3. 2. 1几类不同增长的函数模型
- 格式:doc
- 大小:619.50 KB
- 文档页数:8
《西方经济学》下册教材课后习题答案详解第九章宏观经济的基本指标及其衡量1.何为GDP?如何理解GDP?答案要点:GDP是指一定时期内在一国(或地区)境内生产的所有最终产品和服务的市场价值总和。
对于GDP的理解,以下几点要注意:(1)GDP是一个市场价值的概念.为了解决经济中不同产品和服务的实物量一般不能加总的问题,人们转而研究它们的货币价值,这就意味着,GDP一般是用某种货币单位来表示的。
(2)GDP衡量的是最终产品和服务的价值,中间产品和服务价值不计入GDP。
最终产品和服务是指直接出售给最终消费者的那些产品和服务,而中间产品和服务是指由一家企业生产来被另一家企业当作投入品的那些服务和产品。
(3)GDP是一国(或地区)范围内生产的最终产品和服务的市场价值。
也就是说,只有那些在指定的国家和地区生产出来的产品和服务才被计算到该国或该地区的GDP中.(4)GDP衡量的是一定时间内的产品和服务的价值,这意味着GDP属于流量,而不是存量。
2.说明核算GDP的支出法。
答案要点:支出法核算GDP的基本依据是:对于整个经济体来说,收入必定等于支出。
具体说来,该方法将一国经济从对产品和服务需求的角度划分为了四个部门,即家庭部门、企业部门、政府部门和国际部门.对家庭部门而言,其对最终产品和服务的支出称为消费支出,用字母C表示;对企业部门而言,其支出称为投资支出,用字母I表示;对政府部门而言,将各级政府购买产品和服务的支出定义为政府购买,用字母G表示;对于国际部门,引入净出口NX来衡量其支出,净出口被定义为出口额与进口额的差额.将上述四部门支出项目加总,用Y表示GDP,则支出法核算GDP的国民收入核算恒等式为:Y=C+I+G+NX。
3.说明GDP这一指标的缺陷。
答案要点:(1)GDP并不能反映经济中的收入分配状况。
GDP高低或人均GDP高低并不能说明一个经济体中的收入分配状况是否理想或良好。
(2)由于GDP只涉及与市场活动有关的那些产品和服务的价值,因此它忽略了家庭劳动和地下经济因素。
第十讲 函数模型及其应用知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点 函数模型及其应用 1.几类常见的函数模型函数模型 函数解析式一次函数模型f(x)=ax +b(a ,b 为常数,a≠0)反比例函数模型 f(x)=kx +b(k ,b 为常数且k≠0)二次函数模型 f(x)=ax 2+bx +c(a ,b ,c 为常数,a≠0)指数函数模型 f(x)=ba x+c(a ,b ,c 为常数,b≠0,a >0且a≠1) 对数函数模型 f(x)=blog a x +c(a ,b ,c 为常数,b≠0,a >0且a≠1) 幂函数模型f(x)=ax n +b(a ,b 为常数,a≠0)2.三种函数模型的性质函数性质y =a x(a>1)y =log a x(a>1) y =x n(n>0)在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快越来越慢相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x>x 0时,有log a x<x n<a x3.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:重要结论1.函数f(x)=x a +bx (a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab ,+∞)内单调递增.2.直线上升、对数缓慢、指数爆炸双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =2x的函数值比y =x 2的函数值大.( × )(2)“指数爆炸”是指数型函数y =a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.( × ) (3)幂函数增长比直线增长更快.( × ) (4)不存在x 0,使ax 0<x a0<log a x 0.( × ) [解析] (1)当x =-1时,2-1<(-1)2.(2)“指数爆炸”是针对b>1,a>0的指数型函数g(x)=a ·b x+c.(3)幂函数增长速度是逐渐加快的,当变量较小时,其增长很缓慢,题目说的太绝对,也没有任何条件限制.(4)当a∈(0,1)时存在x 0,使ax 0<x a0<log a x 0. 题组二 走进教材2.(必修1P 107BT1改编)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( D )A .收入最高值与收入最低值的比是3∶1B .结余最高的月份是7月C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元3.(必修1P 107A 组T1改编)在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:x 0.50 0.99 2.01 3.98 y-0.990.010.982.00则对x ,y 最适合的拟合函数是( D ) A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x[解析] 根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B 、C ;将各数据代入函数y =log 2x ,可知满足题意,故选D .4.(必修1P 104例5改编)某种动物繁殖量y 只与时间x 年的关系为y =alog 3(x +1),设这种动物第2年有100只,到第8年它们将发展到( A )A .200只B .300只C .400只D .500只[解析] ∵繁殖数量y 只与时间x 年的关系为y =alog 3(x +1),这种动物第2年有100只, ∴100=alog 3(2+1),∴a=100,∴y=100log 3(x +1), ∴当x =8时,y =100log 3(8+1)=100×2=200.故选A .5.(必修1P 107AT2改编)生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C(x)=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为18万件.[解析] 利润L(x)=20x -C(x)=-12(x -18)2+142,当x =18时,L(x)有最大值. 题组三 走向高考6.(2020·全国Ⅲ,4)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e -0.23(t -53),其中K 为最大确诊病例数.当I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( C )A .60B .63C .66D .69[解析] 本题以Logistic 模型和新冠肺炎为背景考查指数、对数的运算.由题意可得I(t *)=K 1+e -0.23(t *-53)=0.95K ,化简得e -0.23(t *-53)=119,即0.23(t *-53)=ln 19,所以t *=ln 190.23+53≈30.23+53≈66.故选C .考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU 考点 函数模型及应用考向1 利用函数图象刻画实际问题的变化过程——自主练透例1 (1)(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( A )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳(2)(多选题)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述正确的是( ABC )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个(3)有一个盛水的容器,由悬在它的上空的一条水管均匀地注水,最后把容器注满,在注水过程中时间t与水面高度y之间的关系如图所示.若图中PQ为一线段,则与之对应的容器的形状是( B )[解析] (1)通过题图可知A 不正确,并不是逐月增加,但是每一年是递增的,所以B 正确.从图观察C 是正确的,D 也正确,1月至6月比较平稳,7月至12月波动比较大.故选A .(2)由图形可得各月的平均最低气温都在0 ℃以上,A 正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B 正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C 正确;平均最高气温高于20 ℃的月份只有2个,D 错误.故选A 、B 、C .(3)由函数图象可判断出该容器必定有不同规则的形状,且函数图象的变化先慢后快,所以容器下边粗,上边细.再由PQ 为线段,知这一段是均匀变化的,所以容器上端必是直的一段,故排除A 、C 、D ,选B .名师点拨 MING SHI DIAN BO 1.用函数图象刻画实际问题的解题思路将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可.2.判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考向2 已知函数模型解决实际问题——师生共研例2 (2020·北京十一中月考)已知14C 的半衰期为5 730年(是指经过5 730年后,14C 的残余量占原始量的一半).设14C 的原始量为a ,经过x 年后的残余量为b ,残余量b 与原始量a 的关系为b =ae-kx,其中x 表示经过的时间,k 为一个常数.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.请你推断一下马王堆汉墓修建距今约2_292年.(参考数据:log 20.767≈-0.4).[解析] 由题意可知,当x =5 730时,ae -5 730k=12a ,解得k =ln 25 730.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.所以76.7%=e -ln 25 730x ,得ln 0.767=-ln 25 730x ,x =-5 730×ln 0.767ln 2=-5 730×log 2 0.767≈2 292.〔变式训练1〕(2020·山西太原模拟)某公司为了业务发展,制定了一项激励销售人员的奖励方案:销售额为8万元时,奖励1万元;销售额为64万元时,奖励4万元,若公司拟定的奖励模型为y =alog 4x +b(其中x 为销售额,y 为相应的奖金).某业务员要得到8万元奖励,则他的销售额应为1_024万元.[解析] 依题意得⎩⎪⎨⎪⎧alog 48+b =1,alog 464+b =4,即⎩⎪⎨⎪⎧32a +b =1,3a +b =4,解得⎩⎪⎨⎪⎧a =2,b =-2.所以y =2log 4x -2,当y =8时,有2log 4x -2=8,解得x =1 024. 考向3 构建函数模型解决实际问题——多维探究 角度1 一次函数、二次函数分段函数模型例3 某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散,设f(t)表示学生注意力指标.该小组发现f(t)随时间t(分钟)的变化规律(f(t)越大,表明学生的注意力越集中)如下: f(t)=⎩⎪⎨⎪⎧100a t10-60(0≤t≤10),340(10<t≤20),-15t +640(20<t≤40)(a>0且a≠1).若上课后第5分钟时的注意力指标为140,回答下列问题: (1)求a 的值;(2)上课后第5分钟和下课前第5分钟比较,哪个时间注意力更集中?并请说明理由; (3)在一节课中,学生的注意力指标至少达到140的时间能保持多长? [解析] (1)由题意得,当t =5时,f(t) =140, 即100·a 510-60=140,解得a =4.(2)因为f(5)=140,f(35)=-15×35+640=115,所以f(5)>f(35),故上课后第5分钟时比下课前第5分钟时注意力更集中.(3)①当0<t≤10时,由(1)知,f(t)=100·4t10-60≥140,解得5≤t≤10; ②当10<t≤20时,f(t) =340>140恒成立;③当20<t≤40时,f(t)=-15t +640≥140,解得20<t≤1003.综上所述,5≤t≤1003.故学生的注意力指标至少达到140的时间能保持1003-5=853分钟.名师点拨 MING SHI DIAN BO (1)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.(2)构造分段函数时,要力求准确、简洁,做到分段合理,不重不漏. (3)分段函数的最大(小)值是各段最大(小)值中的最大(小)值. 角度2 指数函数与对数函数模型例4 候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q 之间的关系为:v =a +blog 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? [分析](1)根据已知列出方程组→解方程组求a ,b 的值 (2)由(1)列出不等式→解不等式求Q 的最小值[解析] (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,则a +blog 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s , 则a +blog 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +blog 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.名师点拨 MING SHI DIAN BO指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.〔变式训练2〕(1)(角度1)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R 元),若每年销售量为⎝⎛⎭⎪⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( A )A .[4,8]B .[6.10]C .[4%,8%]D .[6%,10%](2)(角度2)一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过16min ,容器中的沙子只有开始时的八分之一.[解析] (1)根据题意,要使附加税不少于128万元,需⎝ ⎛⎭⎪⎫30-52R ×160×R%≥128,整理得R 2-12R +32≤0,解得4≤R≤8,即R∈[4,8]. (2)当t =0时,y =a ,当t =8时,y =ae -8b=12a ,∴e -8b =12.令y =18a ,即ae -bt =18a ,e -bt =18=(e -8b )3=e-24b,则t =24,∴再经过16 min ,容器中的沙子只有开始时的八分之一.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG函数y =x +ax(a>0)模型及应用例5 (2021·烟台模拟)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W(x)万元.在年产量不足8万件时,W(x)=13x 2+x(万元);在年产量不小于8万件时,W(x)=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? [解析] (1)因为每件产品售价为5元,则x 万件产品的销售收入为5x 万元,依题意得: 当0<x<8时,L(x)=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3.当x≥8时,L(x)=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L(x)=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x<8,35-⎝ ⎛⎭⎪⎫x +100x ,x≥8.(2)当0<x<8时,L(x)=-13(x -6)2+9,此时,当x =6时,L(x)取得最大值L(6)=9(万元).当x≥8时,L(x)=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15(万元).此时,当且仅当x =100x,即x =10时,L(x)取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元. 名师点拨 MING SHI DIAN BO (1)解决此类问题时一定要关注函数的定义域.(2)利用模型f(x)=ax +bx 求解最值时,注意取得最值时等号成立的条件.〔变式训练3〕某村计划建造一个室内面积为800 m 2的矩形蔬菜温室、在矩形温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为40_m ,20_m 时,蔬菜的种植面积最大?最大面积是648_m 2.[解析] 设矩形温室的左侧边长为x m ,则后侧边长为800x m ,所以蔬菜种植面积y =(x -4)·⎝ ⎛⎭⎪⎫800x -2=808-2⎝⎛⎭⎪⎫x +1 600x (4<x<400). 因为x +1 600x≥2x ·1 600x=80,所以y≤808-2×80=648.当且仅当x =1 600x ,即x =40时取等号,此时800x=20,y max =648.即当矩形温室的相邻边长分别为40 m ,20 m 时,蔬菜的种植面积最大,最大面积是648 m 2.。
Excel中如何使用函数计算百分比增长率在Excel中,使用函数计算百分比增长率是一项重要的技能,特别适用于数据分析、预测和比较。
本文将介绍如何使用Excel中的函数来计算百分比增长率,帮助你更好地应用Excel进行数据分析。
一、概述百分比增长率是指用百分数来表示某个数值相对于另一个数值的增长或下降的比例。
在Excel中,我们可以使用函数来计算两个数值间的百分比增长率。
二、计算百分比增长率的函数Excel提供了几个函数可以用来计算百分比增长率,其中最常用的是百分比变化函数(PERCENTAGE CHANGE)和变化百分点函数(PERCENTAGE POINTS CHANGE)。
1. 百分比变化函数(PERCENTAGE CHANGE)百分比变化函数可以计算两个数值之间的百分比增长率。
它的基本语法如下:= (新值 - 旧值) / 旧值其中,“新值”是变化后的数值,“旧值”是变化前的数值。
该函数返回的结果将以小数形式表示增长率,如果需要以百分比形式显示,可以在公式前面加上“*100”。
2. 变化百分点函数(PERCENTAGE POINTS CHANGE)变化百分点函数可以计算两个百分比之间的差异。
它的基本语法如下:= 新百分比 - 旧百分比其中,“新百分比”是变化后的百分比,“旧百分比”是变化前的百分比。
三、具体应用示例为了更好地理解和应用这些函数,我们将给出几个具体计算百分比增长率的示例。
1. 计算销售额的增长率假设你有一份销售额数据,需要计算相邻两个月销售额的增长率。
我们可以按照以下步骤进行计算:(1)假设销售额数据在A列,分别在A1到A12单元格中输入销售额数据;(2)在B2单元格中输入公式“=(A2-A1)/A1”,并按下回车键;(3)选中B2单元格,将鼠标移至右下角,等待光标变为黑色十字之后,点击并向下拖动鼠标,将公式应用到B3到B12单元格中;(4)选中B2到B12单元格,点击“百分比”按钮,将结果显示为百分比形式。
函数概念与基本初等函数1.了解构成函数的要素,了解映射的概念,会求一些简单函数的定义域和值域.2.理解函数的三种表示法:解析法、图象法和列表法,能根据不同的要求选择恰当的方法表示简单的函数。
3.了解分段函数,能用分段函数来解决一些简单的数学问题。
4.理解函数的单调性,会讨论和证明一些简单的函数的单调性;理解函数奇偶性的含义,会判断简单的函数奇偶性。
5.理解函数的最大(小)值及其几何意义,并能求出一些简单的函数的最大(小)值.6.会运用函数图像理解和研究函数的性质.(二)指数函数1.了解指数函数模型的实际背景。
2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。
3.理解指数函数的概念,会求与指数函数性质有关的问题。
4.知道指数函数是一类重要的函数模型。
(三)对数函数1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
2.理解对数函数的概念;会求与对数函数性质有关的问题.3.知道对数函数是一类重要的函数模型.4.了解指数函数 与对数函数互为反函数。
(四)幂函数1.了解幂函数的概念。
2.结合函数 的图像,了解它们的变化情况。
(五)函数与方程1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。
2.理解并掌握连续函数在某个区间上存在零点的判定方法。
能利用函数的图象和性质判别函数零点的个数.(六)函数模型及其应用1.了解指数函数、对数函数以及幂函数的增长特征。
知道直线上升、指数增长、对数增长等不同函数类型增长的含义。
2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等函数模型)的广泛应用。
解答题中都有涉及,高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势.考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想.第1课时 函数及其表示一、映射1.映射:设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的 元素,在集合B 中都有 元素和它对应,这样的对应叫做 到 的映射,记作 .2.象与原象:如果f :A →B 是一个A 到B 的映射,那么和A 中的元素a 对应的 叫做象, 叫做原象。
一.n 次方根与分数指数幂知识点一 根式的定义(1)a 的n 其中n >1,且n ∈N *.(2)a 的n 次方根的表示①当n②当n④0(3)知识点二 根式的性质(1)(n a )n(2)n a n =02⎩⎨⎧a (n 为奇数),|a |(n 为偶数). 知识点三 分数指数幂的意义(1)a =01n a m (a >0,m ,n ∈N *,n >1),a =1a =021n am (a >0,m ,n ∈N *,n >1).(2)0知识点四 有理数指数幂的运算性质(1)a r a s a >0,r ,s ∈Q ).(2)(a r )s a >0,r ,s ∈Q ).(3)(ab )r a >0,b >0,r ∈Q ).1.n a n 与(n a )n 的区别(1)n a n 是实数a n 的n 次方根,是一个恒有意义的式子,不受n 的奇偶限制,但这个式子的值受n 的奇偶限制.其算法是对a 先乘方,再开方(都是n 次),结果不一定等于a ,当n 为奇数时,n a n =a ;当n 为偶数时,n a n =|a |=⎩⎨⎧a ,a ≥0,-a ,a <0. (2)(n a )n 是实数a 的n 次方根的n 次幂,其中实数a 的取值范围由n 的奇偶决定.若n 为偶数,则a ≥0;若n 为奇数,则a ∈R .其算法是对a 先开方,后乘方(都是n 次),结果恒等于a . 2.分数指数幂的理解(1)分数指数幂是指数概念的又一推广,分数指数幂a 不可理解为m n 个a 相乘,它是根式的一种新的写法.在这样的规定下,根式与分数指数幂是表示相同意义的量,只是形式不同而已.(2)把根式 n a m 化成分数指数幂的形式时,不要轻易对m n 进行约分. 3.在保证相应的根式有意义的前提下,负数也存在分数指数幂,如(-5)=3(-5)2有意义,但(-5)=4(-5)3就没有意义.4.n 次方根的个数及符号的确定(1)正数的偶次方根有两个且互为相反数,任意实数的奇次方根只有一个.(2)根式n a 的符号由根指数n 的奇偶及被开方数a 的符号共同确定:①当n 为偶数时,n a 为非负实数;②当n 为奇数时,n a 的符号与a 的符号一致.二.无理数指数幂及其运算性质知识点一 无理数指数幂(1)对于无理数指数幂,我们只需要了解两点:①它是一个确定的实数;②它是有理数指数幂无限逼近的结果.(2)定义了无理数指数幂之后,幂的指数就由原来的有理数范围扩充到了实数范围.知识点二 实数指数幂的运算性质(1)a r a s a >0,r ,s ∈R ).(2)(a r )s a >0,r ,s ∈R ).(3)(ab )r a >0,b >0,r ∈R ).对于实数a >0,r ,s 有a r ÷a s=a r -s 成立.这是因为a r ÷a s =a r a s =a r ·a -s =a r -s .教材中没有给出此性质,但是它可以由已有公式推导出来.(1)在进行幂和根式的化简时,一般原则是:先将负指数幂化为正指数幂,将小数化为分数,将根式化为分数指数幂,将底数(较大的整数分解质因数)化成指数幂的形式,再利用幂的运算性质在系数、同底数幂间进行运算,达到化简和求值的目的.(2)化简指数幂的几个常用技巧如下:①⎝ ⎛⎭⎪⎫b a -p =⎝ ⎛⎭⎪⎫a b p (ab ≠0); ②a =(a )m ,a =(a )n (a 使式子有意义);③1的代换,如1=a -1a,1=a a (a 使式子有意义)等;④乘法公式的常见变形,如(a +b )(a -b )=a -b ,(a ±b )2=a ±2a b +b ,(a ±b )(a ∓a b +b )=a ±b (a ,b 均使式子有意义). 1.指数幂运算的解题通法 (1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数. (3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数,先化成假分数.(4)若是根式,应化为分数指数幂,并尽可能用幂的形式表示,运用指数幂的运算性质来解答.(5)运算结果不能同时含有根式和分数指数幂,也不能既有分母又含有负指数幂,形式力求统一.三.指数函数的概念知识点一指数函数的定义定义域是R.知识点二指数增长模型在实际问题中,经常会遇到指数增长模型:设原有量为N,每次的增长率为p,经过x次增长,该量增长到y,则y形如y=ka x(k∈R,且k≠0;a>0,且a≠1)的函数是刻画指数增长或指数衰减变化规律的非常有用的函数模型.1.指数函数中规定a>0,且a≠1的原因(1)如果a=0,当x>0时,a x恒等于0,没有研究的必要;当x≤0时,a x无意义.(2)如果a<0,例如f(x)=(-4)x,这时对于x=12,14,…,该函数无意义.(3)如果a=1,则y=1x是一个常量,没有研究的价值.为了避免上述各种情况,所以规定a>0,且a≠1.2.判断一个函数是指数函数,要牢牢抓住三点:①底数是大于0且不等于1的常数;②指数函数的自变量必须位于指数的位置上;③a x的系数必须为1.3.求指数函数的解析式常用待定系数法.(1)设指数函数的解析式为f(x)=a x(a>0,且a≠1).(2)利用已知条件求底数a.(3)写出指数函数的解析式.4.常见的几类函数模型(1)指数增长模型设原有量为N,每次的增长率为p,则经过x次增长,该量增长到y,则y =N(1+p)x(x∈N).(2)指数减少模型设原有量为N,每次的减少率为p,则经过x次减少,该量减少到y,则y =N(1-p)x(x∈N).(3)指数型函数把形如y=ka x(k≠0,a>0,且a≠1)的函数称为指数型函数,这是非常有用的函数模型.四.指数函数的图象和性质知识点一指数函数的图象和性质01(1)指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示,则0<c<d<1<a<b.在y在y即无论在y 轴的左侧还是右侧,底数按逆时针方向递增.(2)实质:指数函数的底数即直线x =1与图象交点的纵坐标,由此也可求指数函数底数的大小.1.由指数函数y =a x (a >0,且a ≠1)的性质知,指数函数y =a x (a >0,且a ≠1)的图象恒过点(0,1),(1,a ),⎝ ⎛⎭⎪⎫-1,1a ,只要确定了这三个点的坐标,即可快速地画出指数函数y =a x (a >0,且a ≠1)的图象.2.底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.(1)当a >b >1时,①若x >0,则a x >b x >1;②若x <0,则1>b x >a x >0.(2)当1>a >b >0时,①若x >0,则1>a x >b x >0;②若x <0,则b x >a x >1.3.与指数函数复合的函数单调性(1)关于指数型函数y =a f (x )(a >0,且a ≠1)的单调性由两点决定,一是底数a >1还是0<a <1;二是f (x )的单调性.它由两个函数y =a u ,u =f (x )复合而成.(2)若y =f (u ),u =g (x ),则函数y =f (g (x ))的单调性有如下特点:=f(u),u=g(x),通过考查f(u)和g(x)的单调性,求出y=f(g(x))的单调性.4.识别指数函数图象问题的注意点(1)根据图象“上升”或“下降”确定底数a>1或0<a<1;(2)在y轴右侧,指数函数的图象从下到上相应的底数由小到大;在y轴左侧,指数函数的图象从下到上相应的底数由大到小;(3)根据“左加右减,上加下减”的原则,确定图象的平移变换,从而确定指数型函数的图象与两坐标轴的交点位置.5.解决指数型函数图象过定点问题的思路指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),据此,可解决形如y=k·a x +c+b(k≠0,a>0,且a≠1)的函数图象过定点的问题,即令x=-c,得y=k+b,函数图象过定点(-c,k+b).6.函数y=a f(x)定义域、值域的求法(1)定义域:形如y=a f(x)形式的函数的定义域是使得f(x)有意义的x的取值集合.(2)值域:①换元,令t=f(x);②求t=f(x)的定义域x∈D;③求t=f(x)的值域t∈M;④利用y=a t的单调性求y=a t,t∈M的值域.提示:(1)通过建立不等关系求定义域时,要注意解集为各不等关系解集的交集.(2)当指数型函数的底数含字母时,在求定义域、值域时要注意分类讨论.7.比较幂的大小的方法(1)同底数幂比较大小时构造指数函数,根据其单调性比较.(2)指数相同底数不同时分别画出以两幂底数为底数的指数函数的图象,当x取相同幂指数时可观察出函数值的大小.(3)底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.(4)当底数含参数时,要按底数a>1和0<a<1两种情况分类讨论.8.解与指数有关的不等式时需注意的问题(1)形如a f(x)>a g(x)的不等式,借助函数y=a t(a>0,且a≠1)的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论;(2)形如a f(x)>b的不等式,注意将b化为以a为底的指数幂的形式,再借助y =a t(a>0,且a≠1)的单调性求解;(3)形如a f(x)>b f(x)的形式,利用图象求解.五.对数的概念知识点一对数的概念(1)a>0,且a≠1)叫做真数.(2)两种特殊的对数①常用对数:通常,并把log10Nlg_N;并把log e N ln_N(其中e=2.71828…).知识点二对数与指数的关系(1)对数的基本性质N>0;②1log a1a>0,且a≠1);log a a a>0,且a≠1).(2)两个重要的对数恒等式①a log aN a>0,且a≠1,N>0);②log a a N a>0,且a≠1).1.在对数的概念中规定a>0且a≠1的原因(1)若a<0,则当N为某些值时,x的值不存在,如:x=log(-2)8不存在.(2)若a=0,①当N≠0时,x的值不存在.如:log03(可理解为0的多少次幂是3)不存在;②当N=0时,x可以是任意正实数,是不唯一的,即log00有无数个值.(3)若a=1,①当N≠1时,x的值不存在.如:log13不存在;②当N=1时,x可以为任意实数,是不唯一的,即log11有无数个值.因此规定a>0,且a≠1.2.指数式与对数式互化的方法(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式;(2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式.3.对数式中求值的基本思想和方法(1)基本思想在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解.(2)基本方法①将对数式化为指数式,构建方程转化为指数问题.②利用幂的运算性质和指数的性质计算.4.利用对数性质求解的两类问题的解法(1)求多重对数式的值的解题方法是由内到外,如求log a(log b c)的值,先求log b c的值,再求log a(log b c)的值.(2)已知多重对数式的值,求变量值,应从外到内求,逐步脱去“log”后再求解.5.性质alogaN =N 与logaab =b 的作用(1)a log a N =N 的作用在于能把任意一个正实数转化为以a 为底的指数形式.(2)log a a b =b 的作用在于能把以a 为底的指数转化为一个实数.六.对数的运算知识点一 对数运算性质如果a >0,且a ≠1,M >0,N >0,那么(1)log a (MN )(2)log a M N =(3)log a M n n ∈R ).知识点二 换底公式(1)log ca (2)三个较为常用的推论log ba ③log amb n m a >0,b >0,且均不为1,m ≠0).1.常用结论(1)推广:log a (N 1N 2…N k )=log a N 1+log a N 2+…+log a N k (N k >0,k ∈N *).(2)对数运算性质推导的基本方法:利用对数的定义将对数问题转化为指数问题,再利用幂的运算性质,进行转化变形,然后把它还原为对数问题.(3)对数运算性质的实质就是把积、商、幂的对数运算分别转化为对数的加、减、乘运算,使用时要注意公式的适用条件.(4)只有当式子中所有的对数都有意义时,对数的运算性质才能成立,注意下列式子不一定成立:log a (MN )=log a M ·log a N ,log a (M ±N )=log a M ±log a N ,log a M N=log a Mlog aN ,log a M n =(log a M )n .(5)逆向运用对数的运算性质,可以将几个对数式化为一个对数式,有利于化简,如:lg 5+lg 2=lg 10=1. 2.对数式化简与求值的原则和方法(1)基本原则对数的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.(2)两种常用的方法①“收”:将同底的两对数的和(差)收成积(商)的对数; ②“拆”:将积(商)的对数拆成同底的两对数的和(差). 3.利用换底公式进行化简求值的原则和技巧4.应用对数的运算性质解对数方程的三种方法(1)定义法:解形如b =log a f (x )(a >0,且a ≠1)的方程时,常借助对数的定义等价转化为f (x )=a b 求解.(2)转化法:适用于同底型,即通过对数的运算把形如log a f (x )=log a g (x )(a >0,且a ≠1)的方程,等价转化为f (x )=g (x ),且⎩⎨⎧f (x )>0,g (x )>0求解.(3)换元法:适用于f (log a x )=0(a >0,且a ≠1)形式的方程的求解问题,这类方程一般可通过设中间变量的方法(换元法)来解. 5.解决对数应用题的一般步骤七.对数函数的概念知识点对数函数x是自变量,1.对数函数的特征(1)log a x的系数是1;(2)log a x的底数是不等于1的正数;(3)log a x的真数仅含自变量x.2.判断一个函数是对数函数的方法3.求对数型函数定义域的原则(1)分母不能为0.(2)根指数为偶数时,被开方数非负.(3)对数的真数大于0,底数大于0且不为1.(4)若需对函数进行变形,则需先求出定义域,再对函数进行恒等变形.八.对数函数的图象和性质知识点对数函数的图象和性质01(1)对图象的影响:比较图象与直线y=1的交点,此时直线y=1与对数函数图象交点的坐标为(a,1).交点的横坐标越大,对应的对数函数的底数越大,即沿着直线y=1由左向右看,底数a增大(如图):(2)图象的特点:函数y=log a x(a>0,且a≠1)的图象无限靠近y轴,但永远不会与y轴相交;在同一坐标系内,y=log a x(a>0,且a≠1)的图象与y=log1a x(a>0,且a≠1)的图象关于x轴(即直线y=0)对称.2.对数型函数的图象过定点问题求函数y=m+log a f(x)(a>0,且a≠1)的图象过的定点时,只需令f(x)=1求出x,即得定点为(x,m).3.根据对数函数的图象判断底数大小的方法作直线y=1与所给图象相交,交点的横坐标即为各个底数,依据在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大,可比较底数的大小.4.比较对数值大小的常用方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不相同时,找中间量.提示:比较数的大小时可先利用性质比较出与0或1的大小.5.一些结论(1)求与对数函数相关的复合函数的值域(最值),关键是根据单调性求解,若需换元,需考虑新元的取值范围.(2)对于形如y=log a f(x)(a>0,且a≠1)的复合函数,其值域的求解步骤如下:①分解成y=log a u,u=f(x)两个函数;②求f(x)的定义域;③求u的取值范围;④利用y=log a u的单调性求解.九.对数函数性质的应用知识点一反函数的概念对数函数y=log a x(a>0,且a≠1)与指数函数y=a x对数函数y=log a x的定义域是指数函数y=a x的03值域,而y =log a x 的值域是y =a x知识点二 指数函数与对数函数的关系R (0,+∞)(1)并非任意一个函数y =f (x )都有反函数,只有定义域和值域满足“一一对应”的函数才有反函数.互为反函数的两个函数的定义域、值域的关系如下表所示:单调性.(3)若一个奇函数存在反函数,则它的反函数也是奇函数. 2.求反函数的步骤(1)求出函数y=f(x)的值域;(2)仅解x,即由y=f(x)解出x=f-1(y);(3)把x=f-1(y)改写成y=f-1(x),并写出函数的定义域(即原函数的值域).2.(1)互为反函数的两个函数的图象关于直线y=x对称.(2)若互为反函数的两个函数是同一个函数,则该函数的图象自身关于直线y =x对称.3.常见的对数不等式的三种类型(1)形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论;(2)形如log a x>b的不等式,应将b化为以a为底数的对数式的形式,再借助y=log a x的单调性求解;(3)形如log a x>log b x的不等式,可利用图象求解.4.图象与性质是解决对数函数问题的常用方法对数函数的综合问题,常以对数函数为依托,着重考查对数的运算、对数函数的图象与性质、函数的单调性、奇偶性、值域与最值等,熟悉对数函数的图象与性质及求解函数问题的一般规律和方法是解答这类问题的前提.十.不同函数增长的差异知识点三种函数的性质及增长速度比较一般地,在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢,总会存在一个x0,当x>x0时,就有log a x<x n<a x.2.常见的函数模型及增长特点(1)线性函数模型线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y=a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.3.由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升的快慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的函数是对数函数.4.几类不同增长的函数模型选择的方法(1)增长速度不变,即自变量增加相同量时,函数值的增量相等,此时的函数模型是一次函数模型.(2)增长速度越来越快,即自变量增加相同量时,函数值的增量越来越大,此时的函数模型是指数函数模型.(3)增长速度越来越慢,即自变量增加相同量时,函数值的增量越来越小,此时的函数模型是对数函数模型.十一.函数的零点与方程的解知识点一函数零点的概念对于一般函数y=f(x)y=f(x)的零点.函数y=f(x)f(x)=0的实数解,也就是函数y=f(x)的图象与x知识点二方程的解与函数零点的关系方程f(x)=0有实数解⇔函数y=f(x函数y=f(x)的图象与x轴知识点三函数零点存在定理如果函数y=f(x)在区间[a,b]<0,那么,函数y=f(x)在区间(a,b)即存在c∈(a,b),c也就是方程f(x)=0的解.1.一些常用结论(1)一个函数y=f(x)在区间(a,b)内有零点必须同时满足:①函数f(x)在区间[a,b]上的图象是一条连续不断的曲线;②f(a)f(b)<0.这两个条件缺一不可.可从函数y=1x 来理解,易知f(-1)f(1)=-1×1<0,但显然y=1x在(-1,1)内没有零点.(2)若函数f(x)在区间[a,b]上的图象是连续不断的,且在两端点处的函数值f(a),f(b)异号,则函数y=f(x)在(a,b)上的图象至少穿过x轴一次,即方程f(x)=0在区间(a,b)内至少有一个实数解c.(3)函数零点存在定理只能判断出零点的存在性,而不能判断出零点的个数.如图①②,虽然都有f(a)f(b)<0,但图①中函数在区间(a,b)内有4个零点,图②中函数在区间(a,b)内仅有1个零点.(4)函数零点存在定理是不可逆的,由f(a)f(b)<0可以推出函数y=f(x)在区间(a,b)内存在零点.但是,已知函数y=f(x)在区间(a,b)内存在零点,不一定推出f(a)f(b)<0.如图③,虽然在区间(a,b)内函数有零点,但f(a)f(b)>0.(5)如果单调函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有唯一的零点,即存在唯一的c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的实数解.2.求函数零点的方法函数的零点就是对应方程的解,求函数的零点常用以下两种方法:(1)令y=0,方程f(x)=0的解就是函数的零点;(2)画出函数y=f(x)的图象,图象与x轴交点的横坐标就是函数的零点.3.判断函数零点的个数的方法(1)直接求出函数的零点进行判断,即转化为方程f(x)=0解的个数;(2)结合函数图象进行判断,即转化为函数图象与x轴交点个数或两个函数图象交点的个数;(3)借助函数的单调性进行判断.4.确定函数f(x)零点所在区间的常用方法(1)解方程法:当对应方程f(x)=0易解时,可先解方程,再看求得的根是否落在给定区间上.(2)利用函数零点存在定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(3)数形结合法:通过观察函数图象与x轴在给定区间上是否有交点来判断.提醒:函数零点存在定理是不可逆的,f(a)f(b)<0⇒函数y=f(x)在区间(a,b)内有零点,但是函数y=f(x)在(a,b)内有零点,不一定能推出f(a)f(b)<0.十二.用二分法求方程的近似解知识点一二分法的概念对于在区间[a,b]y=f(x),通过零点,进而得到零点近似值的方法叫做二分法.知识点二用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:(1)确定零点x0的初始区间[a,b](2)求区间(a,b)(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c)②若f(a)f(c)<0(此时x0,则令b=c;③若f(c)f(b)<0(此时x0,则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).1.一些常用结论1.用二分法求函数零点近似值的方法仅适用于函数的变号零点(曲线通过零点时,函数值的符号变号),对函数的不变号零点(曲线通过零点时,函数值的符号不变号)不适用.如求函数f(x)=(x-1)2的零点近似值就不能用二分法.2.用二分法求函数零点的近似值时,要根据函数的性质尽可能地找到含有零点的更小的区间,这样可以减少用二分法的次数,减少计算量.3.二分法采用逐步逼近的思想,使区间逐步缩小,使函数零点所在的范围逐步缩小,也就是逐渐逼近函数的零点.当区间长度小到一定程度时,就得到近似值.4.由|a-b|<ε,可知区间[a,b]中任意一个值都是零点x0的满足精确度ε的近似值.为了方便,常取区间端点a(或b)作为零点的近似值.精确度与精确到是不一样的概念.比如得数是1.25或1.34,精确到0.1都是通过四舍五入后保留一位小数得1.3.而“精确度为0.1”指零点近似值所在区间[a,b]满足|a-b|<0.1,比如零点近似值所在区间为[1.25,1.34],若精确度为0.1,则近似值可以是1.25,也可以是1.34.5.在第一步中要使区间[a,b]的长度尽量小,且f(a)f(b)<0.6.由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数F(x)零点近似值的步骤求解.2.利用二分法求方程近似解的步骤(1)构造函数,利用图象确定方程的根所在的大致区间,通常限制在区间(n,n+1),n∈Z.(2)利用二分法求出满足精确度的方程的根所在的区间M.(3)区间M内的任一实数均是方程的近似解,通常取区间M的一个端点.十三.函数模型的应用知识点建立函数模型解决问题的基本过程1.在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y=N(1+p)x(其中N为基础数,p为增长率,x为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.2.有关对数型函数的应用题,一般都会给出函数解析式,要求根据实际情况求出函数解析式中的参数,或给出具体情境,从中提炼出数据,代入解析式求值,然后根据求出的值回答其实际意义.3.数据拟合(1)定义:通过一些数据寻求事物规律,往往是通过绘出这些数据在直角坐标系中的点,观察这些点的整体特征,看它们接近我们熟悉的哪一种函数图象,选定函数形式后,将一些数据代入这个函数的一般表达式,求出具体的函数表达式,再做必要的检验,基本符合实际,就可以确定这个函数基本反映了事物规律,这种方法称为数据拟合.(2)数据拟合的步骤①以所给数据作为点的坐标,在平面直角坐标系中绘出各点;②依据点的整体特征,猜测这些点所满足的函数形式,设其一般形式;③取特殊数据代入,求出函数的具体解析式;④做必要的检验.4.函数y=c·a kx(a,c,k为常数)是一个应用广泛的函数模型,它在电学、生物学、人口学、气象学等方面都有广泛的应用,解决这类给出的指数函数模型的应用题的基本方法是待定系数法,即根据题意确定相关的系数.5.(1)形如y=m log a x+n(a>0,a≠1,m≠0),其特点为当a>1,m>0时,y随自变量x的增大而增大,且函数值增大的速度越来越慢.(2)对于对数型函数模型问题,关键在于熟练掌握对数函数的性质,在认真审题的基础上,分析清楚底数a与1的大小关系,要关注自变量的取值范围.借助于数学模型解决数学问题的同时,实际问题也得以顺利解决,这就是函数模型的作用.知识系统整合1.指数式、对数式的运算、求值、化简、证明等问题主要依据指数幂、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化.2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a 的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时,函数的单调性及图象特点.3.比较几个数的大小是指数函数、对数函数性质的应用,在具体比较时,可以先将它们与零比较,分出正数、负数;再将正数与1比较,分出大于1还是小于1;然后在各类中两两相比较.4.求含有指数函数和对数函数的复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间.5.方程的解与函数的零点:方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有交点.6.零点判断法:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.注意:由f(a)f(b)<0可判定在(a,b)内至少有一个变号零点c,除此之外,还。
4.5 增长速度的比较学习目标1.能利用函数的平均变化率,说明函数的增长速度.2.比较对数函数、一次函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.自主预习情境引入杰米是百万富翁,一天,他碰到一件奇怪的事,一个叫韦伯的人对他说:“我想和你订个合同,我将在整整一个月中(这个月有31天),每天给你10万元,而你第一天只需给我1分钱,以后你每天给我的钱是前一天的两倍.”杰米说:“真的?你说话算数?”合同开始生效了,杰米欣喜若狂.第一天杰米支出1分钱,收入10万元.第二天杰米支出2分钱,收入10万元,到了第10天,杰米共得100万元,而总共才付出10元2角3分.到了第20天,杰米共得200万元,而韦伯才得1万多元.杰米想:要是合同订二、三个月该多好!可从21天起,情况发生了转变.第22天杰米支出2万多,收入10万,到第28天,杰米支出134万多,收入10万.结果,杰米在一个月(31)天内得到310万元的同时,共付给韦伯2千1百多万元!杰米破产了.问题1写出杰米每天收入y(单位:分)与天数x的函数关系式.问题2写出杰米每天支出y(单位:分)与天数x的函数关系式.三种常见函数模型的增长差异对比三类函数的增长速度,熟记图像变化规律函数性质y=a x(a>1)y=log a x(a>1)y=kx(k>0)在(0,+∞)上的增减性图像的变化随x的增大逐渐变“陡”随x的增大逐渐趋于稳定随k值而不同形象描述指数爆炸对数增长直线上升增长速度y=a x(a>1)的增长速度最终都会大大超过y=kx(k>0)的增长速度;总存在一个x0,当x>x0时,恒有log a x<kx增长结果存在一个x0,当x>x0时,有课堂探究题型一幂函数的增长速度y=xα,当α>1,x>0时,随x的增加,y增加的越来越快,当0<α<1,x>0时,随x的增加,y增加的越来越慢.例1已知函数y=x2,分别计算函数在区间[1,2]与[2,3]上的平均变化率,并说明当自变量每增加1个单位时,函数值变化的规律.训练1已知函数y=x12,分别计算函数在区间[0,1]与[1,2]上的平均变化率,并说明,当自变量每增加一个单位时,函数值变化的规律.题型二指数(对数)函数的增长速度y=a x,当a>1时,随x的增加,y值增加的越来越快,可以远远超过y=xα(α>1)的增长速度;y=log a x,当a>1,x>0时,y随x的增加而增加,但增加的速度越来越慢例2分别计算函数y=3x在区间[1,2]与[2,3]上的平均变化率,并说明函数值变化的规律.训练2计算函数y=log3x在区间[1,2]与 [2,3]上的平均变化率,并以此说明函数值变化的规律.题型三不同函数在同一区间上平均变化率的比较例3已知函数f(x)=2x,g(x)=x,h(x)=log2x,分别计算这三个函数在区间[a,a+1](a>1)上的平均变化率,并比较它们的大小.训练3已知函数y=log3x在[a,a+1](0<a<1)上的平均变化率小于1,求a的取值范围.核心素养专练1.下列函数中随x 的增长而增长最快的是( ) A.y=e xB.y=ln xC.y=x1 000D.y=2x2.已知函数f (x )在任意区间上的平均变化率为5,则当自变量减少2个单位时,函数值 单位.3.甲、乙两人在一次赛跑中,从同一地点出发,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点参考答案自主预习问题1 y=107x (x ∈N *) 问题2 y=2x-1(x ∈N *) 填表略增函数 增函数 增函数 a x >kx>log a x课堂探究例1 解:因为Δx Δx =x 22-x 12x2-x1=x 2+x 1,所以y=x 2在区间[1,2]上的平均变化率为3,在区间[2,3]上的平均变化率为5,不难看出,当自变量大于零时,自变量每增加1个单位,区间的左端点值越大,函数值增加越快.训练1 解:因为ΔxΔx =x 212-x 112x2-x1=1x 212+x 112,所以y=x 12在[0,1]上的平均变化率为1,在[1,2]上的平均变化率为√2-1,可以看出自变量每增加1个单位,区间左端点值越大,函数值增加越慢.例2 解:因为Δx Δx =3x 2-3x 1x2-x 1,所以函数y=3x在区间[1,2]上的平均变化率为32-312-1=6,在[2,3]上的平均变化率为33-323-2=18,可以看出,当自变量每增加1个单位时,区间左端点值越大,函数值增加越快.训练2 解:因为Δx Δx=log 3x 2-log 3x 1x 2-x 1,所以y=log 3x 在区间[1,2]上的平均变化率为log 32-log 312-1=log 32.在区间[2,3]上的平均变化率为log 33-log 323-2=log 332,∵函数y=log 3x 在区间[1,2]与[2,3]上均是增函数,又log 32>log 332,∴函数值y 增加的速度越来越慢.例3 解:因为Δx Δx =2x +1-2x(x +1)-x =2a,Δx Δx =(x +1)-x(x +1)-x=1, Δx Δx=log 2(x +1)-log 2x(x +1)-x=log 2(1+1x ),又因为a>1时,有2a>21=2>1, log 2(1+1x )<log 2(1+11)=1,因此在区间[a ,a+1]上,f (x )的平均变化率最大,h (x )的最小. 训练3 解:∵Δx Δx=log 3(x +1)-log 3x (x +1)-x=log 3(1+1x )<1,∴log 3(1+1x )<log 33,∴0<1+1x <3,又0<a<1, ∴12<a<1,即a 的取值范围为(12,1).核心素养专练1.A2.减少10个 解析:设f (x )=5x+b ,x ∈R,则f (x-2)-f (x )=5×(x-2)+b-(5x+b )=-10.3.D 解析:由图知,甲、乙两人s 与t 的关系均为直线上升,路程s 的增长速度不变,即甲、乙均为匀速运动,但甲的速度快.又甲、乙的路程s 取值范围相同,即跑了相同的路程,故甲用时少,先到终点.学习目标1.复习平均变化率的定义,理解其意义及几何意义.(直观想象)2.能利用平均变化率比较幂指对函数增长的快慢.(逻辑推理)3.了解在实际生活中不同增长规律的函数模型.(数学建模)自主预习平均变化率1.试求出y=3x+4在[3,5]上的平均变化率.提示:平均变化率为y的改变量与x的改变量之比.2.(1)函数值的改变量与自变量的改变量的比称为.(2)函数y=f(x)在区间[x1,x2](x1<x2时)或[x2,x1](x1>x2时)上的平均变化率为.(3)平均变化率也可理解为:自变量每增加1个单位,函数值平均将增加个单位,因此,可用平均变化率来比较函数值变化的快慢.3.函数y=4x的平均变化率为a1,函数y=x-3的平均变化率为a2,则a1,a2的大小关系是()A.a1>a2B.a1<a2C.a1=a2D.无法确定4.y=x2+1在[1,1+Δx]上的平均变化率是()A.2B.2xC.2+ΔxD.2+(Δx)2课堂探究有一套房子,价格为200万元,假设房价每年上涨10%,某人每年固定能攒下40万元,如果他想买这套房子,在不贷款、收入不增加的前提下,这个人需要多少年才能攒够钱买这套房子?A.5年B.7年C.8年D.9年E.永远也买不起问题1:凭直觉,你认为上述问题的答案是什么?为什么?问题2:房价的增长速度一直都比攒钱的增长速度快吗?怎么刻画它们的增长速度呢?问题3:函数y=f(x)在区间[x1,x2](x1<x2时)上的平均变化率怎么表示?问题4:平均变化率有怎样的意义?问题5:平均变化率的几何意义是什么?探究1:函数平均变化率的计算例1求函数y=2x在[1,2]与[2,3]上的平均变化率,并说明,当自变量每增加1个单位时,函数值变化的规律.变式训练求函数y=log2x在[1,2]与[2,3]上的平均变化率,并说明,当自变量每增加1个单位时,函数值变化的规律.探究2:函数增长速度的比较例2已知函数f(x)=2x,g(x)=x,h(x)=log2x,分别计算这三个函数在[a,a+1](a>1)上的平均变化率,并比较它们的大小.要点归纳:平均变化率大小比较常用方法引申:①当0<a<1时,g(x)的平均变化率还一定比h(x)大吗?②比较三个函数的平均变化率的变化趋势,你能得到什么结论?③能否举一些生活中指数增长、线性增长、对数增长的例子?例3回扣情境与问题我们再来研究本节课开始的问题:有一套房子,价格为200万元,假设房价每年上涨10%,某人每年固定能攒下40万元,如果他想买这套房子,在不贷款、收入不增加的前提下,这个人需要多少年才能攒够钱买这套房子()A.5年B.7年C.8年D.9年E.永远也买不起核心素养专练A组1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为()A.0.40B.0.41C.0.43D.0.442.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图像是()3.某学校开展研究性学习活动,某同学获得一组实验数据如下表:x1.99 3 4 5.1 6.12y1.5 4.04 7.5 12 18.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是())xA.y=2x-2B.y=(12(x2-1)C.y=log2xD.y=124.(多选)在某种金属材料的耐高温实验中,温度y(℃)随着时间t(min)变化的情况由计算机记录后显示的图像如图所示.现给出下列说法,其中正确的说法是()A.前5 min温度增加的速度越来越快B.前5 min温度增加的速度越来越慢C.5 min以后温度保持匀速增加D.5 min以后温度保持不变5.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图像,A对应;B对应;C对应;D对应.6.同一坐标系中,画出函数y=x+5和y=2x的图像,并比较x+5与2x的大小.B 组7.某国2016年至2019年国内生产总值(单位:万亿元)如下表所示:年份2016 2017 2018 2019 x (年份代码)123生产总值y (万亿元)8.206 78.944 29.593 310.239 8(1)画出函数图像,猜想y 与x 之间的函数关系,近似地写出一个函数关系式;(2)利用得出的关系式求生产总值,与表中实际生产总值比较; (3)利用关系式预测2033年该国的国内生产总值.参考答案自主预习1.32.(1)平均变化率 (2)Δx Δx =x (x 2)-x (x 1)x 2-x 1(3)ΔxΔx3.A4.C 课堂探究问题:略例1 解:因为Δx Δx =2x 2-2x 1x2-x 1=2x 1(2x 2-x 1-1)x 2-x 1,所以y=2x在[1,2]上的平均变化率为21(22-1-1)2-1=2.y=2x在[2,3]上的平均变化率为22(23-2-1)3-2=4.变式训练 解:因为Δx Δx=log 2x 2-log 2x 1x 2-x 1=log 2x 2x 1x2-x 1,所以g (x )=log 2x 在[1,2]上的平均变化率为log 2212-1=log 22=1.g (x )=log 2x 在[2,3]上的平均变化率为log 2323-2=log 232.例2 解:因为Δx Δx =2x +1-2x(x +1)-x =2a,Δx Δx =(x +1)-x (x +1)-x=1,Δx Δx=log 2(x +1)-log 2x(x +1)-x=log 2(1+1x ),又因为a>1时,2a>21=2>1,log 2(1+1x )<log 2(1+11)=1,因此在区间[a ,a+1](a>1)上,f (x )的平均变化率最大,h (x )的最小.引申:略例3 解析:设经过x 年后,房价为p (x )万元,这个人攒下的钱共有r (x )万元,则这两个函数的解析式分别为:p (x )=200×1.1x,r (x )=40x ,(x ∈N).在区间[a ,a+1],a ∈N 上,Δx Δx =200×1.1x +1-200×1.1x(x +1)-x=20×1.1a ,Δx Δx =40(x +1)-40x(x +1)-x=40.令Δx Δx >ΔxΔx ,得20×1.1a >40,所以a>log 1.12≈7.3.即a ≥8时,房价的增长速度比攒钱的增长速度快.我们也可以列表,直观看一下两个函数值(取整数,单位:万元)的变化情况:x 1 2 3 4 5 6 7 8 9 p (x ) 220 242 266 293 322 354 390 429 472 r (x ) 40 80 120 160 200 240 280 320 360x 的值每增加1,r (x )的值稳定地增长40,而p (x )的值的增加量则逐渐变大,并且越来越快.经过8年后,p (x )的值的年增加量将接近40,以后则均大于40.在前8年里,攒钱的总数始终小于房价,所以,这个人永远也买不起房子. 核心素养专练1.B 解析:Δy=f (x+Δx )-f (x )=f (2+0.1)-f (2)=(2.1)2+1-(22+1)=0.41.故选B. 2.C 解析:小明匀速运动时,所得图像为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.3.D 解析:法一:相邻的自变量之差大约为1,相邻的函数值之差大约为2.5,3.5,4.5,6,基本上是逐渐增加的,二次函数曲线拟合程度最好,故选D.法二:比较四个函数值的大小,可以采用特殊值代入法.可取x=4,经检验易知选D. 4.BD 解析:因为温度y 关于时间t 的图像是先凸后平,所以前5 min 每当t 增加一个单位,相应的增量Δy 越来越小,而5 min 后y 关于t 的增量保持为0,则BD 正确.5.(4) (1) (3) (2) 解析:A 容器下粗上细,水高度的变化先慢后快,故与(4)对应;B 容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D 容器都是柱形的,水高度的变化速度都应是直线型,但C 容器细,D 容器粗,故水高度的变化为C 容器快,与(3)对应,D 容器慢,与(2)对应.6.解:如图,根据函数y=x+5与y=2x的图像增长差异,得当x<3时,x+5>2x;当x=3时,x+5=2x;当x>5时,x+5<2x.7.解:(1)画出函数图像,如图所示.从函数的图像可以看出,画出的点近似地落在一条直线上,设所求的函数关系式为y=kx+b(k≠0).把直线经过的两点(0,8.206 7)和(3,10.239 8)代入上式,解得k=0.677 7,b=8.206 7.所以函数关系式为y=0.677 7x+8.206 7.(2)由得到的函数关系式计算出2017年和2018年的国内生产总值分别为0.677 7×1+8.206 7=8.884 4(万亿元),0.677 7×2+8.206 7=9.562 1(万亿元).与实际的生产总值相比,误差不超过0.1万亿元.(3)2033年,即x=17时,由(1)得y=0.677 7×17+8.206 7=19.727 6,即预测2033年该国的国内生产总值约为19.727 6万亿元.。
二阶段股利增长模型概述二阶段股利增长模型是一种用于估计公司未来股利增长的方法。
它假设公司在未来的一段时间内会经历两个不同的阶段,每个阶段都有不同的股利增长率。
这个模型可以帮助投资者评估一家公司的价值,并做出投资决策。
基本原理二阶段股利增长模型基于以下两个基本假设: 1. 公司在第一个阶段(高速成长期)内,其股利将以一个相对较高的增长率持续增加。
2. 在第二个阶段(稳定期)内,公司的成长将放缓,股利增长率将稳定在一个较低的水平。
根据这些假设,我们可以将公司未来每年支付的股利表示为以下公式:D = D0 * (1 + g1)^t, t ≤ T D = D0 * (1 + g1)^T * (1 + g2)^(t - T), t > T其中: - D:未来每年支付的股利 - D0:当前年度支付的股利 - g1:第一个阶段内的股利增长率 - g2:第二个阶段内的股利增长率 - T:转变为第二个阶段的年数 - t:未来的某一年应用步骤使用二阶段股利增长模型进行估值通常需要以下几个步骤:1. 收集数据首先,我们需要收集公司的历史股利数据以及市场上类似公司的相关数据。
这些数据可以帮助我们了解公司过去的股利增长情况,以及行业平均水平。
2. 确定模型参数根据收集到的数据,我们可以估计出模型中的参数: - D0:当前年度支付的股利,可以直接从历史数据中获取。
- g1:第一个阶段内的股利增长率,可以通过分析公司过去几年的股利增长情况来估计。
- g2:第二个阶段内的股利增长率,可以根据行业平均水平或者公司经营策略来进行估计。
- T:转变为第二个阶段的年数,需要根据公司特点和行业发展情况来确定。
3. 计算未来股利根据确定好的模型参数,我们可以使用上述公式计算出未来每年支付的股利。
4. 折现现金流为了将未来股利转换为现在的价值,我们需要将未来的现金流折现到当前时点。
这可以通过选择适当的折现率来实现,折现率通常由公司的风险水平和市场利率决定。
§3.2.1几类不同增长的函数模型教案 【教案目标】 1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异; 2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异; 3. 恰当运用函数的三种表示法信息技术解决一些实际问题. 【教案重难点】
教案重点:将实际问题转化为数学问题,结合实例体会直线上
升、指数爆炸、对数增长等不同函数类型增长的含义。b5E2RGbCAP 教案难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。 【教案过程】 (一>预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教案具有了针对性。 材料:澳大利亚兔子数“爆炸” 1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.p1EanqFDPw 一般而言,在理想条件适宜,没有敌害等)下,种群在一定时期内的增长大致符合“J”型曲线;在有限环境中,种群增长到一定程度后不增长,曲线呈“S”型.可用指数函数描述一个种群的前期增长,用对数函数描述后期增长的,感知指数函数变化剧烈。DXDiTa9E3d 例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0 .4元,以后每天的回报比前一天翻一
番. 请问,你会选择哪种投资方案? (1>请你分析比较三种方案每天回报的大小情况 思考:各方案每天回报的变化情况可用什么函数模型来反映 (2>你会选择哪种投资方案? 思考:选择投资方案的依据是什么? 反思: ①在本例中涉及哪些数量关系?如何用函数描述这些数量关系? ② 根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.RTCrpUDGiT 解读:我们可以先建立三种投资方案所对应的模型,在通过比较他们的增长情况,为选择方案的依据。 解:设第天的回报为元,则方案一可以用进行描述,方案二可以用进行描述,方案三可以用进行描述,要对三个方案进行选择,就要对增长情况进行分析。点评:在解决实际问题中,函数图像能够发挥很好的作用,因此,我们应该注意提高学生的读图能力。 变式训练1 某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机. 现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有多少台计算机被感染jLBHrnAILg
例2某公司为了实现1000万元利润的目标,准备制定一个激励
销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:xHAQX74J0X ;;. 问:其中哪个模型能符合公司的要求?
反思: ① 此例涉及了哪几类函数模型?本例实质如何? ② 根据问题中的数据,如何判定所给的奖励模型是否符合公司要求? 解读:根据实际,提示引导,判定所给的奖励模型是否符合公司要求,就是依据这个模型进行奖励时,总奖金不超过5万元。LDAYtRyKfE 变式训练2 经市场调查分析知,某地明年从年初开始的前个月,对某种商品需求总量 (万件>近似地满足关系 . 写出明年第个月这种商品需求量 (万件>与月份的函数关系式.
(四>小结 解决应用题的一般程序: ①审题:弄清题意,分清条件和结论,理顺数量关系; ②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型; ③解模:求解数学模型,得出数学结论;
④还原:将用数学知识和方法得出的结论,还原为实际问题的意
义。 【板书设计】 一、几类函数模型 二、例题 例1 变式1 例2 变式2 【作业布置】课本98页1,2 §3.2.1几类不同增长的函数模型学案 课前预习学案 一、预习目标 对于基本的实际问题能抽象出数学模型。 二、预习内容 阅读:澳大利亚兔子数“爆炸” 有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.Zzz6ZB2Ltk
三、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点 疑惑内容
课内探究学案 一、学习目标 1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异; 2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异; 3. 恰当运用函数的三种表示法信息技术解决一些实际问题.
学习重点:将实际问题转化为数学问题,结合实例体会直线上
升、指数爆炸、对数增长等不同函数类型增长的含义。dvzfvkwMI1 学习难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。 二、学习过程 典型例题 例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案? 反思: ①在本例中涉及哪些数量关系?如何用函数描述这些数量关系? ② 根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.rqyn14ZNXI 变式训练1 某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机. 现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有多少台计算机被感染?EmxvxOtOco 例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:SixE2yXPq5 ;;. 问:其中哪个模型能符合公司的要求?
反思: ① 此例涉及了哪几类函数模型?本例实质如何? ② 根据问题中的数据,如何判定所给的奖励模型是否符合公司要求? 变式训练2 经市场调查分析知,某地明年从年初开始的前个月,对某种商品需求总量 (万件>近似地满足关系 . 写出明年第个月这种商品需求量 (万件>与月份的函数关系式.
四、反思总结 解决应用题的一般程序: ①审题:弄清题意,分清条件和结论,理顺数量关系; ②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型; ③解模:求解数学模型,得出数学结论; ④还原:将用数学知识和方法得出的结论,还原为实际问题的意义.
五、当堂达标:课本108页2题
课后练习与提高 1. 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x次后得到的细胞个数y为< ).6ewMyirQFL A. B. y=2C. y=2 D. y=2x 2. 某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用< ).kavU42VRUs A. 一次函数 B. 二次函数 C. 指数型函数 D. 对数型函数 3. 一等腰三角形的周长是20,底边长y是关于腰长x的函数,它的解读式为< ). A. y=20-2x C. y=20-2x <5≤x≤10) D. y=20-2x<54. 某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则销量y与投放市场的月数x之间的关系可写成.y6v3ALoS89 5. 如图,是某受污染的湖泊在自然净化过程中,某种有害物质的剩留量y与净化时间t0且a≠1>.有以下叙述M2ub6vSTnP ① 第4个月时,剩留量就会低于; ② 每月减少的有害物质量都相等; ③ 若剩留量为所经过的时间分别是,则. 其中所有正确的叙述是 . 6.某服装个体户在进一批服装时,进价已按原 1 2 3 4
y 1
t(月>