煤制气甲烷化反应过程析碳热力学研究
- 格式:pdf
- 大小:219.88 KB
- 文档页数:4
煤制气甲烷化技术对比及研究进展综述摘要:近些年,随着环境承载力的日益减弱,环保压力逐渐增大,同时,各大城市的公共交通相继开展煤改气、油改气工程,对天然气需求量激增,适度发展煤制气项目,开发和储备一批煤制气技术,对于保障能源安全、对外议价等均具有举足轻重的作用。
基于此,本文主要对煤制气甲烷化技术对比及研究进展进行分析。
关键词:煤制气甲烷化;技术对比;研究进展1、甲烷化技术的起源氨合成工业中,由于CO和CO2的氧元素会使氨合成铁催化剂中毒,在合成气进氨合成前需将微量的CO和CO2脱除,脱除方法有液氮洗和微量甲烷化两种方法。
微量甲烷化技术是利用合成气中少量CO和CO2与H2反应转化为CH4,使合成气中CO+CO2小于10mg/m3。
由于微量甲烷化催化剂使用温区较窄(300~450℃),且甲烷化反应放热很大,为防止催化剂床层超温,进微量甲烷化反应器的CO+CO2含量要求不大于0.8%,同时,为防止微量甲烷化镍基催化剂中毒,合成气中要求硫含量小于0.1mg/m3,氯含量小于0.01mg/m3。
由于上述适用条件的限制,使得该催化剂无法在大量甲烷化装置上使用。
2、现有甲烷化技术的对比2.1 Davy甲烷化技术CRG技术最初由英国燃气公司在20世纪60年代末、70年代初开发,20世纪90年代Davy公司获得了CRG技术对外转让许可的专有权,并进一步开发、整合、完善成现在的CRG技术。
Davy甲烷化工艺前两级反应器为串并联的高温反应器,新鲜气一部分与循环气混合进一级反应器,一部分直接进二级反应器。
二级反应器出口的气体部分经循环气压缩机返回一级反应器入口。
在两级高温甲烷化反应器之后,设置多个补充甲烷化反应器。
其具体数量根据原料气成分及对合成天然气中甲烷、CO和H2含量的要求确定。
反应压力3.0~6.0MPa(g),催化剂可在230~700℃使用,副产高压或中压过热蒸汽。
2.2 Tops∮e甲烷化技术Tops∮e甲烷化工艺原料气经脱硫槽深度脱硫和脱氯,与循环气混合后进入GCC反应器,在此反应器内发生CO与H2O反应生成CO2和H2的反应,CO的浓度显著降低,然后进入高温甲烷化反应器。
煤制天然气甲烷化催化剂及机理的研究进展1. 引言1.1 煤制天然气甲烷化催化剂及机理的研究进展概述煤制天然气甲烷化是一种重要的合成气体转化技术,通过将煤制成合成气,再将合成气进行催化转化制备甲烷这一系列反应,可以实现煤资源的高效利用和清洁能源的获取。
在煤制天然气甲烷化的过程中,催化剂起着至关重要的作用。
煤制天然气甲烷化催化剂的性能直接影响到反应的效率和产物选择性,因此对该催化剂及其机理的深入研究具有重要意义。
近年来,研究人员对煤制天然气甲烷化催化剂及机理进行了广泛而深入的探讨,取得了许多重要进展。
通过对反应条件的研究,优化了反应过程中的温度、压力、气体比例等参数,提高了甲烷的产率和选择性。
研究人员还对不同类型的催化剂进行了实验和比较,找到了更高效的催化剂。
对煤制天然气甲烷化的反应机理进行了深入探讨,揭示了反应过程中各种中间体和过渡态的形成及转化规律。
催化剂的表面改性以及再生和稳定性的研究也取得了一定的突破,为进一步提高催化剂的性能和稳定性奠定了基础。
展望未来,随着研究的不断深入,相信煤制天然气甲烷化催化剂及机理的研究将取得更大的突破和发展。
2. 正文2.1 煤制天然气甲烷化反应条件研究煤制天然气甲烷化反应条件研究主要包括反应温度、压力、空速等几个方面。
反应温度是影响煤制天然气甲烷化反应的一个关键因素。
研究表明,适当的反应温度可以提高反应速率和选择性,但过高的反应温度会导致催化剂的失活和产物分解。
反应压力也是影响反应效果的重要因素。
压力的增加可以促进反应的进行,提高产物的收率和选择性,但同时也会增加设备的运行成本。
空速则是影响反应效果的另一个关键参数。
适当的空速可以保证反应物质充分接触,提高反应效率。
在煤制天然气甲烷化反应条件的研究中,需要综合考虑这几个因素,以找到最佳的反应条件,实现高效的生产目的。
2.2 煤制天然气甲烷化催化剂的类型和性能煤制天然气甲烷化催化剂的类型和性能一直是研究的重点之一。
第57卷㊀第6期2019年12月化肥设计C h e m i c a l F e r t i l i z e rD e s i gn D e c .2019专题综述作者简介:肖敦峰(1982年 ),男,湖北仙桃人,2004年毕业于中国地质大学应用化学专业,高级工程师,现主要从事化工设计和管理工作.煤制气甲烷化技术对比及研究进展综述肖敦峰,张大洲,卢文新(中国五环工程有限公司,湖北武汉㊀430223)摘㊀要:介绍了甲烷化技术的起源和目前比较成熟的技术,重点比较了D a v y 和T o p s ϕe 甲烷化技术,阐述了国内外甲烷化技术的研究进展,并展望了其发展趋势.关键词:微量甲烷化;大量甲烷化;无循环甲烷化;等温甲烷化;耐硫甲烷化;析碳d o i :10.3969/j.i s s n .1004-8901.2019.06.001中图分类号:T E 665.3㊀㊀文献标识码:A㊀㊀文章编号:1004-8901(2019)06-0001-05B r i e fC o m p a r i s o na n dR e s e a r c hP r o g r e s s o fM e t h a n a t i o nT e c h n o l o gi e s i nC o a l Gt o GG a s P l a n t s X I A O D u n Gf e n g,Z H A N G D a Gz h o u ,L U W e n Gx i n (W u h u a nE n g i n e e r i n g Co .,L t d .,W u h a n H u b e i ㊀430223,C h i n a )A b s t r a c t :T h i s p a p e r i n t r o d u c e s t h e o r i g i no fm e t h a n a t i o n t e c h n o l o g y a n d t h e r e l a t i v e l y m a t u r e o n e s a t p r e s e n t .W i t h a f o c u s o n t h e c o m pa r i s o n o fD a v y a n dT o p s ϕem e t h a n a t i o n t e c h n o l o g i e s ,i t a l s o e x p o u n d s t h e r e s e a r c h p r o g r e s s o fm e t h a n a t i o n t e c h n o l o g yb o t h i nC h i n a a n d a b r o a d a n d l o o k s i n t o t h e p r o s p ec t s o f i t sde v e l o p m e n t t r e n d .K e yw o r d s :m i c r o m e t h a n a t i o n ;m a s s i v e m e t h a n a t i o n ;n o n Gc y c l i c m e t h a n a t i o n ;i s o t h e r m a l m e t h a n a t i o n ;S u l f u r Gr e s i s t a n t m e t h a n a t i o n ;c a r b o n p r e c i pi t a t i o n d o i :10.3969/j.i s s n .1004-8901.2019.06.001㊀㊀近些年,随着环境承载力的日益减弱,环保压力逐渐增大,同时,各大城市的公共交通相继开展煤改气㊁油改气工程,对天然气需求量激增,而我国的能源结构属于 富煤㊁贫油㊁少气 ,为了将充裕的煤炭资源转化成清洁的甲烷, 十二五 期间,国家能源局积极倡导煤制气项目,其中,甲烷化技术是煤制气产业链中的重要步骤,在此期间,引进国外甲烷化技术建成投产了大唐克旗㊁新疆庆华㊁伊犁新天㊁内蒙古汇能四个大型煤制气项目,同时,利用国内自主开发的焦炉煤气制甲烷技术建成了多个小型煤制气项目,为缓解我国天然气紧张的局面做出了有益贡献.近年来,随着天然气价格改革逐步推进,2015年4月,增量气价格降低了0.44元,存量气价格提高了0.04元,实现价格并轨.2015年11月,将非居民用气门站价格降低0.7元/m3.天然气降价后,煤制气项目盈利难以保证,因此,国内诸多拟建和在建煤制气项目均处于停滞状态.统计数据表明,2017年中国天然气净进口量约920亿m 3,2018年净进口量约940亿m 3,进口量占总消费量的40%,对外依存度很高,因此,适度发展煤制气项目,开发和储备一批煤制气技术,对于保障能源安全㊁对外议价等均具有举足轻重的作用.1㊀甲烷化技术的起源氨合成工业中,由于C O 和C O 2的氧元素会使氨合成铁催化剂中毒,在合成气进氨合成前需将微量的C O 和C O 2脱除,脱除方法有液氮洗和微量甲烷化两种方法.微量甲烷化技术是利用合成气中少量C O 和C O 2与H 2反应转化为CH 4,使合成气中C O+C O 2小于10m g /m 3.由于微量甲烷化催化剂使用温区较窄(300~450ħ),且甲烷化反应放热很大,为防止催化剂床层超温,进微量甲烷化反应器的C O+C O 2含量要求不大于0.8%,同时,为防止微量甲烷化镍基催化剂中毒,合成气中要求硫含量小于0.1m g /m 3,氯含量小于0.01m g/m 3.由于上1述适用条件的限制,使得该催化剂无法在大量甲烷化装置上使用.2㊀现有甲烷化技术的对比20世纪70年代,全世界出现了自工业化革命以来的第一次石油危机,也促使了世界煤化工行业的蓬勃发展.其中最具代表性的是1984年美国大平原建成世界上第一个煤制天然气工厂,该厂以北达科达高水分褐煤为原料,采用14台鲁奇炉(12开2备)纯氧碎煤加压气化生产S N G ,产品气中甲烷含量96%,热值35.6M J /N m 3以上,年产S N G12.7亿N m 3,该厂已正常运行20多年.目前已实现工业化,且有商业化运行业绩的大量甲烷化技术主要有英国D A V Y 公司C R G 技术㊁丹麦T o p s ϕe 公司的T R E M P T M技术㊁德国鲁奇的甲烷化技术.2.1㊀D a v y 甲烷化技术C R G 技术最初由英国燃气公司在20世纪60年代末㊁70年代初开发,20世纪90年代D a v y 公司获得了C R G 技术对外转让许可的专有权,并进一步开发㊁整合㊁完善成现在的C R G 技术.D a v y 甲烷化工艺流程见图1,前两级反应器为串并联的高温反应器,新鲜气一部分与循环气混合进一级反应器,一部分直接进二级反应器.二级反应器出口的气体部分经循环气压缩机返回一级反应器入口.在两级高温甲烷化反应器之后,设置多个补充甲烷化反应器.其具体数量根据原料气成分及对合成天然气中甲烷㊁C O 和H 2含量的要求确定.反应压力3.0~6.0M P a (g ),催化剂可在230~700ħ使用,副产高压或中压过热蒸汽.图1㊀D a v y 甲烷化工艺流程2.2㊀T o ps ϕe 甲烷化技术T o ps ϕe 甲烷化工艺流程见图2,原料气经脱硫槽深度脱硫和脱氯,与循环气混合后进入G C C 反应器,在此反应器内发生C O 与H 2O 反应生成C O 2和H 2的反应,C O 的浓度显著降低,然后进入高温甲烷化反应器.高温反应器两级串联设置,第一级反应器出口为665~675ħ,第二级反应器出口为500~550ħ.T o p s ϕe 甲烷化技术的第一级反应器出口温度(665~675ħ)是所有甲烷化技术中最高的出口温度,且其通过G C C 反应器将入口温度降低到约250ħ,可提高单程甲烷转化率,从而显著降低气体循环比,减小循环气压缩机能力,适当降低装置投资和运行费用.图2㊀T o ps ϕe 甲烷化工艺流程2.3㊀鲁奇甲烷化技术采用鲁奇甲烷化技术的美国大平原煤制气工厂已经运行接近30年,其工艺流程见图3.原料气先进入脱硫槽深度脱硫和脱氯,将硫和氯含量均降至30μg /m 3,深度净化后合成气的一部分与循环气混合进入第一甲烷化反应器,一部分合成气直接进入第二甲烷化反应器,前两级甲烷化反应器采用串并联设置.第一高温甲烷化反应器出口高达650ħ,第二高温甲烷化反应器出口温度为500~600ħ,通过废热锅炉和蒸汽过热器回收热量.在鲁奇甲烷化技术中,前两级甲烷化反应器最初使用B A S F 的高温催化剂,后改用D a v y 催化剂.图3㊀鲁奇甲烷化工艺流程2.4㊀技术对比2.4.1㊀主要工艺参数对比与D a v y 甲烷化相比,T o ps ϕe 甲烷化开发历史㊁业绩等更成熟,且两者还有一些核心差异.以下以某年产10亿N m 3S N G 项目为例,重点讨论两者的差别.T o p s ϕe 甲烷化相较D a v y 甲烷化来说,核心的差异在于增加了一个G C C 调节器,也即C O 变换反应器,且1#和2#主甲烷化反应器出口温度更高.2 化肥设计2019年第57卷两种技术主要参数对比见表1.表1㊀两种技术主要参数对比增加G C C 调节器可使进气温度更低,通过变换放热自身加热,使温度满足1#甲烷化反应器入口条件,在出口温度限定的情况下,床层允许温升更大,单程转化率可更高,循环率更低,循环气压缩机投资和功耗均会降低.且G C C 催化剂能耐受较高浓度的C O 和低温,同时可避免甲烷化催化剂低温失活现象的发生,延长甲烷化催化剂的寿命.另外,T o p s ϕe 技术1#和2#甲烷反应器出口温度更高,进一步降低了循环率.增加G C C 调节器可降低进气中C O 的浓度,降低C O 发生歧化反应而出现析碳的风险.另外,为减少设备台数,降低设备投资,也可将G C C 催化剂装入1#主甲烷化反应器的上方.另外,D a v y 主甲烷化采用串并联工艺,两台反应器操作条件基本相同,T o p s ϕe 甲烷化采用串联工艺,两台反应器仅操作温度相同,气体组分完全不同,T o p s ϕe 甲烷化反应器内主要是高浓度C O 2的甲烷化.两种技术主甲烷化反应器入口参数对比见表2.表2㊀两种技术主甲烷化反应器入口参数对比T o ps ϕe 工艺中2#主甲烷化反应器出口气体温度为527ħ,根据反应平衡,该工艺2#甲烷反应器出口甲烷含量更高,两种技术次甲烷化反应器入口参数对比见表3,表3也证实了此推断.表3㊀两种技术次甲烷化反应器入口参数对比由于T o ps ϕe 技术4#次甲烷化反应器出口气体温度为301ħ,比D a v y 技术温度低,根据反应平衡原理,T o ps ϕe 技术所产的S N G 中甲烷含量更高,具体比较见表4.表4㊀两技术次甲烷化反应器主要参数对比另外,T o ps ϕe 在流程上单独设置了开车风机和5台开车加热器,5台反应器可同时升温,节省了开车时间.但此开车系统会增加装置投资,当有多个系列甲烷化装置时,此开车系统可共用,从而摊薄开车系统的投资成本.2.4.2㊀催化剂对比影响甲烷化催化剂寿命的主要因素为催化剂耐毒性㊁高温烧结和析碳.催化剂毒物主要是硫和氯,因此,在甲烷化反应器之前要设置精脱硫脱氯保护床,将总硫控制在20μg /m 3以内,氯控制在20μg /m 3以内.上述两种工艺均在甲烷化之前设置了保护床,用于深度脱硫和脱氯.抗高温烧结方面,T o ps ϕe 催化剂可长期运行在650~660ħ之间,D a v y 催化剂长期运行在620ħ左右,因此T o ps ϕe 催化剂耐高温性能更好.甲烷化反应中,当操作不慎时,会发生析碳附着在催化剂表面,严重影响催化剂的寿命.浙江工业大学李鑫[1]等人研究了甲烷化反应析碳的条件,证明低温㊁高压和高氢碳比㊁高水气比能降低碳的选择性,特别是在压力超过1.0M P a (g )时,650~750ħ中发生少量析碳;在压力超过2.0M P a (g )时,即使高温也不再发生析碳.因此,只要在开车时控3 第6期肖敦峰,张大洲,卢文新㊀煤制气甲烷化技术对比及研究进展综述制好反应压力和含水量,析碳的可能性就会大幅度降低.上述两种流程中,配置和操作条件均避免了催化剂中毒和析碳的发生,因此两家专利商提供的催化剂保证寿命均为2年,期望寿命均为3年.经过以上分析可见,T o p sϕe和D a v y两种甲烷化技术在工艺流程设计上各具特色,其中,T o p sϕe 工艺在诸多细节的研究更为深入.待庆华㊁汇能等项目长周期运行后,如果催化剂寿命能得到保证,其工艺流程和催化剂的优势会得到更多用户的充分认识.3㊀国内外甲烷化技术研究进展3.1㊀耐高浓度C O2甲烷化催化剂[2]日本日立造船公司和大机安宅工程公司与泰国P T T公用事业勘探开发公司从2012年开始合作开发用C O2制甲烷项目,已经完成第一阶段的研究.该工艺采用一种由大机安宅工程公司与日本东北大学开发的镍基催化剂,并利用可再生能源电解水得到的氢气作为原料.试验在一个管式反应器(管长5m)装置中进行,生产能力1000N m3/h,在相对低温(200ħ)下运行,氢气的转化率达99.3%,超出现有的高性能甲烷化催化剂的转化率(90%).公司计划未来进行第二阶段的放大研究.高浓度C O2甲烷化反应催化剂主要是要实现在低温下的高活性,其催化剂主要是以N i㊁C o㊁R h㊁R u㊁P d等为活性成分的负载型催化剂[2].3.2㊀无循环甲烷化技术美国福斯特惠勒(F o s t e r W h e e l e r)与科莱恩(南方化学)开发了全新的无循环V E S T A煤制天然气工艺.V E S T A无循环甲烷化技术的特点如下.(1)原料气由于未预先脱除C O2,且还添加水蒸气,C O2和水都能用于稀释反应气,从而控制反应温度.由于反应温度可控,循环气压缩机可取消.(2)合成气中C O同时发生变换和甲烷化反应,热量回收效率更高,且便于操作,产品质量稳定可靠.(3)最高操作温度不超过550ħ,避免采用高合金材料,可以显著降低设备费用和维护费用,且废锅和过热器工作条件温和,无金属粉末化风险.(4)甲烷化工序前的脱硫和甲烷化工序后的脱碳共用甲醇再生系统,S N G中的C O2及H2O在甲醇洗工序可完全脱除,取消三甘醇脱水装置.(5)适应各种气化技术所生产的合成气.唯一不足的是甲烷化后再脱碳,由于甲烷在甲醇中的溶解度相对C O和H2来说更高,脱碳时甲烷损失率略高.2014年6月,福斯特惠勒㊁科莱恩与惠生合作建成了一套中试装置,该中试装置由福斯特惠勒提供授权技术,科莱恩提供催化剂,惠生负责工程设计㊁建造及管理运营.2016年完成了所有中试试验,结果表明,该技术已具备商业化应用条件.3.3㊀耐硫甲烷化催化剂[3]如果能成功制备耐硫甲烷化催化剂,大型煤基大量甲烷化全流程技术将可在美国福斯特惠勒无循环甲烷化技术的基础上进一步优化,脱硫和脱碳均在甲烷后进行,进一步降低装置投资,节省运行费用.目前已经有很多钴钼加氢催化剂体系的研究报道,包括催化剂的制备和硫化,相关结论均可借鉴到耐硫直接甲烷化体系的研究中,但是针对耐硫直接甲烷化催化剂的研究相对较少,尤其是对在较低温度下仍具有较高催化活性的研究存在以下问题:①低温条件下耐硫直接甲烷化催化剂活性的提高;②高温条件下甲烷化反应与水汽变换反应的反应速率及相互影响的研究;③耐硫直接甲烷化反应机理缺乏深入的研究;④针对耐硫直接甲烷化体系,从反应器结构和换热设计上进行研究也是一大挑战.目前,已经有一些等温甲烷化和绝热固定床内置换热器等新型反应器的研究和应用,但距离大型化和商业化还有较大距离.北京低碳清洁能源研究所开发的酸性甲烷化催化剂已通过1300h寿命实验.在此之前,临潼化肥所㊁中科大㊁华东理工大学对耐硫甲烷化催化剂均做了较多研发工作.耐硫甲烷化催化剂的开发会给整个行业带来革命性的改变,将极大降低煤制天然气的投资和运行成本,其主要优势体现在以下几个方面.(1)将传统煤制天然气流程中的C O变换装置和甲烷化装置合二为一,取消天然气干燥装置,缩短了流程,降低了装置的投资及占地,同时避免了冷热病,提高了热利用率,增加了高品位蒸汽的产量,减少了低品位热量.(2)采用补充蒸汽的方式来调节净化气中C O 和H2的比例,不需要严格调节氢/碳比例,提高了装置操作的灵活性.(3)采用甲烷后脱硫和脱碳,吸收塔尺寸明显变小,脱硫脱碳部分投资降低.3.4㊀N R MT无循环甲烷化[4]由北京华福㊁大连瑞克㊁中煤龙化联合开发的4 化肥设计2019年第57卷无循环甲烷化新技术(N R MT ,N o n Gr e c yc l e M e t h a Gn a t i o nT e c h n o l o g y )是一项新型甲烷化技术.2015年10月,中国石油和化学工业联合会组织专家对中试装置进行了72h 现场标定,同年11月,中国石油和化学工业联合会组织的专家组在北京对无循环甲烷化工艺技术进行了科技成果鉴定.2016年4月, 年产13亿N m 3合成天然气无循环甲烷化工艺包 通过了中国石油和化学工业联合会组织的专家评审.该工艺的特点是富H 2气和富C O 气按比例逐级加入五级串联的反应器,每一级反应器通过控制反应气中C O 和H 2的浓度来控制反应温度,防止床层超温.该工艺无需循环气压缩机,其工艺流程见图4.图4㊀N R M T 甲烷化工艺3.5㊀等温甲烷化工艺20世纪70年代,L i n d e 公司开发了一种固定床间接换热的等温甲烷化反应器,移热冷管嵌入催化剂床层中,并据此开发了等温甲烷化工艺,但未得到推广应用.上海华西化工科技有限公司(以下简称上海华西)一段等温甲烷化技术是国内第一套长周期工业化运行的一段等温甲烷化焦炉煤气制L N G 装置.一段等温式甲烷化反应技术与多段绝热甲烷化技术相比,具有如下创新点:①甲烷化反应在一台或两台等温反应器内完成,无需气体循环;②甲烷化催化剂使用温度低于300ħ,使用寿命长;③工艺流程较短,相比传统流程可节约投资约2/3.该技术已在上海华西总承包的日处理量为20.4万N m 3焦炉煤气和3.6万N m3高炉煤气的低温甲烷化制液化天然气工业化项目中得到应用.2015年1月,焦炉煤气等温甲烷化反应制天然气技术 通过国家工信部组织的科技成果鉴定.该技术若直接应用于更高C O 浓度的煤基合成气甲烷化反应中,可能会出现超温现象.目前,国内正有多家研究机构对该问题进行研究攻关,其中,2018年煤炭清洁高效利用和新型节能技术 重点专项 合成气/热解气单段等低温甲烷化技术及示范 的目标即为开发新型甲烷化反应器,研究短流程㊁低能耗甲烷化新技术,形成合成气(或热解气)高效甲烷化成套技术,并进行工业示范.3.6㊀国内其他甲烷化技术最新进展在煤制气甲烷化技术开发方面,国内大唐化工研究院㊁中科院大连化物所㊁西南化工研究院㊁新奥等机构均进行了大量研究,目前已完成中试和/或工业化示范,并进行了技术成果鉴定.其中,采用大唐国际化工研究院技术生产的12t 预还原催化剂已应用于大唐克旗煤制气甲烷化装置,实现了国产S N G 催化剂首次在工业装置上的部分国产化替代,预计2019年下半年也将会在大唐阜新煤制气甲烷化装置上全线应用.4㊀结语从目前采用D a v y 和T o ps ϕe 技术建设的大型甲烷化装置运行情况来看,进口甲烷化技术在工艺及装备技术上已没有任何障碍,但可以通过国产化催化剂及工艺的开发,替代进口,进一步降低项目建设费用和操作费用.同时,还要积极开发等温甲烷化㊁高浓C O 2甲烷化㊁无循环甲烷化㊁耐硫甲烷化催化剂及工艺㊁装备等,为煤基合成气㊁焦炉煤气㊁荒煤气等不同气体定制适宜的甲烷化流程,甚至为回收C O 2制甲烷进行积极的探索,为我国天然气供应扩宽来源.煤制气属于高耗能㊁高投资行业,但我国天然气的供应缺口依然巨大,目前,常规天然气的勘探和开采没有重大发现,页岩气短期内也难以形成大量产能,还必须依赖进口.虽然在目前的天然气价格体系下,煤制气项目盈利能力弱,但在市场低迷期需要未雨绸缪,开发自有的技术和装备.在国内现有的煤化工产业基础和原有甲烷化催化剂研究成果基础上,完全有能力开发自主的多样化甲烷化催化剂及甲烷化工艺,为保障我国的能源安全助一臂之力.参考文献:[1]李鑫,韩文峰,魏雪梅,等.反应条件对C O 甲烷化反应平衡及催化剂性能的影响[J ].天然气化工(C 1化学与化工),2016(3):30G36.[2]石华信.利用C O 2生产甲烷的甲烷化新催化剂[J ].石油石化绿色低碳,2014(4):11.[3]贾中宝,杨振,熊杰明,等.耐硫甲烷化催化剂的研究[J ].工业催化,2014(10):785G790.[4]于孟林.中国首创无循环甲烷化新工艺[J ].化工管理,2016(19):65.修改稿日期:2019-10-215 第6期肖敦峰,张大洲,卢文新㊀煤制气甲烷化技术对比及研究进展综述。
煤基合成气制甲烷工艺流程、技术及催化剂研究进展趋势分析宋孝勇【摘要】随着社会经济的发展,工业生产、日常生活对于天然气等能源类的需求越来越大。
提高煤制天然气的生产效率,有利于缓解我国能源需求量增大与生产效率过低之间的矛盾,符合国家发展“能源节约型”和“环境友好型”社会的战略目标。
煤制天然气是煤炭高效清洁利用的重要途径,甲烷化是煤制天然气的关键反应。
推行煤基合成气制甲烷工艺创新,可以显著提高甲烷工艺的制备效率。
针对甲烷化反应的特点,对催化剂使用技术进行优化。
本文根据煤基合成气制甲烷工艺的技术细节展开讨论,提出几点优化制备流程的可行性建议。
%As social economic develops, the requirement for natural gas was more and more in industry and daily life. Improving production efficiency of coal gas could eased the problems of requirements is much higher than production efficiency. Coal gas is the main path of efficient cleaning and utilization. Methanation isthe key reaction for coal gas. Innovation of methane technique by coal based gas can raise preparation efficiency. The cat-alyst use was optimized according to the characters of methane reaction. Some advices were given for optimizing the preparation process.【期刊名称】《化学工程师》【年(卷),期】2016(000)004【总页数】3页(P44-45,43)【关键词】制烷流程;催化剂;煤基合成;模拟研究【作者】宋孝勇【作者单位】盐城工学院,江苏盐城 224001【正文语种】中文【中图分类】TQ546.61.1 甲烷化工艺从煤基合成气制甲烷工艺的工艺流程来看,首先要对煤备料进行初期拣洗工作,将粗制煤炭中的杂质去除,然后在反应器中加入H2,使用加温设备将H2加热,等待产品混合气冷却之后,析出HCl,NH3和脱酸性气体H2S等,使用低温分离的方法将重质芳烃和轻质芳烃析出。
煤制天然气甲烷化工艺技术研究作者:胡传河王亚龙王海涛来源:《中国化工贸易·上旬刊》2017年第06期摘要:从我国的发展现状来看,虽然我国的疆域辽阔,资源丰富,但全球经济一体化仍旧给我国的经济建设带来了很大的压力。
随着资源的不断开采和开发,我国的能源结构逐渐呈现出一种“煤多、油少、气贫的现象。
于是煤制天然气的发展战略就成为优化当下能源结构的一个主要方法,而通过煤制天然气工艺可以有效的减轻我国经济发展中对石油等资源的依赖性,再加上天然气的环保特性,于是利用煤资源加上甲烷化工艺技术制天然气,更受到了人们的关注和重视。
关键词:煤制天然气;甲烷化;工艺;技术;研究随着我国对天然气需求量的逐年增加,人们对煤制天然气工艺的研究越来越迫切,从我国当前煤制品的现状来看,煤制天然气工艺与煤制乙二醇、煤制甲醇以及煤制油相比较而言,煤制天然气的转化率更高,效果更好,而且工艺技术的流程短、见效快。
尤其是甲烷化工艺技术的使用,更是把煤制天然气工艺技术推向更高的层次。
1 煤制天然气甲烷化工艺技术的认识1.1 甲烷化工艺技术的原理分析甲烷化的反应原理主要是利用一氧化碳(CO)和二氧化碳(CO2)与氢气(H2)发生反应,从而生成甲烷(CH4)和水蒸气。
CO+ 3H2 ↔ CH4 +H2OCO2+ 4H2 ↔ CH4 +2H2OCO+ H2O ↔ H2 + CO22CO ↔ CO2+ CCO2+ 2H2 ↔ C +2H2OCO+ H2 ↔ C+ H2O在这个化学反应中需要一定的温度和催化剂,也会产和很高的温度,而且甲烷化反应是一种涉及到气固两相的多组分的系统,在反应中会释放出大量的热量,要想保证甲烷的纯度,必须要进行有效的热量转移1.2 甲烷化工艺技术流程中的注意事项在煤制天然气甲烷化工艺当中会产生大量的热量,而这些热量如果不进行及时的处理就会直接影响到工艺过程的安全性和结果的高效性。
因此,在甲烷化工艺技术的使用过程中,必须要对这部分热量进行疏导。
煤基合成气甲烷化工艺流程的Aspen Plus模拟及分析高振;侯建国;姚辉超;穆祥宇;宋鹏飞;王秀林;马磊【摘要】A typical coal based syngas methanation process model was proposed and simulated by Aspen Plus software.The effects ofsteam/syngas ratio,split ratio and recycle ratio on the temperatures of the parallel first and second stage reactors were investigated by utilizing the sensitivity analysis model,and a preliminary analysis was carried out to reveal the relationships between the control parameters changing and the catalyst performance,energy consumption and economic efficiency,so as to provide guidance and reference for methanation engineering projects.%利用Aspen Plus软件搭建了典型煤基合成气循环甲烷化工艺流程.通过灵敏度分析考察了汽气比、分流比、回流比这三个温度调控参数对平行的一段和二段甲烷化反应的综合影响,初步分析了调控参数的变化与催化剂性能、能耗、经济性的联系,以期为甲烷化工程项目的顺利实施起到一定的指导及借鉴作用.【期刊名称】《天然气化工》【年(卷),期】2017(042)002【总页数】4页(P115-118)【关键词】合成气;甲烷化;过程模拟;Aspen Plus;控制参数【作者】高振;侯建国;姚辉超;穆祥宇;宋鹏飞;王秀林;马磊【作者单位】中海石油气电集团技术研发中心,北京100028;中海石油气电集团技术研发中心,北京100028;中海石油气电集团技术研发中心,北京100028;中海石油气电集团技术研发中心,北京100028;中海石油气电集团技术研发中心,北京100028;中海石油气电集团技术研发中心,北京100028;西南化工研究设计院有限公司,四川成都 610225【正文语种】中文【中图分类】TQ221.11;TQ546.4;TQ019甲烷化过程是将富含CO、CO2和H2的气体在催化剂的作用下生成CH4的过程,属于强放热反应体系。
煤制天然气甲烷化催化剂及机理的研究进展煤制天然气是一种新型的清洁能源,具有资源丰富、技术成熟、排放少的优势,被广泛应用于供热、发电、工业燃料和民用燃气等领域。
其中,煤气化后的合成气经过甲烷化反应后,可获取高品质的煤制天然气。
煤制天然气的甲烷化反应是一个催化过程,通常采用金属氧化物催化剂进行。
在过去的几十年间,煤制天然气催化剂的研究历经多次变革,时至今日,已逐渐从传统的铜系、镍系催化剂向更为高效、环保的钴系催化剂发展。
目前,国内外学者们对煤制天然气甲烷化催化剂及机理进行了大量研究,主要包括以下几个方面:1. 催化剂的表面性质催化剂的表面性质是影响其催化活性的重要因素之一,包括表面含氧量和表面活性位等。
研究表明,表面氧化物能够有效地提高催化活性,特别是那些能够与反应中间体发生氢键相互作用的氧化物,如CeO2和La2O3等。
此外,一些离子掺杂的氧化物,如Al2O3、TiO2等也具有较好的催化效果。
2. 反应机理煤制天然气甲烷化反应的机理经历了数次不同的解释。
传统的机理认为,CO和H2在催化剂表面形成吸附态,并发生水合反应生成羰基和羟基,然后在表面上相互结合经过多步反应生成CH4、CO2和H2O。
而最新的机理研究则认为,反应的关键在于CO和H2的异构化,即CO + H2 → CH3 + O,然后由CH3经过难解离的氢化反应生成CH43. 催化剂设计与改性煤制天然气甲烷化反应中,催化剂的设计与改性是提高其催化活性和稳定性的有效手段。
通常采用催化剂复合改性或载体改性的方式,如复合改性Ag-Co/Al2O3、Ni-Co/CeO2-ZrO2等都取得了良好的催化效果。
此外,纳米技术、离子掺杂和活性位控制等方法也在研究中得到了广泛应用。
总之,煤制天然气甲烷化催化剂及机理的研究是一个复杂而重要的研究领域,对其发展的推动有助于提高煤制气的质量和效率,促进清洁能源的应用,为实现可持续发展作出积极贡献。
《煤炭厌氧发酵产甲烷方法初步研究》篇一一、引言随着全球能源需求的增长和传统能源的逐渐枯竭,煤炭作为重要的化石能源之一,其高效利用和清洁转化成为研究的热点。
近年来,煤炭厌氧发酵产甲烷技术因其能将煤炭资源转化为清洁、高效的能源而被广泛关注。
本论文将就煤炭厌氧发酵产甲烷的方法进行初步研究,以期为该领域提供理论支持和实际应用指导。
二、煤炭厌氧发酵产甲烷的基本原理煤炭厌氧发酵产甲烷是一种生物化学过程,主要通过微生物在无氧或低氧环境下将煤炭中的有机物转化为甲烷气体。
这一过程包括水解、酸化、乙酸化和甲烷生成等阶段。
煤炭中的有机物在微生物的作用下被分解为有机酸,进一步转化为乙酸和氢气,最终在甲烷菌的作用下生成甲烷。
三、煤炭厌氧发酵产甲烷的方法研究1. 原料准备:选择合适的煤炭原料是关键。
本研究所选用的煤炭应具有较高的有机质含量和适宜的碳氮比,以利于微生物的生长和代谢。
2. 预处理:对选定的煤炭进行破碎、筛分和洗涤等预处理,以提高其可生物降解性。
3. 接种与培养:向预处理后的煤炭中加入适量的微生物接种物,并进行适当的培养,以促进微生物的生长和代谢。
4. 发酵过程控制:控制好温度、pH值、发酵时间等参数,以保证厌氧发酵过程的顺利进行。
5. 产物收集与利用:将产生的甲烷气体进行收集,并对其纯度和产量进行检测。
同时,对产生的残渣进行资源化利用,如作为有机肥料等。
四、实验方法与结果分析1. 实验方法:本实验采用不同的煤炭原料和微生物接种物进行对比实验,通过调整温度、pH值等参数,观察其对厌氧发酵过程和产甲烷效果的影响。
2. 结果分析:通过对比实验数据,发现适宜的煤炭原料和微生物接种物对厌氧发酵过程具有显著的促进作用。
同时,适宜的温度和pH值也有利于提高甲烷的产量和纯度。
此外,对残渣进行资源化利用,可以实现废弃物的减量化、资源化和无害化处理。
五、讨论与展望通过对煤炭厌氧发酵产甲烷方法的初步研究,我们发现该方法具有以下优点:一是能够充分利用煤炭资源,实现清洁、高效的能源转化;二是能够产生清洁的甲烷气体,减少环境污染;三是能够对残渣进行资源化利用,实现废弃物的减量化、资源化和无害化处理。
合成气甲烷化工艺技术研究进展发布时间:2022-01-20T09:24:33.595Z 来源:《中国科技人才》2021年第29期作者:梁晨[导读] 具有路线短、能源效率高、过程能耗低、二氧化碳排放量和耗水量相对较少等优势。
伊犁新天煤化工有限责任公司新疆伊犁 835100摘要:合成气完全甲烷化技术是煤制天然气特有的技术,按照反应器类型,合成气甲烷化工艺可以分为绝热固定床、等温固定床、流化床和浆态床等工艺,其中绝热固定床甲烷化工艺成熟并广泛应用于煤制天然气项目。
本文介绍了多种绝热固定床甲烷化工艺,并比较了2种高温绝热固定床甲烷化工艺的流程、技术特点和应用情况。
随着研究工作的不断深入,国内绝热固定床甲烷化技术达到了国际技术同类水平,具备了工业化应用条件,但还需在节能降耗、提高催化剂寿命方面加大研究力度。
关键词:合成气甲烷化;合成天然气;甲烷化工艺;绝热固定床“富煤、贫油、少气”是我国能源资源的特点。
近年来,我国天然气供求严重失衡,大量依赖进口,这一特点决定了煤制天然气是我国能源战略安全与经济发展的必由之路。
煤制天然气作为典型的煤基替代能源战略,具有路线短、能源效率高、过程能耗低、二氧化碳排放量和耗水量相对较少等优势。
国民经济和社会发展第十三个五年规划纲要(“十三五”规划)中提出了支持绿色清洁生产,发展绿色低碳循环产业,坚持节约资源和保护环境的基本国策,坚持可持续发展。
因此发展高效、低碳、洁净的煤炭资源利用技术意义重大1国内煤制天然气发展近况由于国内能源赋存,开发了很多大规模煤制天然气的工业化项目,涉及产能共计2410×108m3/a,目前国家发展改革委员会核准8个煤制天然气项目(见表1),总产能311×108m3/a。
国内煤制天然气项目存在规划多,环评通过率低,开工率低,项目推进缓慢的现状。
大唐阜新煤制天然气项目将于资产重组后开工建设;浙能伊犁新天煤制天然气项目将完成前期手续,尽快启动项目建设;中海油大同、北控鄂尔多斯、苏新能源等煤制天然气项目,将有序开展前期工作。
《煤炭厌氧发酵产甲烷方法初步研究》篇一一、引言随着全球能源需求的增长和传统能源的逐渐枯竭,煤炭作为重要的化石能源之一,其高效利用和清洁转化技术的研究显得尤为重要。
煤炭厌氧发酵产甲烷技术作为一种新兴的煤炭转化技术,具有将煤炭转化为清洁能源的潜力。
本研究初步探讨了煤炭厌氧发酵产甲烷的方法,以期为相关领域的研究提供参考。
二、煤炭厌氧发酵的基本原理煤炭厌氧发酵是指在无氧条件下,利用特定微生物的代谢作用,将煤炭中的有机物质转化为甲烷气体的过程。
该方法能够降低碳排放、实现能源转化并减轻环境压力。
在此过程中,特定的厌氧微生物发挥了重要作用。
它们在适当的温度、湿度、pH值和营养物质等条件下,能够快速将有机物质分解并转化为甲烷气体。
三、煤炭厌氧发酵产甲烷方法的初步研究1. 实验材料与步骤(1)材料:选择适当的煤炭样本,配置营养液(包括碳源、氮源、微量元素等)。
(2)处理过程:对煤炭进行预处理,包括破碎、筛选和浸泡等步骤,以利于微生物的接触和作用。
然后进行厌氧发酵实验,并设置适当的实验条件,如温度、pH值等。
(3)收集数据:定期监测并记录发酵过程中的各项参数,如甲烷产率、发酵时间等。
2. 实验结果分析(1)甲烷产率:通过实验数据发现,在适宜的条件下,煤炭厌氧发酵的甲烷产率较高,且随着发酵时间的延长,甲烷产量逐渐增加。
(2)影响因素:温度、pH值和营养物质等对煤炭厌氧发酵产甲烷的过程具有重要影响。
适宜的温度和pH值有利于微生物的生长和代谢,而充足的营养物质则能提供必要的能量和营养支持。
3. 方法优化与改进(1)选择适宜的煤炭类型:不同种类的煤炭具有不同的化学成分和结构特点,选择适宜的煤炭类型对于提高甲烷产率至关重要。
(2)优化发酵条件:通过调整温度、pH值等参数,可以优化厌氧发酵过程,提高甲烷产率。
此外,添加适量的营养物质也可以促进微生物的生长和代谢。
(3)强化生物技术:通过引入高效的厌氧微生物菌群或采用基因工程技术改良现有菌种,以提高煤炭厌氧发酵的效率和甲烷产率。