第二章热力学第二定律-2系统熵变的计算
- 格式:ppt
- 大小:805.00 KB
- 文档页数:51
第二章热力学第二定律§2.1 热力学第二定律2.1.1 自发过程1、物质自发变化过程的方向与限度——自发过程A、温度不同的两个物体相互接触热总是从高温物体传到低温物体,直到两物体温度相等达到平稳为止。
相反,热不会自动从低温物体传给高温物体,使温差增大。
B、气箱中充有压力不等的空气,抽去隔板空气必定从压力大的左边向压力小的右边扩散,直到整个气箱中压力相等达到平稳为止。
相反,空气不会自动地从低压向高压方向移动,使压力差增大。
C、水总是自发的从高处向低处流动,直到各处的水位相等。
相反,水绝不会自动倒流。
D、锌片投入硫酸铜溶液中,自动地发生置换反应,生成Cu和ZnSO4。
相反,其逆过程是不会自动发生。
…………以上实例说明:自然界中自动发生的过程是自然地朝着一定方向变化而趋向平衡。
结论:一切自发过程都有方向性和限度。
、自发过程特点⇨局限性:热力学不可逆性(过程)(单向,趋向平衡)区别于不可能倒着来(以上过程均可以倒着来进行,但环境必须对系统做功。
)3、自发过程的热力学不可逆性——不可逆过程Ex1. 理想气体的真空膨胀(恒温槽中),自发过程。
(1)过程L:W=0、△T=0、△U=0、Q=0;环境没有变化;系统:若要使系统复原,我们可以对系统进行等温可逆压缩L`,使系统回复到始态。
(2)过程L`:环境对系统做功W,由热力学第一定律:0=△U=Q +W∴Q= -W 系统散失了热Q。
环境:损失了功- W、得到了热-Q,总能量不变。
(3)系统经真空膨胀L和等温可逆压缩过程L`的循环后:系统:回复到始态环境:损失了功W、得到了热-Q,总能量不变。
要使环境也复原,就要:从环境(单一热源)中取出热-Q,全部转变为功W,而不留下任何痕迹(即不引起其他变化)。
——是不可能的。
∴理想气体的真空自由膨胀是热力学不可逆过程。
Ex2.高温物体自发传热给低温物体自发过程高温物体T1(环境)传给低温物体T2(系统)热量Q1,达到平衡。
热力学第二定律的熵变计算热力学是研究能量转化和传递的科学,它描述了物质和能量之间的转换关系。
热力学第二定律是热力学中的重要定律之一,它对于能量转化的方向和效率有着重要的影响。
在热力学中,熵是一个重要的物理量,它可以用来描述系统的无序程度。
本文将介绍热力学第二定律的熵变计算方法。
熵(entropy)是热力学中描述系统无序程度的物理量,它通常用符号S表示。
在热力学中,一个孤立系统的熵变(熵的变化量)可以通过以下公式计算:ΔS = ∫(dQ/T)其中,ΔS表示熵的变化量,dQ表示系统吸收或释放的热量,T表示温度。
这个公式表示了系统熵变与系统吸收或释放的热量及温度之间的关系。
对于一个可逆过程, 系统熵的变化量可以用以下公式计算:ΔS = ∆Qrev / T在该公式中,ΔQrev表示系统吸收或释放的可逆过程的热量,T表示系统的温度。
对于一个孤立系统,根据热力学第二定律,熵是一个自然增加的过程。
这意味着系统的熵变应该大于等于零。
当系统处于平衡状态时,系统的熵达到最大值。
根据熵变的计算公式,我们可以通过以下步骤计算熵的变化量:1. 确定系统的初态和末态,即确定系统在开始和结束时的状态。
2. 确定系统吸收或释放的热量,记为ΔQ。
3. 确定系统的温度,记为T。
4. 将ΔQ除以T,得到ΔS的数值。
通过这样的计算,我们可以得到系统在不同状态下的熵变量。
这对于研究系统的能量转化和系统的稳定性具有重要意义。
需要注意的是,熵变的计算需要考虑过程的可逆性。
对于可逆过程,我们可以直接使用熵变的计算公式。
然而,对于不可逆过程,我们需要考虑过程的特点,如是否有摩擦、粘滞、湍流等因素的存在。
总结起来,熵变的计算是热力学中的重要内容之一。
它可以用来描述系统的无序程度及系统的稳定性。
通过熵变的计算,我们可以深入了解能量转化和热力学系统的特性。
在实际中,熵变的计算方法可以应用于化学反应、能量转换等多个领域,为我们提供了强大的工具和理论基础。
熵变△s计算公式推导熵变是指系统从初始状态变为最终状态时,熵的变化量。
熵是热力学中的重要概念,描述了系统的无序程度。
当系统经历一次内部变化时,其熵也会发生改变。
熵变的计算需要用到热力学公式和热力学定律,下面我们来推导熵变的计算公式。
首先,我们需要了解两个热力学定律。
第一定律:能量守恒定律。
系统内能的变化量等于吸收的热量和对外界做的功的和。
∆U=Q+W其中,∆U表示系统内能的变化量;Q表示系统从外界吸收的热量;W表示系统对外界做的功。
第二定律:熵增定律。
系统在任何可能的过程中,熵都会增加。
∆S≥0其中,∆S表示系统熵的变化量。
通过以上两个热力学定律,我们可以推导出熵变的计算公式。
假设系统从初始状态A变为最终状态B,分别对两个状态下的熵值进行计算,得到熵的差值。
∆S = S_B - S_A根据第二定律,熵的变化量需要大于等于零。
因此,如果熵的变化量为负数,则表明这个变化过程是不可逆的。
可以通过下面的公式计算熵变∆S = ∫Q/T其中,Q表示系统从外界吸收的热量;T表示系统在过程中的温度。
该公式表明,系统的熵变量是由吸收热量和温度变化共同决定的。
当系统从高温向低温转移热量时,熵会发生增加。
当系统从低温向高温转移热量时,熵会发生减少。
综上所述,熵变量的计算需要用到第一定律和第二定律,通过计算系统在变化过程中的能量和熵的变化量,我们可以推导出熵变的计算公式。
这个公式是热力学中非常重要的概念,也是研究系统的无序程度和热力学过程中最重要的参考指标之一。
第二章 热力学第二定律第二章 热力学第二定律一、内容提要:本章从热力学第二定律出发,研究了过程(包括化学反应)的方向和限度问题。
过程的方向和限度可以用克劳修斯不等式(ds -T Qδ≥0),ds 隔离≥0,总熵△S 总=△S 环+△S 系≥0来判断;在等温等容和W ’=0条件下,可以用△F ≤0来判断;在等温等压W ’=0,可以用△G=0来判断;对多组分体系,还可以用化学势来判断。
根据热力学第三定律得到规定熵和标准熵进而解决反应熵变的计算。
二、主要公式:⑴△S=T Q RdS -T Q δ≥0 dS(隔)≥0,△S 总=△S 系+△S 环≥0,△rS θm =∑U B S m.B△F ≤0<G ≤0H=U+PVdU=Tds -Pdv F=U -TSdH=Tds +Vdp G=H -TS dF=-sdT -PdvdG=-sdT +Vdp⑵△S 的计算:△S=T Qrδ(等温可定)△S=⎰21T T n Cp.m T dT (等压)△S=⎰21T T n Cv.m TdT⑶理想气体的PVT 变化△S=nRln 12V V =nRln 21P P △S=nRln 12V V +nCv.mln 21T T (温度变化等压)△S=nRln 21P P +nCpmln 12T T (等容变温)⑷相变化:△S=T H∆(可定相变)⑸化学变化:△rS θm =∑V B S θm(T)⑹△G 和△S 的计算:△G=△H -△(TS )(任意过程)△G=△H -T △S (等温)△G=△H -S △T(等熵)⑺△G=⎰21P P Vdp(组成不变的均相封闭系统的等温过程) △G= nRTln 12P P (理气体等温过程)三、思考题 判断正误、说明原因1、自发过程一定是不可逆过程;2、熵增加的过程一定是自发过程;3、绝热可逆过程的△S=0,绝热不可逆膨胀过程的△S >0,绝热不可逆压缩过程的△S <0;4、冰在0℃, 101.325kpa下转变为液态水,其熵变△S=△H/T>0,所以该过程为自发过程。