建立二次函数模型
- 格式:ppt
- 大小:1.38 MB
- 文档页数:2
第十二课时教学内容:建立二次函数模型(P21-22)教学目标1、通过探索得出二次函数的概念。
2、熟练地把二次函数化成一般式,并分清二次项、一次项及其系数和常数。
教学重点和难点教学重点:二次函数的概念。
教学难点:二次函数y=ax2+bx+c中的隐含条件a≠0的应用。
教学方法启发式。
教学手段投影仪、投影片。
教学过程一、创设问题情境,探索建立二次函数模型。
(出示投影1)动脑筋:问题一:植物园的面积随着砌法的不同怎样变化?学校准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形植物园,如图2—1所示,现在已备足可以砌100m长的墙的材料,大家来讨论对应于不同的砌法,植物园的面积会发生什么样的变化。
有没有一种统一的以包括一切可能砌法的探讨方法呢?学生独立思考上述问题,并把结果与同伴交流。
教师针对学生存在的问题予以指正并板书:设与围墙相邻的每一面墙的长度为xm,则与围墙相对的一面墙的长度为(100-2x)m,于是矩形植物园的面积s为s=x(100-2x),0<x<50,即 s=-2x2+100x,0<x<50,①有了公式①,我们对植物园的面积s随着砌法的不同而变化的情况就了如指掌了。
(出示投影2)动脑筋:电脑的价格。
一种型号的电脑两年前的销售价为6000元,现在的售价为y元,如果每年的平均降价率为x,那么降价率变化时,电脑的售价怎样变化呢?学生独立思考上述问题,并把结果与同伴交流。
教师针对学生存在的问题予以指正并边讲边在黑板上板书:y=6000(1-x)2,0<x<1即y=6000x2-12000x+6000,0<x<1。
②教师引入:在上面的两个例子吕,矩形植物园的面积s与相邻于围墙面的每一面墙的长度x的关系式①,电脑价格y与平均降价率x的关系式②有什么共同点?像关系式①、②那样,如果函数的解析式是自变量的二次多项式,那么这样的函数称为二次函数,它的一般形式是:y=ax2+bx+c(a、b、c是常数,a≠0),其中a、b、c分别叫作二次项系数、一次项系数、常数项。
二次函数弓形模型二次函数是一种常见的数学模型,它的图像形状可以是一条抛物线,也可以是一个弓形。
二次函数的一般形式是y=ax^2+bx+c,其中a、b、c 是常数,且a不等于0。
本文将探讨二次函数弓形模型的特点、应用以及解析方法。
首先,我们来讨论二次函数弓形模型的特点。
当a大于0时,二次函数的图像开口朝上,形状为一个弓形。
当a小于0时,二次函数的图像开口朝下,形状也是一个弓形。
无论开口朝上还是朝下,二次函数的图像都具有对称轴,对称轴的方程为x=-b/2a。
对称轴将图像分为两个对称的部分,称为左半部分和右半部分。
弓形模型的顶点是二次函数图像的最低点(当a大于0时)或最高点(当a小于0时),顶点的坐标为(-b/2a,f(-b/2a))。
其次,我们来探讨二次函数弓形模型的应用。
弓形模型常用于描述一些现实生活中的问题,例如抛物线的轨迹、物体的运动轨迹等。
在物理学中,二次函数弓形模型可以用来描述自由落体运动中物体的高度随时间的变化,以及抛体的轨迹。
在经济学中,二次函数弓形模型可以用来描述成本、收益、供求关系等。
在工程学中,二次函数弓形模型可以用来描述一些曲线的形状,例如拱桥的形状等。
最后,我们来介绍二次函数弓形模型的解析方法。
对于给定的二次函数y=ax^2+bx+c,我们可以通过以下步骤来解析该函数的图像:1.计算对称轴的坐标:对称轴的方程为x=-b/2a,计算得到对称轴的x坐标为-b/2a。
2.计算顶点的坐标:将对称轴的x坐标代入二次函数的表达式中,计算得到顶点的坐标为(-b/2a,f(-b/2a))。
3.计算y轴截距:将x=0代入二次函数的表达式中,计算得到y轴截距为c。
4.根据对称轴、顶点和y轴截距的坐标,绘制二次函数的图像。
当我们了解了二次函数弓形模型的特点、应用和解析方法后,就可以更好地理解和应用这一数学模型。
无论是在学术研究中还是在实际应用中,二次函数弓形模型都具有重要的地位和作用。
它不仅可以帮助我们理解自然界和社会现象中的规律,还可以用于解决一些实际问题,为我们的生活和工作带来便利和效益。
二次函数解析式和表达式的区别摘要:1.二次函数解析式的定义和表达式的定义2.二次函数解析式和表达式之间的区别3.二次函数解析式和表达式在实际问题中的应用4.如何从实际问题中得出二次函数的解析式和表达式正文:在数学中,二次函数解析式和表达式是常用的表示二次函数的方式,但它们之间存在着明显的区别。
首先,我们来了解一下二次函数解析式和表达式的定义。
二次函数解析式是指用字母表示二次函数的关系式,通常形式为y=ax+bx+c(a、b、c为常数),它直接揭示了自变量x与因变量y之间的关系。
而二次函数表达式则是指用数值表示二次函数的方式,它通常是通过将二次函数解析式中的字母换成数值来实现的。
其次,二次函数解析式和表达式之间的区别在于,解析式强调的是函数的关系,而表达式强调的是函数的值。
例如,对于二次函数y=ax+bx+c,当我们知道a、b、c的值后,就可以通过解析式计算出y与x的关系。
而表达式则直接给出了函数在不同x值下的y值,便于我们进行数值计算和图形绘制。
在实际问题中,二次函数解析式和表达式都有广泛的应用。
例如,在物理中,二次函数解析式可以用来表示物体的运动轨迹,而表达式则可以用来计算物体的位置、速度和加速度等物理量。
在工程中,二次函数解析式和表达式常用于建模和优化问题,如曲线拟合、参数估计等。
那么,如何从实际问题中得出二次函数的解析式和表达式呢?一般来说,我们可以通过以下步骤:1.分析实际问题,找出其中的数学关系。
例如,在物体运动问题中,我们可以通过测量物体的位移、时间等数据,找出位移与时间的关系。
2.建立二次函数模型。
根据实际问题中的数学关系,我们可以建立二次函数模型,如y=ax+bx+c。
3.利用已知数据求解二次函数参数。
将实际问题中的数据代入二次函数模型,通过最小二乘法等方法求解出a、b、c等参数。
4.得出二次函数的解析式和表达式。
在求解出二次函数参数后,我们就可以得到二次函数的解析式和表达式。
总之,二次函数解析式和表达式是表示二次函数两种常见的方式,它们在实际问题中有着广泛的应用。
利用二次函数解决问题步骤正文:
二次函数在数学和实际问题中有着广泛的应用。
利用二次函数解决问题的步骤可以帮助我们更好地理解和解决各种实际情况中的数学难题。
下面将介绍利用二次函数解决问题的一般步骤。
1. 确定问题,首先,需要明确问题的背景和要求,明确所要解决的具体问题是什么,例如寻找最大值、最小值,或者确定某个变量的取值范围等。
2. 建立二次函数模型,根据问题的特点,建立二次函数模型。
二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 分别为二次项系数、一次项系数和常数项。
根据问题的特点,确定二次函数的具体形式。
3. 求解问题,利用二次函数的性质和相关知识,对建立的二次函数模型进行分析和求解。
可以通过求导数、配方法、公式法等方式,找到函数的极值点、零点等关键信息。
4. 验证和解释,在求解出结果后,需要对结果进行验证和解释,确保结果符合实际情况,并能够清晰地解释结果的意义和影响。
5. 应用实际问题,最后,将得到的结果应用到实际问题中,解
决实际情况中的数学难题,验证二次函数的有效性和实用性。
通过以上步骤,我们可以利用二次函数解决各种实际问题,提
高数学建模和问题解决能力,为实际生活和工程技术提供有效的数
学支持。
同时也可以更好地理解和掌握二次函数的性质和应用,为
进一步深入学习数学打下坚实的基础。
函数模型一二次函数模型一价格竞争[问题提出]:甲乙两个加油站位于同一条公路旁,为在公路上行驶的汽车提供同样的汽油,彼此竞争激烈。
一天,甲站推出“降价销售”吸引顾客,结果造成乙站的顾客被拉走,影响了乙站的赢利。
我们知道,利润是受销售价和销售量的影响及控制的,乙站为挽回损失,必须采取降价销售这一对策来争取顾客。
那么,乙站如何决定汽油的价格,既可以同甲站竞争,又可以获取尽可能高的利润呢?[分析]:在这场“价格战”中,我们将站在乙站的立场上为其制定价格对策,因此需要组建一个模型来描述甲站汽油价格下调后乙站销售量的变化情况,从而得到乙站的销售利润。
[引入参数]:为描述汽油价格和销售量间的关系,引入指标:1)价格战前,甲、乙两站汽油的正常销售价格为P(元/升);2)降价前乙站的销售量均为L(升);3)汽油的成本价格为W(元/升);4)降价后乙站的销售价格为x(元/升),这是变量;5)降价后甲站的销售价格为y(元/升)。
[模型假设]:影响乙站汽油销售量的因素,主要有以下几个:1)甲站汽油降价的幅度;2)乙站汽油降价的幅度;3)甲乙两站之间汽油销售价格之差(x-y)。
我们知道,随着甲站汽油降价幅度的增加,乙站汽油销售量随之减小;而随着乙站汽油降价幅度的增加,乙站汽油销售量随之增大;同时,随着两站之间汽油销售价格之差(x-y)的增加,乙站汽油销售量也随之减小。
假设1:在这场价格战中,假设汽油的正常销售价格保持不变;假设2:以上各因素对乙加油站汽油销售量的影响是线性的,比例系数分别为a,b,c(均为正常数)。
[建立模型]:由假设2,乙站的汽油销售量为L-a(P-y)+b(P-x)-c(x-y),所以,乙站的利润函数R(x,y)=(x-W)[L-a(P-y)+b(P-x)-c(x-y)]。
[模型求解]:当y确定时,利润函数R(x,y)=(x-W)[L-a(P-y)+b(P-x)-c(x-y)]是关于x的二次函数。
求出R(x,y)的最大值点为x*=[L+(a+c)y-P(a-b)+W(b+c)]/2(b+c)。
二次函数的最值与优化应用题的解决思路在解决二次函数的最值与优化应用题时,我们需要遵循一定的解决思路。
本文将介绍如何分析和求解这类问题,并提供一些实际应用的例子。
1. 分析问题:首先,我们需要理解问题陈述,并将其转化为数学语言。
通常,这种问题会涉及到二次函数的具体形式以及限制条件。
我们可以通过以下步骤进行分析:- 确定变量和目标:明确问题中涉及的变量,以及我们希望优化的目标。
- 建立模型:利用已知条件建立二次函数模型,并将目标函数化为数学表达式。
- 分析限制条件:将限制条件翻译为数学不等式或等式,并将其添加到模型中。
- 确定求解范围:确定函数的定义域和最值可能出现的范围。
2. 求解问题:有了正确的分析,我们可以使用以下方法来求解二次函数的最值和优化问题:- 求导法:对二次函数进行求导,找到导数等于零的点,并分析这些点的性质以确定最值的位置。
- 完成平方法:通过将二次函数转化为完全平方形式,从而直接得到最值点的位置。
- 利用性质法:利用二次函数的性质,如对称性、平移等,来简化求解过程。
- 图像分析法:通过绘制函数的图像,直观地找到最值点的位置。
3. 应用实例:下面是一些二次函数最值与优化应用题的解决示例:题目1:围墙建造某人想围建一个矩形花园,但他只有50米的围墙材料。
问他能建造的最大花园面积是多少?解决思路:设矩形长为x米,宽为y米。
建立问题的模型:- 目标:最大化花园的面积A,即A = x*y。
- 限制条件:围墙总长度不能超过50米,即2x + 2y <= 50。
通过求解目标函数的最值,我们可以得到最大化花园面积的解。
题目2:喷水装置一个花坛的形状是一个长为12米、宽为8米的矩形,需要在花坛中央安装一台喷水装置。
装置的效果范围是一个以装置为中心,半径为r米的圆形区域。
求喷水装置的半径,使得覆盖的花坛面积最大。
解决思路:设喷水装置的半径为r米。
建立问题的模型:- 目标:最大化喷水装置覆盖的花坛面积A,即A = πr²。
二次函数的实际模型二次函数是数学中一类重要的函数形式,其形式为y=ax^2+bx+c,其中a、b、c为常数,且a不等于零。
二次函数在实际问题中的应用非常广泛,可以描述许多自然现象和工程实践。
本文将介绍二次函数的实际模型,并讨论其在不同领域的应用。
一、二次函数的基本形式二次函数的基本形式是y=ax^2+bx+c,其中a、b、c为常数。
二次函数的图像为一个抛物线,其开口方向由a的正负决定。
当a大于零时,抛物线开口向上;当a小于零时,抛物线开口向下。
b决定了抛物线的对称轴位置,c则是y轴截距。
二、1. 物理学中的自由落体模型自由落体是物体在无空气阻力作用下下落的运动。
根据牛顿的第二定律,物体的运动满足F=ma,其中F为物体所受的合力,m为物体的质量,a为加速度。
在自由落体运动中,物体所受的合力为重力,可以表示为F=mg,其中g为重力加速度。
假设一个物体从高度h自由落下,我们可以建立二次函数模型来描述物体的高度和时间的关系。
考虑时间t为自变量,物体的高度h为因变量,我们可以得到二次函数的实际模型为h=-gt^2+vt+h0,其中v为物体的初始速度,h0为物体的初始高度。
2. 经济学中的成本函数模型在经济学中,每个企业都需要考虑生产过程中的成本。
成本函数可以用二次函数来近似描述。
假设一个企业的固定成本为c,变动成本为q^2,其中q为企业的产量。
则企业的总成本为C=c+q^2,可以用二次函数来表示。
二次函数模型可以帮助企业分析成本与产量之间的关系,从而找到最优的生产策略。
对成本函数进行求导,可以得到边际成本函数,帮助企业制定最优产量。
3. 生物学中的生长模型生物的生长过程中,通常会存在一个生长极限。
在一定条件下,生物的生长速率与其规模呈二次函数关系。
例如,人体的身高与年龄之间的关系可以用二次函数来描述。
假设一个个体的身高h和年龄t之间存在二次函数关系,可以表示为h=at^2+bt+c。
通过研究二次函数的系数,可以得到个体的生长速率、生长极限等信息。
二次函数的模型建立与解题技巧分享二次函数是一种常见的数学函数,广泛运用于各个领域。
在建立二次函数的模型时,需要考虑诸多因素,并掌握一些解题技巧。
本文将分享一些关于二次函数模型建立与解题的技巧和方法。
1. 二次函数模型建立二次函数的一般形式是:f(x) = ax^2 + bx + c,其中a、b、c为常数。
建立二次函数模型时,需要根据具体问题中的已知条件,确定函数的具体形式。
首先,我们需要找到二次函数的顶点,即函数曲线的最高或最低点。
若已知顶点的坐标为(h, k),则二次函数的一般形式可以简化为:f(x) =a(x - h)^2 + k。
通过确定顶点坐标,我们可以快速确定函数的形状。
其次,我们需要根据已知条件来确定二次函数的系数。
已知条件可以是函数经过某点的坐标,函数的对称轴,或者函数的导数等。
根据这些已知条件,可以得到一系列的方程,通过求解这些方程来确定a、b、c的值。
最后,通过将得到的系数代入二次函数的一般形式,就可以建立起具体的二次函数模型。
2. 解题技巧分享(1)寻找函数的顶点:通过求解二次函数的导数,可以得到函数的极值点,从而确定函数的顶点。
具体而言,对于f(x) = ax^2 + bx + c,导数为f'(x) = 2ax + b。
将f'(x) = 0,解得x = -b/(2a),代入原函数,即可求得顶点的坐标。
(2)确定函数的对称轴:二次函数的对称轴是函数曲线的镜像轴,使得函数关于对称轴对称。
对称轴的方程为x = -b/(2a),通过这个方程可以方便地确定函数的对称轴。
(3)求解函数与坐标轴的交点:对于二次函数f(x) = ax^2 + bx + c,当x = 0时,可以求得函数与x轴的交点为(0, c)。
而当y = 0时,可以通过求解二次方程ax^2 + bx + c = 0,来确定函数与y轴的交点。
(4)应用完全平方式解题:在某些情况下,我们可以通过完全平方式,将二次函数转化为完全平方的形式。