必修一3-2-2函数模型的应用实例
- 格式:ppt
- 大小:653.00 KB
- 文档页数:35
& 鑫达捷致力于精品文档 精心制作仅供参考 &3.2.2函数模型的应用实例班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.在不考虑空气阻力的情况下,火箭的最大速度v (单位:米/秒)和燃料的质量M (单位:千克)、火箭(除燃料外)的质量m (单位:千克)的函数关系式是v=2 000·ln(1+Mm ).当燃料质量是火箭质量的 倍时,火箭的最大速度可达12千米/秒.2.某地区植被被破坏,土地沙化越来越严重,最近三年测得该地区沙漠面积增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠面积增加值y (单位:万公顷)关于年数x 的函数关系较为近似的是A.y =0.2xB.y =110(x 2+2x )C.y =2x 10D.y =0.2+log 16x3.某厂日产手套总成本y(元)与手套日产量x(副)的函数解析式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )A.200副B.400副C.600副D.800副4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y ={4x,1≤x <10,x ∈N2x +10,10≤x <100,x ∈N 1.5x,x ≥100,x ∈N,其中,x 代表拟录用人数,y 代表面试人数,若应聘的面试人数为60人,则该公司拟录用人数为A.15B.40C.25D.1305.有一批材料可以建成200 m 的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成面积相等的矩形,如图所示,则围成的矩形场地的最大面积为 m 2(围墙厚度不计).6.某种病毒经30分钟可繁殖为原来的2倍,且已知病毒的繁殖规律为y=e kt (其中k 为常数;t 表示时间,单位:小时;y 表示病毒个数),则k= ,经过5小时,1个病毒能繁殖为 个.鑫达捷& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷7.一工厂对某种原料的全年需求量是Q 吨,为保证生产又节省开支,打算全年分若干次等量订购,且每次用完后立即购进.已知每次订购费用是a 元,工厂每天使用的原料数量相同,仓库贮存原料的年保管费用是b 元/吨,问全年订购多少次,才能使订购费用与保管费用之和最少?8.我们知道:人们对声音有不同的感觉,这与它的强度有关系.声音的强度I 用瓦/米2(W/m 2)表示,但在实际测量时,常用声音的强度水平L 1表示,它们满足以下公式:L 1=10∙lg II 0(单位为分贝,L 1≥0,其中I 0=1×10−2W/m 2,这是人们平均能听到的最小强度,是听觉的开端).回答以下问题:(1)树叶沙沙声的强度是1×10−12W/m 2,耳语的强度是1×10−10W/m 2,恬静的无线电广播的强度是1×10−8W/m 2,试分别求出它们的强度水平;(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度I 的范围为多少?【能力提升】通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受能力越强),x 表示提出和讲授概念的时间(单位:分钟),可以有以下公式:f(x)={−0.1x 2+2.6x +43,0<x ≤1059,10<x ≤16−3x +107,16<x ≤30.(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?(2)开讲5分钟时与开讲20分钟时比较,学生的接受能力何时强一些?(3)一道数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?& 鑫达捷致力于精品文档精心制作仅供参考 &3.2.2函课后作业·详细答案课后作业·详细答案【基础过关】1.e6-1【解析】当v=12 000米/秒时,2 000·ln(1+Mm )=12 000,∴ln(1+Mm)=6,∴Mm=e6-1.2.C【解析】由题意得,当x=1时,y=0.2,排除B;当x=2时,y=0.4,排除D;当x=3时,y=0.76,排除A.故选C.3.D【解析】由5x+4 000≤10x,解得x≥800,即日产手套至少800副时才不亏本.4.C【解析】若4x=60,则x=15>10,不合题意;若2x+10=60,则x=25满足题意;若1.5x =60,则x=40<100不合题意.故拟录用人数为25人.5.2 500【解析】设矩形场地的宽为x m,则矩形场地的长为(200-4x)m,则矩形场地的面积S=x(200-4x)=-4(x-25)2+2500(0<x<50),∴x=25时,S max=2 500.6.2ln2 1 024【解析】当t=0.5时,y=2,∴2=e 12k,∴k=2ln 2,∴y=e2t ln 2,当t=5时,y=e10ln 2=210=1 024.7.解:由题意得:订购费与全年保管费用之和为y=na+Q2∙1n∙b.而y=na+Q2∙1n∙b≥2√na∙bQ2n=√2abQ,当na=bQ2n时等号成立;即当n=bQ2a时,y min=√2abQ.【解析】本题考查函数模型及其实际应用.8.(1)由题意可知:树叶沙沙声的强度是I1=1×10-12W/m2,则I1I0=1,所以L I1=10lg1=0,即树叶沙沙声的强度水平为0分贝;耳语的强度是I2=1×10-10W/m2,则I2I0=102,所以L I2=10lg102=20,即耳语的强度水平为20分贝;恬静的无线电广播的强度是I3=1×10-8W/m2,则I3I0=104,所以,L I3=10lg104=40,即恬静的无线电广播的强度水平为40分贝.(2)由题意知:0≤I I<50即0≤10lg II0<50,鑫达捷& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷 所以,1≤II 0<105,即10-12≤I <10-7.所以新建的安静小区的声音强度I 大于或等于10-12W/m 2,同时应小于10-7W/m 2.【解析】(1)代入公式L I =10lg 1I 0即可. (2)列出L I 满足的条件,解不等式.【能力提升】(1)当0<x ≤10时,f(x)=-0.1x 2+2.6x+43=-0.1(x-13)2+59.9.故f(x)在0<x ≤10时,函数值越来越大,最大值为f(10)=-0.1×(10-13)2+59.9=59. 当10<x ≤16时,f(x)=59.当x>16时,f(x)的值越来越小,且f(x)<59,因此,开讲10分钟后,学生达到最强接受能力(为59),能维持6分钟.(2)f(5)=-0.1×(5-13)2+59.9=53.5,f(20)=-3×20+107=47<53.5,故开讲5分钟时学生的接受能力比开讲20分钟时要强一些.(3)当0<x ≤10时,令f(x)=55,解得x=6(x=20舍去).当x>16时,令f(x)=55,解得x=1713. 因此学生达到(含超过)55的接受能力时间为1713-6=1113(分钟)<13(分钟). 故老师来不及在学生一直达到所需接受能力的状态下讲授完这道难题.。
3.2.2 函数模型的应用实例1.用已知函数模型解决实际问题解决已给出函数模型的实际应用题,关键是考虑该题考查的是哪种函数,并要注意定义域,然后结合所给模型,列出函数关系式,最后结合其实际意义作出解答. 解决此类型函数应用题的基本步骤是:第一步:阅读理解,审清题意.读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景.在此基础上,分析出已知是什么,所求是什么,并从中提炼出相应的数学问题.第二步:根据所给模型,列出函数关系式.根据问题的已知条件和数量关系,建立函数关系式,在此基础上将实际问题转化为一个函数问题.第三步:利用数学方法将得到的常规函数问题(即数学模型)予以解答,求得结果. 第四步:再将所得结论转译成具体问题的解答.【例1】我国辽东半岛普兰店附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花.经测定,古莲子出土时14C(半衰期为5 730年)的残余量占原始含量的87.9%,试推算古莲子的生活年代(经过科学鉴定,若14C 的原始含量为Q 0,则经过t 年后的残余量Q 与Q 0之间满足Q =Q 0·e -kt ).解析:利用半衰期求出参数k ,再根据出土的古莲子14C 的残余量求出古莲子的生活年代.解:已知残余量Q 与Q 0之间满足Q =Q 0·e -kt ,其中Q 0是初始量,t 是时间.因为半衰期为5 730年,即当012Q Q 时,t =5 730. 所以e -5 730k =12,解得k ≈0.000 12.所以Q =Q 0·e -0.000 12t . 由题目条件得0Q Q =87.9%,代入上式,解得t ≈1 075. 故古莲子的生活年代约是1 075年前.2.建立函数模型解决实际问题通过收集数据直接去解决问题的一般过程如下:第一步:收集数据.第二步:根据收集到的数在平面直角坐标系内画出散点图.第三步:根据点的分布特征,选择一个能刻画散点图特征的函数模型.第四步:选择其中的几组数据求出函数模型.第五步:将已知数据代入所求出的函数模型进行检验,看其是否符合实际.若不符合实际,则重复第三、四、五步;若符合实际,则进入下一步.第六步:用求得的函数模型去解释实际问题.【例2则x ,y )A .y =a +bxB .y =b xC .y =2a x +b D .y =b x解析:散点图如图所示:由散点图可知,此函数图象不是直线,排除A 选项;此函数图象是“上升”的,因此该函数为增函数,排除C ,D 选项,故选择B .答案:B3.已知函数模型的应用题(1)常用到的函数模型:①正比例函数模型:y =kx (k ≠0);②反比例函数模型:y =cx d ax b++(a ≠0); ③一次函数模型:y =kx +b (k ≠0);④二次函数模型:y =ax 2+bx +c (a ≠0);⑤指数函数模型:y =m ·a x +b (a >0,且a ≠1,m ≠0);⑥对数函数模型:y =m log a x +c (m ≠0,a >0,且a ≠1);⑦幂函数模型:y =k ·x n +b (k ≠0).(2)二次函数模型是高中阶段应用最为广泛的模型.随着新课标的实施,指数、对数函数模型将会起到越来越重要的作用,必将在高考舞台中扮演愈来愈重要的角色._________________________________________________________________________________________________________________________________________________________________________________【例3-1】在不考虑空气阻力的条件下,火箭的最大速度v (m/s)和燃料的质量M (kg)、火箭(除燃料外)的质量m (kg)的关系式为 2 000ln 1M v m ⎛⎫=+⎪⎝⎭.当燃料质量是火箭质量的多少倍时,火箭的最大速度可达12 km/s? 解:由12 000=2 000ln 1M m ⎛⎫+ ⎪⎝⎭,即6=ln 1M m ⎛⎫+ ⎪⎝⎭, 1+M m =e 6,利用计算器算得M m ≈402. 故当燃料质量约是火箭质量的402倍时,火箭的最大速度可达12 km/s .【例3-2】现有甲、乙两桶,由甲桶向乙桶输水,开始时,甲桶有a L 水,t min 后,剩余水y L 满足函数关系式y =a e -nt ,那么乙桶的水就是y =a -a e -nt ,假设经过5 min ,甲桶和乙桶的水相等,则再经过__________min ,甲桶中的水只有8a L . 解析:由题意可得5 min 时,a e -5n =12a ,解得1ln 25n =. 那么剩余水y L 满足的函数关系式为1ln 25t y ae -=.由1ln 251e 8t a a -=,解得t =15. 因此,再经过10 min 后,甲桶中的水只有8a L . 答案:10点技巧 解决已知函数模型应用题的方法 一般来说,若题中已给出了函数模型,通常利用条件列方程(组),解得解析式中的参数的值,这样已知的函数模型完全确定,再将实际问题转化为求函数的函数值或最值等常见的函数问题来解.4.一次函数模型的应用现实生活中很多事例可以用一次函数模型来表示,例如:匀速直线运动的时间和位移的关系,弹簧的伸长和拉力的关系等.对一次函数来说,当一次项系数为正时,表现为匀速增长,即为增函数,一次项系数为负时为减函数.一次函数模型层次性不高,求解也较为容易,一般我们可以用“问什么,设什么,列什么”这一方法来处理.【例4】某列火车从北京西站开往石家庄,全程277 km .火车出发10 min 开出13 km 后,以120 km/h 匀速行驶.试写出火车行驶的总路程s 与匀速行驶的时间t 之间的函数关系式,并求离开北京2 h 时火车行驶的路程.解析:由“匀速行驶”可知总路程s 关于时间t 的函数为一次函数,注意时间t 的范围限制.解:因为火车匀速行驶的时间为27713111205-=(h),所以0≤t ≤115. 因为火车匀速行驶t h 所行驶的路程为120t km ,所以火车行驶的总路程s 与匀速行驶的时间t 之间的函数关系式为s =13+120t 1105t ⎛⎫≤≤ ⎪⎝⎭. 故离开北京2 h 时火车行驶的路程s =13+120×116=233(km). 5.二次函数模型的应用(1)在函数模型中,二次函数模型占有重要的地位,因为根据实际问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的最大、最省问题.(2)在应用题中能够列出函数的解析式解答应用题的实质是要转化题意,寻找所给条件含有相等关系的关键词,用等式把变量联系起来,然后再整理成函数的解析式的形式.常用的方法有:①待定系数法:题目给出了含参数的函数关系式,或可确定其函数模型,此种情形下应用待定系数法求出函数解析式中相关参数(未知系数)的值,就可以得到确定的函数解析式.②归纳法:先让自变量x 取一些特殊值,计算出相应的函数值,从中发现规律,再推广到一般情形,从而得到函数解析式.③方程法:用x ,y 表示自变量及其他相关的量,根据问题的实际意义,运用掌握的数学、物理等方面的知识,列出x ,y 的二元方程,把x 看成常数,解方程得y (即函数关系式),此种方法形式上和列方程解应用题相仿,故称为方程法.______________________________________________________________________________________________________________________________________________________________________________________________________【例5-1】有A ,B 两城相距100 km ,在A ,B 两城之间距A 城x km 的D 地建一核电站给这两城供电.为保证城市安全,核电站与城市距离不得少于10 km .已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A 城供电量为20亿度/月,B 城供电量为10亿度/月.(1)把月供电总费用y 表示成x 的函数,并求定义域;(2)核电站建在距A 城多远时,才能使供电费用最小?解:(1)由题意:y =0.25[20x 2+10(100-x )2]=2100500007.533x ⎛⎫-+ ⎪⎝⎭.∵x ≥10,且100-x ≥10,∴10≤x ≤90.∴函数的定义域为[10,90].(2)由二次函数知当1003x =时,y 最小, 因此当核电站建在距离A 城1003 km 时,供电费用最小. 【例5-2】某企业实行裁员增效,已知现有员工a 人,每人每年可创纯收益(已扣工资等)1万元,据评估在生产条件不变的情况下,每裁员一人,则留岗员工每人每年可多创收0.01万元,但每年需付给每位下岗工人0.4万元的生活费,并且企业正常运转所需人数不得少于现有员工的34,设该企业裁员x 人后年纯收益为y 万元. (1)写出y 关于x 的函数关系式,并指出x 的取值范围.(2)当140<a ≤280时,该企业应裁员多少人,才能获得最大的经济效益?(注:在保证能取得最大经济效益的情况下,能少裁员,应尽量少裁员)解:(1)由题意可知,y =(a -x )(1+0.01x )-0.4x =21140100100100a x x a ⎛⎫-+-+ ⎪⎝⎭. ∵a -x ≥34a ,∴x ≤14a ,即x 的取值范围是区间0,4a ⎡⎫⎪⎢⎣⎭中的自然数. (2)∵2211707010021002a a y x a ⎡⎤⎛⎫⎛⎫=---+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,且140<a ≤280,∴当a 为偶数时,x =2a -70,y 取最大值. 当a 为奇数时,x =12a --70,y 取最大值(∵尽可能少裁人,∴舍去1702a x =-+). ∴当员工人数为偶数时,裁员702a ⎛⎫- ⎪⎝⎭人,才能获得最大的经济效益; 当员工人数为奇数时,裁员1702a -⎛⎫- ⎪⎝⎭人,才能获得最大的经济效益. 6.指数函数模型的应用(1)实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常可以用指数函数模型来表示,在建立函数模型时注意用区分、列举、归纳等方法来探求内在的规律.(2)当实际应用题中没有给出函数模型而函数模型又唯一时,其解题步骤是:第一步:认真读题,缜密审题,确切理解题意,明确问题的实际背景;第二步:恰当地设未知数,列出函数解析式,将实际问题转化成函数问题,即实际问题函数化;第三步:运用所学的数学知识和数学方法解答函数问题,得出函数问题的解;第四步:将所得函数问题的解还原成实际问题的结论.(3)解决函数应用题关键在于理解题意,这就要求:一要加强对常见函数模型的理解,弄清其产生的实际背景,把数学问题生活化;二要不断拓宽知识面,提高自己的间接生活阅历;三要抓住题目中的关键词或关键量,特别是关于变量的相等关系,这是函数解析式的原型.【例6】有一种放射性元素,因放出射线,其质量在不断减少,经测算,每年衰减的百分率相同.若该元素最初的质量为50 g ,经过一年后质量变为40 g .(1)设x (x ≥0)年后,这种放射性元素的质量为y g ,写出y 关于x 的表达式;(2)求经过多长时间,这种放射性元素的质量变为原来的一半?(精确到0.1年,参考数据:lg 2≈0.301 0,lg 3≈0.477 1)思路解析:本题属于降低率问题,建立指数函数模型解决.解:(1)由题意可知每经过一年该放射性元素衰减的百分率为504050-=20%,故y =50(1-20%)x ,则y =50×0.8x (x ≥0).(2)由题意知50×0.8x =25,即0.8x =0.5,则lg 0.8x =lg 0.5,从而可知x lg 0.8=lg 0.5.因此x =lg 0.5lg 20.3010lg 0.83lg 210.90301--=≈--≈3.1. 故约经过3.1年这种放射性元素的质量变为原来的一半.析规律 指数函数模型的应用 在实际问题中,有关增长率(减少率)问题常常用指数函数模型表示.通常可以表示为y =N (1±p )x ,其中N 为基础数,p 为增长率(减少率),x 为时间,增长率问题取“+”,减少率问题取“-”.7.对数函数模型的应用形如y =log a x (a >0,且a ≠1)的函数是对数函数,a >1时,此函数为增函数;0<a <1时,此函数为减函数.虽然直接以对数函数作为模型的应用问题不是很多,但我们要知道,对数运算实际是求指数的运算,因此在指数函数模型中,也常用对数计算.______________________________________________________________________________________________________________________________________________________________________________【例7】燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =25log 10Q ,单位是m/s ,其中Q 表示燕子的耗氧量. (1)计算:燕子静止时的耗氧量是多少个单位? (2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少? 解:(1)由题意知,当燕子静止时,它的速度v =0,代入题给公式可得0=25log 10Q ,解得Q =10.故燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得v =2805log 10=5log 28=15(m/s). 故当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s .8.分段函数模型的应用由于分段函数与日常生活联系紧密,已成为考查的热点;对于分段函数,一要注意规范书写格式;二要注意各段的定义域的表示方法,对于中间的各个分点,一般是“一边闭,一边开”,以保证在各分点的“不重不漏”.例如,某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.试写出订购量与实际出厂单价的函数关系式.解:设每个零件的实际出厂价恰好降为51元时,一次订购量为100+60510.02-=550个. 因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.设一次订购量为x 个,零件的实际出厂单价为P 元,当0<x ≤100时,P =60,当100<x <550时,P =60-0.02(x -100)=62-50x ,当x≥550时,P=51,所以P=f(x)=60,0100,62,100550,5051,550.xxxx<≤⎧⎪⎪-<<⎨⎪≥⎪⎩【例8】某市居民自来水收费标准如下:每户每月用水不超过4 t时,每吨为1.80元,当用水超过4 t时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.解:(1)当甲的用水量不超过4 t,即5x≤4时,乙的用水量也不超过4 t,y=(5x+3x)×1.8=14.4x;当甲的用水量超过4 t,乙的用水量不超过4 t,即3x≤4且5x>4时,y=4×1.80+3x×1.80+3×(5x-4)=20.4x-4.8;当甲、乙的用水量都超过4 t,即3x>4时,y=24x-9.6.故414.4, 0,54420.4 4.80,,534249.6,.3x xy x xx x⎧≤≤⎪⎪⎪=-<≤⎨⎪⎪->⎪⎩(2)由于y=f(x)在各段区间上均为单调递增函数,当x∈40,5⎡⎤⎢⎥⎣⎦时,y≤45f⎛⎫⎪⎝⎭=11.52<26.4;当x∈44,53⎛⎤⎥⎝⎦时,y≤43f⎛⎫⎪⎝⎭=22.4<26.4;当x∈4,3⎛⎫+∞⎪⎝⎭时,令24x-9.6=26.4,解得x=1.5,因此5x=7.5,甲户用水量为7.5 t,甲应付费s1=4×1.80+3.5×3=17.70(元).3x=4.5,乙户用水量为4.5 t.乙应付费s2=4×1.80+0.5×3=8.70(元).点技巧分段函数解析式的求法分段函数的每一段的自变量变化所遵循的规律不同,可先将其看作几个问题,将各段的变化规律分别找出来,再将其合到一起,从而写出函数的解析式.要注意各段自变量的变化范围,特别是端点值.9.拟合函数模型的应用(1)此类题目的解题步骤①作图:根据已知数据作出散点图.画散点图时,首先确定自变量和因变量,再以自变量的值为横坐标,以观察到的对应的因变量的值为纵坐标,在平面直角坐标系中描出各点.当然,如果条件允许,最好借助于计算机画出最准确的散点图.②选择函数模型:根据散点图,结合基本初等函数的图象形状,利用“假设”,找出比较接近的函数模型.这要求会根据图象形状估计函数模型:图象是直线,那么函数模型是一次函数模型y=kx+b(k≠0);图象是抛物线,那么函数模型是二次函数模型y=ax2+bx+c(a≠0);图象位于某条垂直于y轴的直线一侧,与y轴相交,且是“上升”的或“下降”的,那么函数模型是指数函数模型;图象位于某条垂直于x 轴的直线一侧,与x 轴相交,且是“上升”的或“下降”的,那么函数模型是对数函数模型.③根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.④利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.(2)关于“假设”问题就一般的数学建模来说,是离不开“假设”的,如果在问题的原始状态下不作任何“假设”,将所有的变化因素全部考虑进去,对于稍复杂一点的问题就无法下手了.“假设”的作用主要表现在以下几个方面:①进一步明确模型中需要考虑的因素和它们在问题中的作用.通常初步接触一个问题,会觉得围绕它的因素非常多,经仔细分析筛查,发现有的因素并无实质联系,有的因素是无关紧要的,排除这些因素,问题则越发清晰明朗.在“假设”时就可以设这些因素不需考虑.②降低解题难度.经过适当的“假设”可以建立数学模型,使问题简单化,从而得到相应的解.一般情况下,最先在最简单的情形下组建模型,然后通过不断地调整假设使模型尽可能地接近实际,从而得到更满意的解.【例9】某个体经营者把开始六个月试销A ,B 两种商品的逐月投资与所获纯利润列成下表:A 才合算.请你帮助设计一个资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).解:以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如图所示:观察散点图可以看出:A 种商品的所获纯利润y 与投资额x 之间的变化规律可以用二次函数模型进行模拟,如图①所示:取(4,2)为最高点,则y =a (x -4)2+2,再把点(1,0.65)代入,得0.65=a (1-4)2+2,解得a =-0.15.故y =-0.15(x -4)2+2.B 种商品所获纯利润y 与投资额x 之间的变化规律是线性的,可用一次函数模型模拟,如图②所示:设y =kx +b ,取点(1,0.25)和(4,1)代入得0.25,14,k b k b =+⎧⎨=+⎩ 解得0.25,0.k b =⎧⎨=⎩故y =0.25x .因此前6个月所获纯利润y 关于月投资A 种商品的金额x 的函数关系式是y =-0.15(x -4)2+2;前6个月所获纯利润y 关于月投资B 种商品的金额x 的函数关系式是y =0.25x . 设下月投入A ,B 两种商品的资金分别为x A ,x B (万元),总利润为W (万元),则212,0.15(4)20.25,A B A B A B x x W y y x x +=⎧⎨=+=--++⎩ 于是W =-0.152196A x ⎛⎫- ⎪⎝⎭+0.15×2196⎛⎫ ⎪⎝⎭+2.6, 当x A =196≈3.2(万元)时,W 取最大值,约为4.1万元. 此时x B ≈8.8(万元).故该经营者下月把12万元中的3.2万元投资A 种商品,8.8万元投资B 种商品,可获得最大利润约为4.1万元.。
3.2.2函数模型的应用实例学习目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.3.了解建立拟合函数模型的步骤,并了解检验和调整的必要性.知识点一几类已知函数模型知识点二应用函数模型解决问题的基本过程用函数模型解应用题的四个步骤(1)审题——弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模——将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;(3)求模——求解数学模型,得出数学模型;(4)还原——将数学结论还原为实际问题.1.实际问题中两个变量之间一定有确定的函数关系.(×)2.用来拟合散点图的函数图象一定要经过所有散点.(×)3.函数模型中,要求定义域只需使函数式有意义.(×)4.用函数模型预测的结果和实际结果必须相等,否则函数模型就无存在意义了.(×)类型一利用已知函数模型求解实际问题例1某列火车从北京西站开往石家庄,全程277 km.火车出发10 min开出13 km后,以120 km/h的速度匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系,并求火车离开北京2 h内行驶的路程.考点函数模型的应用题点一次、二次函数模型的应用解 因为火车匀速运动的时间为(277-13)÷120 =115 (h),所以0≤t ≤115.因为火车匀速行驶t h 所行驶的路程为120t km ,所以,火车运行总路程S 与匀速行驶时间t 之间的关系是S =13+120t ⎝⎛⎭⎫0≤t ≤115.2 h 内火车行驶的路程S =13+120×⎝⎛⎭⎫2-1060=233(km).反思与感悟 在实际问题中,有很多问题的两变量之间的关系是已知函数模型,这时可借助待定系数法求出函数解析式,再根据解题需要研究函数性质.跟踪训练1 如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.则水位下降1米后,水面宽________米.考点 函数模型的应用题点 一次、二次函数模型的应用 答案 2 6解析 以拱顶为原点,过原点与水面平行的直线为x 轴,建立平面直角坐标系(如图),则水面和拱桥交点A (2,-2),设抛物线所对应的函数关系式为y =ax 2(a ≠0),则-2=a ·22,∴a =-12,∴y =-12x 2.当水面下降1米时,水面和拱桥的交点记作B (b ,-3),将B 点的坐标代入到y =-12x 2中,得b =±6,因此水面宽26米.类型二自建确定性函数模型解决实际问题例2某住宅小区为了营造一个优雅、舒适的生活环境,打算建造一个八边形的休闲花园,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成面积为200米2的十字形区域,且计划在正方形MNPK上建一座花坛,其造价为4 200元/米2,在四个相同的矩形上(图中的阴影部分)铺花岗岩路面,其造价为210元/米2,并在四个三角形空地上铺草坪,其造价为80元/米2.(1)设AD的长为x米,试写出总造价Q(单位:元)关于x的函数解析式;(2)问:当x取何值时,总造价最少?求出这个最小值.考点函数模型的综合应用题点函数模型中的最值问题解(1)设AM=y,AD=x,则x 2+4xy =200,∴y =200-x 24x .故Q =4 200x 2+210×4xy +80×2y 2 =38 000+4 000x 2+400 000x 2(0<x <102).(2)令t =x 2,则Q =38 000+4 000⎝⎛⎭⎫t +100t , 且0<t <200.∵函数u =t +100t 在(0,10]上单调递减,在[10,200)上单调递增,∴当t =10时,u min =20.故当x =10时,Q min =118 000(元).反思与感悟 自建模型时主要抓住四个关键:“求什么,设什么,列什么,限制什么”. 求什么就是弄清楚要解决什么问题,完成什么任务.设什么就是弄清楚这个问题有哪些因素,谁是核心因素,通常设核心因素为自变量. 列什么就是把问题已知条件用所设变量表示出来,可以是方程、函数、不等式等. 限制什么主要是指自变量所应满足的限制条件,在实际问题中,除了要使函数式有意义外,还要考虑变量的实际含义,如人不能是半个等.跟踪训练2 某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.旅游点规定:每辆自行车的日租金不低于3元并且不超过20元,每辆自行车的日租金x 元只取整数,用y 表示出租所有自行车的日净收入.(日净收入即一日中出租的所有自行车的总收入减去管理费用后的所得) (1)求函数y =f (x )的解析式;(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元? 考点 函数模型的应用 题点 分段函数模型的应用解 (1)当3≤x ≤6时,y =50x -115,令50x -115>0, 解得x >2.3.又因为x ∈N ,所以3≤x ≤6,且x ∈N .当6<x ≤20,且x ∈N 时,y =[50-3(x -6)]x -115=-3x 2+68x -115, 综上可知y =f (x )=⎩⎪⎨⎪⎧50x -115,3≤x ≤6,x ∈N ,-3x 2+68x -115,6<x ≤20,x ∈N .(2)当3≤x ≤6,且x ∈N 时,因为y =50x -115是增函数,所以当x =6时,y max =185元. 当6<x ≤20,且x ∈N 时,y =-3x 2+68x -115=-3⎝⎛⎭⎫x -3432+8113, 所以当x =11时,y max =270元.综上所述,当每辆自行车日租金定为11元时才能使日净收入最多,为270元. 类型三 建立拟合函数模型解决实际问题例3 某个体经营者把开始六个月试销A ,B 两种商品的逐月投资金额与所获纯利润列成下表.该经营者准备第七个月投入12万元经营这两种商品,但不知A ,B 两种商品各投入多少万元才合算,请你帮助制定一个资金投入方案,使得该经营者能获得最大纯利润,并按你的方案求出该经营者第七个月可获得的最大纯利润(结果保留两位有效数字). 考点 函数拟合问题题点 据实际问题选择函数模型解 以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如图所示.观察散点图可以看出,A 种商品所获纯利润y 与投资额x 之间的变化规律可以用二次函数模型进行模拟,如图①所示.取(4,2)为最高点,则y =a (x -4)2+2(a ≠0),再把点(1,0.65)代入,得0.65=a (1-4)2+2,解得a =-0.15,所以y =-0.15(x -4)2+2.B 种商品所获纯利润y 与投资额x 之间的变化规律是线性的,可以用一次函数模型进行模拟,如图②所示.设y =kx +b (k ≠0),取点(1,0.30)和(4,1.20)代入,得⎩⎪⎨⎪⎧ 0.30=k +b ,1.2=4k +b ,解得⎩⎪⎨⎪⎧k =0.3,b =0.所以y =0.3x .设第七个月投入A ,B 两种商品的资金分别为x 万元,(12-x )万元,总利润为W 万元,那么W =y A +y B=-0.15(x -4)2+2+0.3(12-x ), 所以W =-0.15(x -3)2+0.15×9+3.2.当x =3时,W 取最大值,约为4.6万元,此时B 商品的投资为9万元.故该经营者下个月把12万元中的3万元投资A 种商品,9万元投资B 种商品,可获得最大利润,约为4.6万元.反思与感悟 在建立和应用函数模型时,准确地把题目要求翻译成数学问题非常重要,另外实际问题要注意实际意义对定义域、取值范围的影响.跟踪训练3 某商场经营一批进价为每件30元的商品,在市场销售中发现此商品的销售单价x 元与日销量y 件之间有如下关系:(1)在所给坐标系中,根据表中提供的数据描出实数对(x ,y )对应的点,并确定x 与y 的一个函数关系式y =f (x ).(2)设经营此商品的日销售利润为P 元,根据上述关系式写出P 关于x 的函数关系式,并指出销售单价x 为多少时,才能获得最大日销售利润. 考点 函数拟合问题题点 据实际问题选择函数模型解 实数对(x ,y )对应的点如图所示,由图可知y 是x 的一次函数.(1)设f (x )=kx +b ,则⎩⎪⎨⎪⎧60=30k +b ,30=40k +b , 解得⎩⎪⎨⎪⎧k =-3,b =150.所以f (x )=-3x +150,30≤x ≤50,检验成立. (2)P =(x -30)·(-3x +150)=-3x2+240x-4 500,30≤x≤50,所以对称轴x=-240=40∈[30,50].2×(-3)答当销售单价为40元时,所获利润最大.1.一辆汽车在某段路程中的行驶路程s关于时间t变化的图象如图所示,那么图象所对应的函数模型是()A.分段函数B.二次函数C.指数函数D.对数函数考点函数拟合问题题点函数拟合问题答案 A2.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x年后剩留量为y,则x,y 的函数关系是( ) A .1000.9576x y = B .y =(0.957 6)100xC .y =⎝⎛⎭⎫0.957 6100xD .10010.042 4xy =-考点 函数模型的应用题点 指数、对数函数模型的应用 答案 A3.某种植物生长发育的数量y 与时间x 的关系如下表:则下面的函数关系式中,拟合效果最好的是( ) A .y =2x -1 B .y =x 2-1 C .y =2x -1 D .y =1.5x 2-2.5x +2 考点 函数拟合问题 题点 函数拟合问题 答案 D4.某同学最近5年内的学习费用y (千元)与时间x (年)的关系如图所示,则可选择的模拟函数模型是( )A .y =ax +bB .y =ax 2+bx +cC .y =a e x +bD .y =a ln x +b考点 函数拟合问题 题点 函数拟合问题答案 B5.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=x25-48x+8 000,已知此生产线年产量最大为210吨.若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?考点函数模型的综合应用题点函数模型中的最值问题解设可获得总利润为R(x)万元,则R(x)=40x-y=40x-x25+48x-8 000=-x25+88x-8 000=-15(x-220)2+1 680(0≤x≤210).∵R(x)在[0,210]上是增函数,∴当x=210时,R(x)max=-15(210-220)2+1 680=1 660(万元).∴年产量为210吨时,可获得最大利润1 660万元.解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题.一、选择题1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A.y =2x -2 B .y =12(x 2-1)C .y =log 2xD .y =12log x考点 函数模型的应用题点 一次、二次函数模型的应用 答案 B解析 由题中表格可知函数在(0,+∞)上是增函数,且y 的变化随x 的增大而增大的越来越快,分析选项可知B 符合,故选B.2.(2017·湖南衡阳、长郡中学等十三校联考)某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )A .2017年B .2018年C .2019年D .2020年 考点 函数模型的应用题点 指数、对数函数模型的应用 答案 D解析 设从2016年起,过了n (n ∈N *)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n ≥200,则n ≥lg2013lg 1.12≈0.30-0.110.05=3.8,由题意取n =4,则n +2 016=2 020.故选D.3.随着我国经济的不断发展,2014年年底某偏远地区农民人均年收入为3 000元,预计该地区今后农民的人均年收入将以每年6%的年平均增长率增长,那么2021年年底该地区的农民人均年收入为( ) A .3 000×1.06×7元 B .3 000×1.067元 C .3 000×1.06×8元 D .3 000×1.068元考点 函数模型的应用题点 指数、对数函数模型的应用 答案 B解析 根据题意,逐年归纳,总结规律建立关于年份的指数型函数模型,设经过x 年,该地区的农民人均年收入为y 元,依题意有y =3 000×1.06x ,因为2014年年底到2021年年底经过了7年,故把x =7代入,即可求得y =3 000×1.067.故选B.4.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14考点 函数模型的应用题点 一次、二次函数模型的应用 答案 A解析 由三角形相似得24-y24-8=x20,得x =54(24-y ),∴S =xy =-54(y -12)2+180(8≤y <24).∴当y =12时,S 有最大值,此时x =15.5.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次试验的数据.根据上述函数模型和试验数据,可以得到最佳加工时间为( )A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟考点 函数模型的应用题点 一次、二次函数模型的应用 答案 B解析 依题意得⎩⎪⎨⎪⎧9a +3b +c =0.7,16a +4b +c =0.8,25a +5b +c =0.5,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2,所以p =-0.2t 2+1.5t -2=-0.2⎝⎛⎭⎫t -1542+1316, 所以当t =3.75时,p 取得最大值,所以最佳加工时间为3.75分钟.故选B.6.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y (只)与时间x (年)近似满足关系y =a log 3(x +2),观测发现2012年冬(作为第1年)有越冬白鹤3 000只,估计到2018年冬有越冬白鹤( )A .4 000只B .5 000只C .6 000只D .7 000只 考点 函数模型应用题点 指数、对数函数模型的应用 答案 C解析 当x =1时,由3 000=a log 3(1+2),得a =3 000,所以到2018年冬,即第7年,y =3 000×log 3(7+2)=6 000.故选C.7.某商场出售一种商品,每天可卖1 000件,每件可获利4元.据经验,若这种商品每件每降价0.1元,则比降价前每天可多卖出100件,为获得最好的经济效益,每件售价应降低的价格为( )A .2元B .2.5元C .1元D .1.5元 考点 函数模型的综合应用 题点 函数模型中最值问题 答案 D解析 设每件降价0.1x 元,则每件获利(4-0.1x )元,每天卖出商品件数为(1 000+100x ),利润y =(4-0.1x )·(1 000+100x )=-10x 2+300x +4 000=-10(x 2-30x +225-225)+4 000=-10(x -15)2+6 250.∴当x =15时,y max =6 250.故每件售价降低1.5元时,可获得最好的经济效益.8.在股票买卖过程中,经常用到两种曲线:一种是即时价格曲线y =f (x ),另一种是平均价格曲线y =g (x ).例如,f (2)=3是指开始买卖2小时的即时价格为3元;g (2)=3是指开始买卖2小时内的平均价格为3元.下图给出的四个图象中,实线表示y =f (x ),虚线表示y =g (x ),其中可能正确的是( )考点 函数拟合问题题点 据实际问题选择函数模型 答案 C解析 开始时平均价格与即时价格一致,排除A ,D ;平均价格不能一直大于即时价格,排除B. 二、填空题9.工厂生产某种产品的月产量y (万件)与月份x 满足关系y =a ·0.5x +b ,现已知该厂今年1月份,2月份生产该产品分别为1万件,1.5万件,则此工厂3月份生产该产品的产量为________万件.考点 函数模型的应用题点 指数、对数函数模型的应用 答案 1.75解析 由题意有⎩⎪⎨⎪⎧1=0.5a +b ,1.5=0.25a +b ,解得⎩⎪⎨⎪⎧a =-2,b =2,∴y =-2×0.5x +2,∴3月份产量为y =-2×0.53+2=1.75(万件).10.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg /mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,一个喝了少量酒后的驾驶员,至少经过________小时才能开车.(精确到1小时,参考数据:lg 3≈0.477,lg 4≈0.602)考点 函数模型的应用题点 指数、对数函数模型的应用 答案 5解析 设至少经过x 小时才能开车,由题意得0.3(1-25%)x ≤0.09,∴0.75x ≤0.3,x ≥log 0.750.3≈4.2.11.现测得(x ,y )的两组对应值分别为(1,2),(2,5),现有两个待选模型,甲:y =x 2+1,乙:y =3x -1,若又测得(x ,y )的一组对应值为(3,10.2),则应选用________作为函数模型. 考点 函数拟合问题题点 据实际问题选择函数模型 答案 甲解析 将x =3分别代入y =x 2+1及y =3x -1中,得y =32+1=10,y =3×3-1=8.由于10更接近10.2,所以选用甲模型. 三、解答题12.牧场中羊群的最大畜养量为m 只,为保证羊群的生长空间,实际畜养量不能达到最大畜养量,必须留出适当的空闲量.已知羊群的年增长量y 只和实际畜养量x 只与空闲率的乘积成正比,比例系数为k (k >0).(1)写出y 关于x 的函数解析式,并指出这个函数的定义域; (2)求羊群年增长量的最大值;(3)当羊群的年增长量达到最大值时,求k 的取值范围. 考点 函数模型的综合应用 题点 函数模型中的最值问题解 (1)根据题意,由于最大畜养量为m 只,实际畜养量为x 只,则畜养率为xm ,故空闲率为1-xm ,由此可得y =kx ⎝⎛⎭⎫1-x m (0<x <m ). (2)对原二次函数配方,得y =-km (x 2-mx )=-k m ⎝⎛⎭⎫x -m 22+km 4. 即当x =m 2时,y 取得最大值km4.(3)由题意知为给羊群留有一定的生长空间,则实际畜养量与年增长量的和小于最大畜养量,即0<x +y <m .因为当x =m 2时,y max =km 4,所以0<m 2+km4<m ,解得-2<k <2.又因为k >0,所以0<k <2.即k 的取值范围是(0,2).13.季节性服装的销售当旺季来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后旺季过去,平均每周减价2元,直到16周后,该服装不再销售. (1)试建立价格p 与周次t 之间的函数关系式;(2)若此服装每周进货一次,每件进价Q 与周次t 之间的关系式为Q =-0.125(t -8)2+12,t ∈[0,16],t ∈N ,试问该服装第几周每件销售利润最大?最大值是多少? 考点 函数模型的综合应用 题点 函数模型中的最值问题解 (1)p =⎩⎪⎨⎪⎧10+2t ,t ∈[0,5],t ∈N ,20,t ∈(5,10],t ∈N ,40-2t ,t ∈(10,16],t ∈N .(2)设第t 周时每件销售利润为L (t ),则L (t )=⎩⎪⎨⎪⎧10+2t +0.125(t -8)2-12,t ∈[0,5],20+0.125(t -8)2-12,t ∈(5,10],40-2t +0.125(t -8)2-12,t ∈(10,16]=⎩⎪⎨⎪⎧0.125t 2+6,t ∈[0,5],t ∈N ,0.125(t -8)2+8,t ∈(5,10],t ∈N ,0.125t 2-4t +36,t ∈(10,16],t ∈N .当t ∈[0,5],t ∈N 时,L (t )单调递增, L (t )max =L (5)=9.125;当t ∈(5,10],t ∈N 时,L (t )max =L (6)=L (10)=8.5;当t ∈(10,16],t ∈N 时,L (t )单调递减, L (t )max =L (11)=7.125.由9.125>8.5>7.125,知L (t )max =9.125.从而第5周每件销售利润最大,最大值为9.125元. 四、探究与拓展14.某商场在国庆促销期间规定,商场内所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如,购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×0.2+30=110(元).若顾客购买一件标价为1 000元的商品,则所能得到的优惠额为________元.考点函数模型的应用题点分段函数模型的应用答案330解析依题意知,得到的优惠额为1 000×(1-80%)+130=200+130=330(元).15.某池塘中野生水葫芦的面积与时间的函数关系的图象如图所示,假设其关系为指数函数,并给出了下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m2;③野生水葫芦从4 m2蔓延到12 m2只需1.5个月;④设野生水葫芦蔓延到2 m2,3 m2,6 m2所需的时间分别为t1,t2,t3,则有t1+t2=t3.其中正确的说法有________.(请把正确说法的序号都填在横线上)考点函数模型的应用题点指数、对数函数模型的应用答案①②④解析该指数函数的解析式为f(x)=2x,所以①正确;当x=5时,f(5)=32>30,所以②正确;由f(x1)=2x1=4和f(x2)=2x2=12,得x1=2,x2=log212=2+log23,所以x2-x1=log23>1.5,所以③错误;设2t1=2,2t2=3,2t3=6,则t1=1,t2=log23,t3=log26,则t1+t2=1+log23=log2(2×3)=log26=t3,所以④正确.。