建立二次函数模型
- 格式:doc
- 大小:1.90 MB
- 文档页数:30
二次函数的应用于医学问题在医学领域,二次函数是一种经常被使用的数学模型,它可以帮助研究人员分析和解决各种与身体机能和疾病相关的问题。
本文将探讨二次函数在医学问题中的应用,并通过具体案例来说明其在这一领域中的重要性和价值。
一、体温变化的二次函数模型体温是衡量身体状况的重要指标之一,二次函数可以很好地描述体温的变化规律。
我们以发烧为例,假设一个人在发烧前体温为正常值37℃,发烧后体温开始升高,并在一定时间后达到峰值。
然后体温逐渐下降,恢复到正常水平。
设t为时间(单位小时),T为体温(单位℃),我们可以建立如下的二次函数模型:T = a(t - t0)^2 + T0其中,a代表发烧的严重程度和恢复的速度,t0为发烧开始的时间,T0为发烧前的体温水平。
通过调整参数a、t0和T0的值,我们可以根据实际数据去拟合体温变化曲线,进而预测病情的发展趋势以及恢复时间。
二、血糖变化的二次函数模型血糖是糖尿病患者关注的重点指标之一,也可以使用二次函数进行建模。
在某些情况下,糖尿病患者的血糖水平可能会出现波动,特别是在餐后。
通过建立血糖变化的二次函数模型,可以更好地了解血糖的变化规律,以便根据实际情况进行药物管理和饮食调节。
例如,假设一个糖尿病患者在进食后血糖水平开始上升,并在一定时间后达到最高峰值,然后逐渐下降返回基准水平。
可以使用如下的二次函数模型来描述血糖的变化过程:G = a(t - t0)^2 + G0其中,G代表血糖水平,a代表血糖的波动幅度,t0为进食后的时间,G0为进食前的基准血糖水平。
通过调整参数a、t0和G0的值,可以更准确地预测血糖的变化趋势,从而帮助患者更好地管理疾病。
三、药物浓度的二次函数模型在药物治疗过程中,了解药物在体内的浓度变化对于确定药物的用量和用时非常重要。
二次函数可以帮助模拟和预测药物浓度的变化。
设t表示时间(单位小时),C表示药物在血液中的浓度(单位毫克/升),可以构建以下二次函数模型:C = a(t - t0)^2 + C0其中,a表示药物的分布速度和排泄速度,t0表示药物给药的时间,C0表示给药前的血药浓度。
第十二课时教学内容:建立二次函数模型(P21-22)教学目标1、通过探索得出二次函数的概念。
2、熟练地把二次函数化成一般式,并分清二次项、一次项及其系数和常数。
教学重点和难点教学重点:二次函数的概念。
教学难点:二次函数y=ax2+bx+c中的隐含条件a≠0的应用。
教学方法启发式。
教学手段投影仪、投影片。
教学过程一、创设问题情境,探索建立二次函数模型。
(出示投影1)动脑筋:问题一:植物园的面积随着砌法的不同怎样变化?学校准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形植物园,如图2—1所示,现在已备足可以砌100m长的墙的材料,大家来讨论对应于不同的砌法,植物园的面积会发生什么样的变化。
有没有一种统一的以包括一切可能砌法的探讨方法呢?学生独立思考上述问题,并把结果与同伴交流。
教师针对学生存在的问题予以指正并板书:设与围墙相邻的每一面墙的长度为xm,则与围墙相对的一面墙的长度为(100-2x)m,于是矩形植物园的面积s为s=x(100-2x),0<x<50,即 s=-2x2+100x,0<x<50,①有了公式①,我们对植物园的面积s随着砌法的不同而变化的情况就了如指掌了。
(出示投影2)动脑筋:电脑的价格。
一种型号的电脑两年前的销售价为6000元,现在的售价为y元,如果每年的平均降价率为x,那么降价率变化时,电脑的售价怎样变化呢?学生独立思考上述问题,并把结果与同伴交流。
教师针对学生存在的问题予以指正并边讲边在黑板上板书:y=6000(1-x)2,0<x<1即y=6000x2-12000x+6000,0<x<1。
②教师引入:在上面的两个例子吕,矩形植物园的面积s与相邻于围墙面的每一面墙的长度x的关系式①,电脑价格y与平均降价率x的关系式②有什么共同点?像关系式①、②那样,如果函数的解析式是自变量的二次多项式,那么这样的函数称为二次函数,它的一般形式是:y=ax2+bx+c(a、b、c是常数,a≠0),其中a、b、c分别叫作二次项系数、一次项系数、常数项。
用几何画板探究二次函数最值模型资料编号:202210311539模型制作1.打开几何画板,单击“自定义工具”,从弹出的工具菜单中选择“函数工具”,从弹出的子菜单中选择“三点二次函数(1)”,在绘图区三个不同的位置单击,作出一条经过A、B、C三点的抛物线.同时,在绘图区会出现抛物线的解析式,调整三个点的位置,可以改变抛物线开口大小和开口方向.如图1所示.2.依次单击“绘图”、“隐藏网格”.选中抛物线,单击“显示”,修改线型为“细线/虚线”.选中单位点,单击“显示”、“隐藏单位点”.如图2所示.3.单击“线段直尺工具”,在向右弹出的工具中单击“线段工具”,在x轴上任意作出一条线段DE,修改线型为“中等/实线”,颜色为“黑色”.如图3所示.4.单击“点工具”,在线段DE上任取一点“F”.依次选中点D、F、E和线段DE,依次单击“构造”、“垂线”,分别交抛物线与点G、I、H.构造线段DG、EH,修改线型为“细线/实线”.选中三条垂线并依次.如图4所示.5.依次选中点F、I,依次单击“构造”、“轨迹”,修改线型为“中等/实线”.选中点B、C、I、F并隐藏点.如图5所示.6.单击“文字工具”,单击点G和点H,隐藏两个点的标签.选中抛物线与x轴,依次单击“构造”、“交点”,得到两个交点,标签分别为J、K.双击点J,选中点K,依次单击“变换”、“缩放”,按“固定比”1 : 2进行缩放,得到线段JK的中点'K,选中点'K和x轴(注意不是线段DE),依次单击“构造”、“垂线”,作出抛物线的对称轴,修改对称轴的线型为“细线/虚线”,颜色为“红色”.如图6、图7所示.7.选中点J、K、'K并隐藏.修改点D的标签为m,点E的标签为n,如图8所示.经此一步,完成作图.模型探索拖动点D 或点E ,即改变m 或n 的值,可以改变x 的取值范围,观察轨迹的变化,我们可以借助于轨迹的变化来直观地研究二次函()02≠++=a c bx ax y 的最值情况.而拖动点A ,可以改变抛物线的开口大小和开口方向.确定二次函数在指定区间(自变量的取值范围)上的最值,要画出二次函数图象的简图,结合其图象对称轴与区间的相对位置关系以及开口方向来进行.具体情况见下面的表格所示.模型应用例1.当t ≤x ≤1+t 时,求函数25212--=x x y 的最小值(其中t 为常数).分析 二次函数在指定区间(自变量的取值范围)上的最值与其图象的开口方向和对称轴的位置有关.必要时可画出图象的简图进行求解.本题中,抛物线的对称轴是确定的,指定的区间为含参区间,这样的问题被称为定轴动区间,要对区间与对称轴的相对位置关系进行讨论.解:()3121252122--=--=x x x y ,其图象开口向上,对称轴为直线1=x ∵t ≤x ≤1+t ∴分为三种情况:①当1+t ≤1,即t ≤0时,二次函数的图象在t ≤x ≤1+t 上是下降的,表明y 随x 的增大而减小∴当1+=t x 时,y 取得最小值,最小值为()3213112122min -=--+=t t y ;②当11+<<t t ,即10<<t 时,3min -=y ;③当t ≥1时,二次函数的图象在t ≤x ≤1+t 上是上升的,表明y 随x 的增大而增大∴当t x =时,y 取得最小值,最小值为()2521312122min --=--=t t t y .综上所述,⎪⎪⎩⎪⎪⎨⎧--<<-≤-=252110,30,32122mint t t t t y .例2.在1≤x ≤2的条件下,求函数122++-=ax x y (a 是实常数)的最大值M 和最小值m .解:()112222++--=++-=a a x ax x y ,其图象开口向下,对称轴为直线a x =.①当a ≥2时,函数图象在1≤x ≤2上是上升的,表明y 随x 的增大而增大∴当2=x 时,34max -==a y M ;当1=x 时,a y m 2min ==.②当a <1≤23221=+,a x =时,12max +==a y M ;当2=x 时,34min -==a y m .③当223<<a ,12max +==a y M ;当1=x 时,a y m 2min ==.④当a ≤1时,函数图象在1≤x ≤2上是下降的,表明y 随x 的增大而减小∴当1=x 时,a y M 2max ==;当2=x 时,34min -==a y m .综上所述,⎪⎩⎪⎨⎧≤<<+≥-=1,221,12,342a a a a a a M ,⎪⎪⎩⎪⎪⎨⎧<-≥=23,3423,2a a a a m .例3.已知函数4121412+⎪⎭⎫ ⎝⎛+-=x m x y ,是否存在实数m ,使得当m ≤x ≤2+m 时,函数有最小值5-?若存在,求出m 的值;若不存在,说明理由.分析 本题难度较高,属于对称轴和自变量的取值范围均含参数的最值问题.解:函数4121412+⎪⎭⎫ ⎝⎛+-=x m x y 的图象开口向上,对称轴为直线12+=m x .①当2+m ≤12+m ,即m ≥1时,当2+=m x 时()()54123434122124122min -=+--=++⎪⎭⎫ ⎝⎛+-+=m m m m m y 整理得:0722=-+m m 解之得:221,22121--=+-=m m ∵m ≥1∴221+-=m ;②当212+<+<m m m ,即11<<-m 时,当12+=m x 时()()541122112412min -=++⎪⎭⎫ ⎝⎛+-+=m m m y 整理得:()21122=+m 解之得:2211,221121--=+-=m m∵11<<-m ∴21,m m 都不符合题意,舍去;③当12+m ≤m ,即m ≤1-时,当m x =时541214*********min -=+--=+⎪⎭⎫ ⎝⎛+-=m m m m m y 整理得:021232=-+m m 解之得:37,321=-=m m ∵m ≤1-∴3-=m .综上所述,存在实数3-=m 或221+-=m 满足题意.。
利用二次函数解决问题步骤正文:
二次函数在数学和实际问题中有着广泛的应用。
利用二次函数解决问题的步骤可以帮助我们更好地理解和解决各种实际情况中的数学难题。
下面将介绍利用二次函数解决问题的一般步骤。
1. 确定问题,首先,需要明确问题的背景和要求,明确所要解决的具体问题是什么,例如寻找最大值、最小值,或者确定某个变量的取值范围等。
2. 建立二次函数模型,根据问题的特点,建立二次函数模型。
二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 分别为二次项系数、一次项系数和常数项。
根据问题的特点,确定二次函数的具体形式。
3. 求解问题,利用二次函数的性质和相关知识,对建立的二次函数模型进行分析和求解。
可以通过求导数、配方法、公式法等方式,找到函数的极值点、零点等关键信息。
4. 验证和解释,在求解出结果后,需要对结果进行验证和解释,确保结果符合实际情况,并能够清晰地解释结果的意义和影响。
5. 应用实际问题,最后,将得到的结果应用到实际问题中,解
决实际情况中的数学难题,验证二次函数的有效性和实用性。
通过以上步骤,我们可以利用二次函数解决各种实际问题,提
高数学建模和问题解决能力,为实际生活和工程技术提供有效的数
学支持。
同时也可以更好地理解和掌握二次函数的性质和应用,为
进一步深入学习数学打下坚实的基础。
二次函数待定系数法二次函数待定系数法是一种常用的参数估计方法,它可以用来评估二次函数的未知系数和参数。
该方法的核心思想是,通过观察函数的图像,获取未知参数的近似值,将其作为函数参数的初值,然后用迭代法来逼近它们的准确值。
二次函数待定系数法用于描述连续变化的事物,它具有准确性、稳定性和可拓展性等优点,可以准确表征曲线的弯曲程度,所以在实际应用中,常常被广泛使用。
二、二次函数待定系数法的实现步骤(一)构造二次函数模型首先,我们要构造二次函数模型,它由三个参数组成:函数上凸系数a、函数下凸系数b、函数拐点c。
二次函数模型的数学表达式可以用如下形式表示:y=ax2+bx+c(二)求取函数参数参数a、b、c是二次函数的“待定系数”,要获取这三个参数的准确值,可以通过以下迭代法来求取:①确定函数上凸系数a:首先,在函数图像上观察,求取函数的1/4顶点坐标(x1,y1),然后用以下公式:a=4(y1-c)/x1出参数a 的值;②确定函数下凸系数b:在函数图像上观察,求取函数的3/4顶点坐标(x2,y2),然后用以下公式:b=4(y2-c)/x2出参数b的值;③确定函数拐点c:通过将第①步和第②步求出的参数a和b代入到函数模型中,求出参数c的值。
(三)迭代法为了接近参数a、b、c的准确值,需要用迭代法对参数进行调整,使函数图像尽可能地拟合实际事件。
(四)最小二乘法在迭代的过程中,需要用最小二乘法确定参数的最佳状态:S=∑(y-y)2y=ax2+bx+c其中,S为误差平方和,“y”为实际数据,“y”为拟合函数值,a、b、c是待定系数。
参数a、b、c调整到使“S”最小的状态下,此时参数a、b、c的值就是最合适的数值,函数拟合实际事件的精度也就最高了。
三、二次函数待定系数法的应用二次函数待定系数法可以应用于多个领域,以优化事件及其关系的表达,其中包括:1、工程计算2、医学研究3、预测分析4、机器学习5、机器人控制这些领域都有一系列的实际物理参数,这些物理参数可以用二次函数待定系数法描述,从而更加准确、精确地表征事件及其关系,从而做出更准确的决策和预测。
二次函数的实际模型二次函数是数学中一类重要的函数形式,其形式为y=ax^2+bx+c,其中a、b、c为常数,且a不等于零。
二次函数在实际问题中的应用非常广泛,可以描述许多自然现象和工程实践。
本文将介绍二次函数的实际模型,并讨论其在不同领域的应用。
一、二次函数的基本形式二次函数的基本形式是y=ax^2+bx+c,其中a、b、c为常数。
二次函数的图像为一个抛物线,其开口方向由a的正负决定。
当a大于零时,抛物线开口向上;当a小于零时,抛物线开口向下。
b决定了抛物线的对称轴位置,c则是y轴截距。
二、1. 物理学中的自由落体模型自由落体是物体在无空气阻力作用下下落的运动。
根据牛顿的第二定律,物体的运动满足F=ma,其中F为物体所受的合力,m为物体的质量,a为加速度。
在自由落体运动中,物体所受的合力为重力,可以表示为F=mg,其中g为重力加速度。
假设一个物体从高度h自由落下,我们可以建立二次函数模型来描述物体的高度和时间的关系。
考虑时间t为自变量,物体的高度h为因变量,我们可以得到二次函数的实际模型为h=-gt^2+vt+h0,其中v为物体的初始速度,h0为物体的初始高度。
2. 经济学中的成本函数模型在经济学中,每个企业都需要考虑生产过程中的成本。
成本函数可以用二次函数来近似描述。
假设一个企业的固定成本为c,变动成本为q^2,其中q为企业的产量。
则企业的总成本为C=c+q^2,可以用二次函数来表示。
二次函数模型可以帮助企业分析成本与产量之间的关系,从而找到最优的生产策略。
对成本函数进行求导,可以得到边际成本函数,帮助企业制定最优产量。
3. 生物学中的生长模型生物的生长过程中,通常会存在一个生长极限。
在一定条件下,生物的生长速率与其规模呈二次函数关系。
例如,人体的身高与年龄之间的关系可以用二次函数来描述。
假设一个个体的身高h和年龄t之间存在二次函数关系,可以表示为h=at^2+bt+c。
通过研究二次函数的系数,可以得到个体的生长速率、生长极限等信息。
几种不同类型的函数模型一 函数模型及数学建模函数模型是解决实际问题的重要数学模型,将实际问题中的变量关系用函数表现出来,然后对函数进行研究得出相关数学结论,并依此解决实际问题.那么如何建立数学模型呢?可按以下步骤完成.(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题.建模过程示意图:二 几种常见的函数模型1.一次函数模型:f(x)=kx +b(k 、b 为常数,k ≠0);2.反比例函数模型:f(x)=k x+b(k 、b 为常数,k ≠0); 3.二次函数模型:f(x)=ax 2+bx +c(a 、b 、c 为常数,a ≠0);4.指数函数模型:f(x)=ab x +c(a 、b 、c 为常数,a ≠0,b>0,b ≠1);5.对数函数模型:f(x)=mlog a x +n(m 、n 、a 为常数,a>0,a ≠1);6.幂函数模型:f(x)=ax n +b(a 、b 、n 为常数,a ≠0,n ≠1);7.分段函数模型:这个函数模型实则是以上两种或多种模型的综合,因此应用也十分广泛.三 指、对、幂三种函数模型增长速度的比较正确认识“直线上升”、“指数爆炸”、“对数增长”和幂函数的增长差异.直线上升反映了一次函数(一次项系数大于零)的增长趋势,其增长速度均匀(恒为常数);在区间(0,+∞)上,尽管函数y =a x (a>1),y =log a x(a>1)和y =x n (n>0)都是增函数,但它们的增长速度不在同一个“档次”上. 随着x 的增大,y =a x (a>1)的增长速度越来越快,会超过并远远大于y =x n (n>0)的增长速度,而y =log a x(a>1)的增长速度则会越来越慢,因此总会存在一个x 0,当x>x 0时,就有log a x<x n <a x ,此式揭示了在充分远处三种函数的变化规律.总结:(1)在区间(0,+∞)上,函数y=a x (a>1),y=log a x(a>1)和y=x n (n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上;(2)随着x 的增大,y=a x (a>1)的增长速度越来越快,会超过并远远大于y=x n (n>0)的增长速度,表现为指数爆炸;(3)随着x 的增大,y=log a x(a>1)的增长速度会越来越慢;(4)随着x 的增大,y=a x (a>1)的图象逐渐表现为与y 轴平行一样,而y=log a x(a>1)的图象逐渐表现为与x 轴平行一样;(5)当a>1,n>0时,总会存在一个x 0,当x>x 0时,有a x >x n >log a x ;(6)当0<a<1,n<0时,总会存在一个x 0,当x>x 0时,有log a x<x n <a x一次函数模型例1 为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”和“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y 1(元)、y 2(元)的关系分别如图(1)、图(2)所示.图(1) 图(2)(1)分别求出通话费y 1,y 2与通话时间x 之间的函数关系式;(2)请帮助用户计算,在一个月(30天)内使用哪种卡便宜.思路点拨:由题目可知函数模型为直线型,可先用待定系数法求出解析式,然后再进行函数值大小的比较.解:(1)由图象可设y 1=k 1x +29,y 2=k 2x ,把点B(30,35),C(30,15)分别代入y 1,y 2得k 1=15,k 2=12.∴y 1=15x +29(x≥0),y 2=12x(x≥0).(2)令y 1=y 2,即15x +29=12x ,则x =9623.当x =9623时,y 1=y 2,两种卡收费一致;当x<9623时,y 1>y 2,即便民卡便宜;当x>9623时,y 1<y 2,即如意卡便宜. 函数的图象是表示函数的三种方法之一,正确识图、用图、译图是解决函数应用题的基本技能和要求.本题由于过原点的直线是正比例函数图象,因此运用了待定系数法求得一次函数解析式,然后利用函数解析式解决了实际问题.借助函数图象表达题目中的信息,读懂图象是关键.例2 一个报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)内有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进报纸的份数都相同,问应该从报社买进多少份才能使每月所获得的利润最大?并计算每月最多能获得的利润.解:设每天从报社买进设每月所获利润为y ∵y=0.8x +550在[250,400]上是增函数,∴当x =400时,y 取得最大值870.即每天从报社买进400份报纸时,每月获得的利润最大,最大利润为870元. 二次函数模型例3 以100元/件的价格购进一批羊毛衫,以高于进价的相同价格出售.羊毛衫的销售有淡季与旺季之分.标价越高,购买人数越少.我们称刚好无人购买时的最低标价为羊毛衫的最高价格.某商场经销某品牌的羊毛衫,无论销售淡季还是旺季,进货价都是100元/件.针对该品牌羊毛衫的市场调查显示:①购买该品牌羊毛衫的人数是标价的一次函数;②该品牌羊毛衫销售旺季的最高价格是淡季最高价格的32倍;③在销售旺季,商场以140元/件价格销售时能获取最大利润.(1)分别求出该品牌羊毛衫销售旺季的最高价格与淡季的最高价格;(2)在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为多少?思路点拨:首先用标价x 表示出购买人数和旺季价格,进而可表示出利润函数,再利用函数关系解决相关问题.解:(1)设在旺季销售时羊毛衫的标价为x 元/件,购买人数为kx +b(k<0),则旺季的最高价格为-b k元/件,利润函数L(x)=(x -100)(kx +b)=kx 2-(100k -b)x -100b ,x∈[100,-b k ].当x =100k -b 2k =50-b 2k时,L(x)最大.由题意知50-b 2k =140,解得-b k =180.即旺季的最高价格是180(元/件),则淡季的最高价格是180×23=120(元/件).(2)设在淡季销售时羊毛衫的标价为t 元/件,购买人数为mt +n(m<0),则淡季的最高价格为-n m=120(元/件),即n =-120m ,利润函数L(t)=(t -100)(mt -120m)=m(t -110)2-100m ,t∈[100,120].当t =110时,L(t)最大.所以,在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为110元/件.二次函数模型是初等数学阶段研究的最为广泛的多项式函数,由于具有二次函数、二次方程、二次不等式、二次曲线等四个“二次”互为关联的重要特征,因此在应用型问题中是最为重要的模型.此外作为一个考点,由于二次函数涉及函数单调性、区间最值等诸多方面,因此有理由相信,今后这类试题仍将是重点.本题最为重要的特点是逆向运用二次函数最值问题,通过旺季最值的取得来获得参变量之间的关系进而对淡季羊毛衫的价格作出判断与预测.这种方法值得去关注.指数函数模型例4 按复利计算利率的一种储蓄,本金为a ,每期利率为r ,设本利和为y ,存期为x ,写出本利和y 随存期x 变化的函数式.如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少?思路点拨:复利是计算利息的一种方法,即把前一期的利息和本金加在一起作本金,再计算下一期的利息 解:已知本金为a 元.1期后的本利和为y 1=a +a×r=(1+r)a ;2期后的本利和为y 2=a(1+r)+a(1+r)r =a(1+r)2;3期后的本利和为y 3=a(1+r)3;…x 期后的本利和为y =a(1+r)x .将a =1000(元),r =2.25%,x =5代入上式得y =1000×(1+2.25%)5=1000×(1.0225)5≈1117.68(元).故复利函数式为y =a(1+r)x,5期后的本利和为1117.68元.在实际问题中,常常遇到有关平均增长率的问题,如果原来产值的基础数为N ,平均增长率为P ,则对于时间x 的总产值y ,可以用公式y =N(1+P)x 来表示,解决平均增长率的问题时要用到这个函数式.例5 光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y.(1)写出y 关于x 的函数关系式;(2)至少通过多少块玻璃后,光线强度减弱到原来的13以下?(lg 3≈0.4771) 解:(1)y =a(1-10%)x (x∈N *)(2)∵y≤13a ,∴a(1-10%)x ≤13a ,∴0.9x ≤13,x≥log 0.913=-lg 32 lg 3-1≈10.4,∴x =11.对数函数模型例6 燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log 2Q 10,单位是m/s ,其中Q 表示燕子的耗氧量. (1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?思路点拨:该问题已经给出了函数模型,故赋值后可求出Q 的值,进而求出v 的值.解:(1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q 10,解得Q =10.即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15(m/s). 即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.直接以对数函数为模型的应用题不是很多,此类问题一般是先给出对数函数模型,利用对数运算性质求解. 例7 某中学的研究性学习小组为考察一个小岛的湿地开发情况,从某码头乘汽艇出发,沿直线方向匀速开往该岛,靠近岛时,绕小岛环行两周后,把汽艇停靠岸边,上岸考察,然后又乘汽艇沿原航线提速返回.设t 为出发后的某一时刻,S 为汽艇与码头在时刻t 的距离,下列图象中能大致表示S =f(t)的函数关系的为( C )解析:当汽艇沿直线方向匀速开往该岛时,S =vt ,图象为一条线段;当环岛两周时,S 两次增至最大,并减少到与环岛前的距离S 0;上岛考察时,S =S 0; 返回时,S =S 0-vt ,图象为一条线段.所以选C.例8 用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是( B ) A 3 B 4 C 5 D 6解析:设至少要洗x 次,则(1-34)x ≤1100,所以x≥1lg2≈3.32,因此至少要洗4次. 例9 函数y =f(x)与y =g(x)的图象如图:则函数y =f(x)·g(x)的图象可能是( A )解析:明确函数图象在x 轴上下方与函数值符号改变的关系,数值相乘“同号为正、异号为负”.∵函数y =f(x)·g(x)的定义域是函数y =f(x)与y =g(x)的定义域的交集(-∞,0)∪(0,+∞),图象不经过坐标原点,故可以排除C 、D.由于当x 为很小的正数时f(x)>0且g(x)<0,故f(x)·g(x)<0.故选A.例 10 下列函数中,随x 值的增大,增长速度最快的是( D )(A)y =50x(x∈Z) (B)y=1000x (C)y =0.4×2x -1 (D)y =110000·e x解析:指数“爆炸式”增长,y =0.4×2x -1和y =110000·e x 虽然都是指数型函数,但y =110000·e x 的底数e 较大些,增长速度更快.例11 把长为12厘米的细铁丝截成两段,各自围成一个正三角形,求这两个正三角形面积之和的最小值解析:设一个正三角形的边长为x(cm),则另一个正三角形的边长为12-3x 3=4-x(cm),两个正三角形的面积和为S =34x 2+34(4-x)2=32[(x -2)2+4](0<x <4).当x =2(cm)时,S min =23(cm 2). 例12 当2<x<4时,2x ,x 2,log 2x 的大小关系是( B )(A)2x >x 2>log 2x (B)x 2>2x >log 2x (C)2x >log 2x>x 2 (D)x 2>log 2x>2x解析:法一:在同一平面直角坐标系中分别画出函数y =log 2x ,y =x 2,y =2x ,在区间(2,4)上从上往下依次是y =x 2,y =2x ,y =log 2x 的图象,所以x 2>2x >log 2x.法二:比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x =3,经检验易知选B. 例13 已知函数的图象如图所示,试写出它的一个可能的解析式__________________.解:可由图象的两点特征去确定.第一点:过两定点(0,1),(10,3).第二点:增长情况.答案:y =lg(99100x 2+1)+1(x≥0)(答案不唯一)例14 奇瑞曾在2009年初公告:2009年生产目标定为39.3万辆;而奇瑞董事长极力表示有信心达成这个生产目标,并在09年实现更为平衡的增长.我们不妨来看看近三年奇瑞的政绩吧:2006年,奇瑞汽车年销量8万辆;2007年,奇瑞汽车年销量18万辆;2008年,奇瑞汽车年销量30万辆;如果我们分别将06,07,08,09定义为第一,二,三,四年.现在你有两个函数模型:二次函数模型f(x)=ax 2+bx +c(a≠0),指数函数模型g(x)=a·b x +c(a≠0,b>0,b≠1),哪个模型能更好地反映奇瑞公司年销量y 与年份x 的关系?解:建立年销量y 与年份x 的函数,可知函数必过点(1,8),(2,18),(3,30).(1)构造二次函数模型f(x)=ax 2+bx +c(a≠0),将点坐标代入,可得⎩⎪⎨⎪⎧ a +b +c =8,4a +2b +c =18,9a +3b +c =30,解得a =1,b =7,c =0,则f(x)=x 2+7x ,故f(4)=44,与计划误差为4.7. (2)构造指数函数模型g(x)=a·b x +c(a≠0,b >0,b≠1),将点坐标代入,可得⎩⎪⎨⎪⎧ ab +c =8,ab 2+c =18,ab 3+c =30,解得a =1253,b =65,c =-42,则g(x)=1253·(65)x -42,故g(4)=1253·(65)4-42=44.4,与计划误差为5.1. 由(1)(2)可得,f(x)=x 2+7x 模型能更好地反映奇瑞公司年销量y 与年份x 的关系.例15 近年来,太阳能技术运用的步伐日益加快.2002年全球太阳能电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳能电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳能电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳能电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳能电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?解:(1)由已知得2003,2004,2005,2006年太阳能电池的年生产量的增长率依次为36%,38%,40%,42%.则2006年全球太阳能电池的年生产量为670×1.36×1.38×1.40×1.42≈2499.8(兆瓦).(2)设太阳能电池的年安装量的平均增长率为x ,则+4+4≥95%,解得x≥0.615. 因此,这四年中太阳能电池的年安装量的平均增长率至少应达到61.5%.例16 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。
课题:二次函数学习目标:1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义;2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
学习重点:1.经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数。
学习难点:确定实际问题中二次函数的关系式。
学习过程:一、知识准备:1.设在一个变化过程中有两个变量x和y,如果对于x的每一个值, y都有唯一的值与它对应,那么就说y是x的,x叫做 ,y叫做。
2.我们已经学过的函数有:一次函数、反比例函数,其中的图像是直线,的图像是双曲线。
我们得到它们图像的方法和步骤是:①;②;③。
3. 形如___________y=,()的函数是一次函数,当______0=时,它是函数,图像是经过的直线;形如kyx=,()的函数是函数,它的表达式还可以写成:①、②二、提出问题(展示交流):1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是。
2.用16m长的篱笆围成长方形圈养小兔,圈的面积y(㎡)与长方形的长x(m)之间的函数关系式为。
3.要给一个边长为x (m)的正方形实验室铺设地板,已知某种地板的价格为每平方米240元,踢脚线价格为每米30元,如果其它费用为1000元,那么总费用y(元)与x (m)之间的函数关系式是。
三、归纳提高(讨论归纳):观察上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?。
一般地,形如,(,且)的函数为二次函数。
其中x是自变量,函数。
注意:1、定义中只要求二次项系数a 不为零(必须存在二次项),一次项系数b 、常数项c 可以为零。
最简单形式的二次函数:2(0)y ax a =≠例如,y =-5x 2+100x+60000和y=100x 2+200x+100都是二次函数.我们以前学过的正方形面积A 与边长a 的关系2A a =,圆面积s 与半径r 的关系2s r π=等也都是二次函数的例子.2、二次函数2y ax bx c =++中自变量x 的取值范围是 ,你能说出上述三个问题中自变量的取值范围吗?四、例题精讲(小组讨论交流): 例1 函数y=(m +2)x22-m +2x -1是二次函数,则m= .点拨:从二次函数的定义出发:看二次项的系数和次数确定m 的取值例2.下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=21x+x .A .1个B .2个C .3个D .4个例3、写出下列各函数关系,并判断它们是什么类型的函数. ⑴圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;⑵某种储蓄的年利率是1.98%,存入10000元本金,若不计利息税,求本息和y (元)与所存年数x 之间的函数关系;⑶菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系五、课堂训练1.下列函数中,二次函数是( )A .y=6x 2+1 B .y=6x +1 C .y=x 6+1 D .y=26x+12.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数3.半径为3的圆,如果半径增加2x ,则面积S 与x 之间的函数表达式为( ) A.S=2π(x +3)2 B.S=9π+xC.S=4πx 2+12x +9D.S=4πx 2+12πx +9π 4.下列函数关系中,满足二次函数关系的是( ) A.圆的周长与圆的半径之间的关系;B.在弹性限度内,弹簧的长度与所挂物体质量的关系;C.圆柱的高一定时,圆柱的体积与底面半径的关系;D.距离一定时,汽车行驶的速度与时间之间的关系.5.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系_________.6.若一个边长为x cm 的无盖..正方体形纸盒的表面积为y cm 2,则___________y =,其中x 的取值范围是 。
7.一矩形的长是宽的1.6倍,则该矩形的面积S 与宽x 之间函数关系式:S = 。
8.如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,请写出绿地面积y (㎡)与路宽x (m)之间的函数关系式:y = 。
9.如图,用50m 长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y (㎡)与它与墙平行的边的长x (m)之间的函数 关系式:y = 。
10.已知函数27(3)m y m x -=-是二次函数,求m 的值.课题:二次函数的图象与性质(1)一、学习目标 1.知识与技能会用描点法画出二次函数2ax y =的图象,概括出图象的特点及函数的性质. 2.过程和方法利用描点法作出y=x 2的图象过程中,理解掌握二次函数y=x 2的性质。
3.情感和态度鼓励学生在探索规律的教程中从多个角度进行考虑,品尝成功的喜悦,激发学生应用数学的热情,培养学生主动探索,敢于实践,善于发现的科学精神,树立创新意识。
二、知识准备我们已经知道,一次函数12+=x y ,反比例函数x y 3=x y 3=的图象分别是 、 ,那么二次函数2x y =的图象是什么呢?1.你能描述图象的形状吗?与同伴交流。
2.图象与x 轴有交点吗?如果有,交点的坐标是什么?3.当x<0时,y 随着x 的增大,y 的值如何变化?当x>0时呢?4.当x 取什么值时,y 的值最小?5.图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流。
三、学习内容在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)22x y = (2)22x y -=共同点:都以y 轴为对称轴,顶点都在坐标原点.不同点:22x y =的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.22x y -=的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降. 注意点:在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接. 四、知识梳理(1)二次函数y=ax 2的图象的性质:①、图象——“抛物线”是轴对称图形;②、与x、y轴交点——(0,0)即原点;③、a的绝对值越大抛物线开口越大,a﹥0,开口向上,当x﹤0时,(对称轴左侧),y随x的增大而减小(y随x的减小而增大);当x﹥0时,(对称轴右侧),y随x的增大而增大(y随x的减小而减小).a﹤0,开口向下,当x﹤0时,(对称轴左侧),y随x的增大而增大(y随x的减小而减小)当x﹥0时,(对称轴右侧),y随x的增大而减小(y随x的减小而增大)(2)今天我们通过观察收获不小,其实只要我们在日常生活中勤与观察,勤与思考,你会发现知识无处不在,美无处不在。
五、课堂训邹庄中学初三数学课课练 第六章《二次函数》(二)1.若二次函数y=ax 2(a ≠0),图象过点P (2,-8),则函数表达式为 . 2.函数y=x 2的图象的对称轴为 ,与对称轴的交点为 ,是函数的顶点.3.点A (21,b )是抛物线y=x 2上的一点,则b= ;点A 关于y 轴的对称点B是 ,它在函数 上;点A 关于原点的对称点C 是 ,它在函数上.4.如图,A 、B 分别为y=x 2上两点,且线段AB ⊥y 轴,若AB=6,则直线AB 的表达式为( )A .y=3B .y=6C .y=9D .y=365.求直线y=x 与抛物线y=x 2的交点坐标.6.若a >1,点(a -1,y 1)、(a ,y 2)、(a +1,y 3)都在函数y=x 2的图象上,判断y 1、y 2、y 3的大小关系?课题:二次函数的图象与性质(2) 一、学习目标: 1.知识与技能:会画出k ax y +=2这类函数的图象,通过比较,了解这类函数的性质.2.过程和方法经历探索二次函数y=ax 2和y=ax 2+c 的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验. 3.情感和态度教学中为学生创造大量的操作,思考和交流的机会,培养了学生分析解决问题的能力以及识图能力。
二、知识准备:同学们还记得一次函数x y 2=与12+=x y 的图象的关系吗?你能由此推测二次函数2x y =与12+=x y 的图象之间的关系吗? ,那么2x y =与22-=x y 的图象之间又有何关系? 动手操作、探究:在同一平面内画出函数y=x 2与y=x 2-2的图象。
比较它们的性质,你可以得到什么结论? 三、学习内容:动手画:在同一直角坐标系中,画出函数12+-=x y 与12--=x y 的图象,并说明,通过怎样的平移,可以由抛物线12+-=x y 得到抛物线12--=x y .回顾与反思 抛物线12+-=x y 和抛物线12--=x y 分别是由抛物线2x y -=向上、向下平移一个单位得到的.探索 如果要得到抛物线42+-=x y ,应将抛物线12--=x y 作怎样的平移?四、知识梳理1、函数k ax y +=2与2ax y =图像的关系。
2、能说出y=ax 2+c 与y=ax 2图象的开口方向、对称轴和顶点坐标、增减性。
五、课堂训练邹庄中学初三数学课课练 第六章《二次函数》(三)1.抛物线y=-4x 2-4的开口向 ,当x= 时,y 有最 值,y= .2.当m= 时,y=(m -1)xmm 2-3m 是关于x 的二次函数.3.抛物线y=-3x 2上两点A (x ,-27),B (2,y ),则x= ,y= .4.抛物线y=3x 2与直线y=kx +3的交点为(2,b ),则k= ,b= . 5.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-1,-2),则抛物线的表达式为 .6.在同一坐标系中,图象与y=2x 2的图象关于x 轴对称的是( )A .y=21x 2B .y=-21x 2C .y=-2x 2D .y=-x 27.抛物线,y=4x 2,y=-2x 2的图象,开口最大的是( )A .y=41x 2B .y=4x 2C .y=-2x 2D .无法确定8.对于抛物线y=31x 2和y=-31x 2在同一坐标系里的位置,下列说法错误的是( )A .两条抛物线关于x 轴对称B .两条抛物线关于原点对称C .两条抛物线关于y 轴对称D .两条抛物线的交点为原点9.二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )10.已知函数y=ax 2的图象与直线y=-x +4在第一象限内的交点和它与直线y=x 在第一象限内的交点相同,则a 的值为( )A .4B .2C .21D .4111.已知直线y=-2x +3与抛物线y=ax 2相交于A 、B 两点,且A 点坐标为(-3,m ).(1)求a 、m 的值;(2)求抛物线的表达式及其对称轴和顶点坐标;(3)x 取何值时,二次函数y=ax 2中的y 随x 的增大而减小;(4)求A 、B 两点及二次函数y=ax 2 的图象顶点构成的三角形的面积.课题:二次函数的图象与性质(3)一、学习目标1、经历探索二次函数y =ax 2+k(a ≠0)及y =a(x+m)2 (a ≠0)的图象作法和性质的过程。