的概念,培养学生归纳、分析能力。
2、学生经历“观察——对比——归纳”的学习过程,培养用数学语言描述图形的能力及类比的数学思想方法。
3、培养学生爱思考的习惯,通过对角大小的比较,使学生体会数学的形象直观美,向学生渗透团结协作的合作精神,培养勇于探索的精神和解决问题的优化意识。
五)教学重难点重点:角的大小的比较方法,角平分线的定义难点:角的加减运算,角的平分线的运用六)教学具为了突出重点,突破难点,加大课堂练习密度,我采用了多媒体教学与教具。
二、说教学法教法:学生在前面学习过线段的大小比较,线段的和与差,线段的中点基础上,教师采用启发式教学,引导学生自主探索,合作交流,体会类比的数学思想。
学法:初一学生仍以形象思维能力为主,因此要充分利用学生已有的认知基础和他们已掌握的操作方法和方式,结合“观察、比较、操作、发现”的学法指导,引导学生在自己动手的过程中,利用知识的迁移,把新旧知识联系在一起,使学生抽象思维能力得到发展.三、教学流程(一)情景导入:以登山的情景导入新课,学生在选择登山路径的过程中,若考虑路径的长短,则是对线段的大小比较,若是考虑坡度的陡与缓,则是对角的大小比较。
角的比较与运算第1课时评价作业
(时间:12分钟,满分100分)
一、必做题(60分)
1.如图,若OC是∠AOB的平分线,则∠AOC=_______=______∠AOB,
∠AOB=______=__________.
第1题图 第3题图 第4题图
2.不可以用一副三角板作出的角有( )
A.45º B.15º C.30º D.25º
3.如图,小于平角的角的个数是( )
A.3个 B.4个 C.5个 D.6个
4.如图,已知射线OB平分∠AOC,且∠AOC=40°,∠COD=50°,求∠AOB、∠BOC和∠BOD的度数。
二、选做题(20分)
5.如图,OC平分∠AOB, OD平分∠BOC, ∠AOB=120°,
求∠AOD的大少。
O
D C B A C B
A
O
D
C
B
A
O
D
C B
A
O
三、思考题(20分)
6. 如图所示,已知∠AOB=90°,∠AOC为锐角,OD平分∠AOC,OE平分∠BOC,
(1)求∠DOE的度数;
(2)当∠AOB=m°时,求∠DOE的大小。
B
O
E
A
D
C