方差分析方法
- 格式:doc
- 大小:2.84 MB
- 文档页数:46
统计学中的多元方差分析方法统计学是一门研究数据收集、分析和解释的学科,它在各个领域都有广泛的应用。
其中,多元方差分析是一种重要的统计方法,用于比较两个或多个组之间的差异。
本文将介绍多元方差分析的基本概念、应用场景以及实施步骤。
一、多元方差分析的基本概念多元方差分析是一种多变量分析方法,它考察的是一个或多个自变量对多个因变量的影响。
与单变量方差分析相比,多元方差分析能够同时分析多个因变量之间的差异,从而更全面地了解自变量对因变量的影响。
多元方差分析的基本假设包括:各组样本来自总体分布相同的总体、各组样本之间相互独立、各组样本的观测值是独立的、各组样本的方差齐性、各组样本的残差服从正态分布。
二、多元方差分析的应用场景多元方差分析广泛应用于社会科学、医学研究、市场调研等领域。
例如,在社会科学中,研究人员可能想要了解不同教育水平对个体的经济收入、职业满意度和幸福感的影响。
在医学研究中,研究人员可能想要比较不同治疗方法对患者生存率、疾病进展和生活质量的影响。
多元方差分析可以帮助研究人员确定自变量对多个因变量的影响是否存在显著差异。
三、多元方差分析的实施步骤进行多元方差分析需要经过一系列的步骤。
首先,需要明确研究的目的和问题,并确定自变量和因变量。
其次,需要收集相关数据,并对数据进行预处理,包括数据清洗、缺失值处理和异常值检测等。
然后,进行方差分析的假设检验,判断组间差异是否显著。
最后,进行进一步的分析,如事后检验和效应量计算,以深入了解各组之间的差异。
在多元方差分析中,有几个重要的统计量需要关注。
首先是Wilks' Lambda,它是一种衡量组间差异的统计量,取值范围为0到1,值越接近0表示组间差异越显著。
其次是F统计量,用于检验组间差异的显著性,其值越大,差异越显著。
此外,还有一些其他的统计量,如部分η²和Cohen's d,用于衡量效应大小和实际差异的重要性。
总之,多元方差分析是一种重要的统计方法,能够帮助研究人员比较两个或多个组之间的差异。
正交试验结果的方差分析方法计算公式和项目试验指标的加和值=,试验指标的平均值与表4-13一样,第j列的(1) I j”水平所对应的试验指标的数值之和(2) II j——“ 2”水平所对应的试验指标的数值之和(3)……(4) k j——同一水平出现的次数。
等于试验的次数除以第j列的水平数.(5)I j/k j——“水平所对应的试验指标的平均”(6)II j/k j——“2”水平所对应的试验指标的平均值(7)……以上各项的计算方法,与“极差法”同,见4.1.7节(8)偏差平方和(4-1)(9) fj ——自由度.fj第j列的水平数-1.(10)Vj——方差.Vj =Sj/fj(4-2)(11)Ve——误差列的方差。
(4-3)(12)Fj——方差之比(4-4)(13)查F分布数值表(见附录6),做显著性检验。
显著性检验结果的具体表示方法与第3章相同。
(14)总的偏差平方和(4-5) (15)总的偏差平方和等于各列的偏差平方和之和。
即(4-6) 式中,m为正交表的列数。
若误差列由5个单列组成,则误差列的偏差平方和S e等于5个单列的偏差平方和之和,即:S e=S e1+S e2+S e3+S e4+S e5;也可用S e= S总-S’来计算,其中:S’为安排有因素或交互作用的各列的偏差平方和之和应引出的结论。
与极差法相比,方差分析方法可以多引出一个结论:各列对试验指标的影响是否显著,在什么水平上显著。
在数理统计上,这是一个很重要的问题。
显著性检验强调试验误差在分析每列对指标影响中所起的作用。
如果某列对指标的影响不显著,那么,讨论试验指标随它的变化趋势是毫无意义的。
因为在某列对指标的影响不显著时,即使从表中的数据可以看出该列水平变化时,对应的试验指标的数值也在以某种“规律”发生变化,但那很可能是由于实验误差所致,将它作为客观规律是不可靠的。
有了各列的显著性检验之后,最后应将影响不显著的交互作用列与原来的“误差列”合并起来,组成新的“误差列”,重新检验各列的显著性。
利用ANOVA进行方差分析的方法与应用方差分析(Analysis of Variance,简称ANOVA)是一种常用的统计方法,用于比较两个或多个样本均值是否存在显著差异。
它通过分析样本之间的方差差异,来判断所比较的几个总体均值是否存在差异。
ANOVA方法的应用非常广泛,涵盖了各个领域,比如医学、教育、社会科学等。
一、方差分析的基本原理方差分析的基本原理是基于总体均值之间的方差来进行比较。
假设我们有k个样本,每个样本的个数分别为n1、n2、...、nk,总样本数为N。
我们要比较的是k个总体的均值是否存在差异。
方差分析的核心思想是将总体的方差分解为两个部分:组间方差和组内方差。
组间方差反映了不同样本均值之间的差异,而组内方差则反映了同一样本内部的个体差异。
如果组间方差远大于组内方差,那么就可以认为各个样本的均值存在显著差异。
二、方差分析的步骤方差分析的步骤可以分为以下几个步骤:建立假设、计算统计量、确定显著性水平、做出决策。
1. 建立假设:在进行方差分析之前,需要明确研究者的假设。
通常情况下,我们将原假设(H0)设为各个总体均值相等,备择假设(Ha)设为各个总体均值不全相等。
2. 计算统计量:方差分析的统计量是F值。
计算F值的公式为F = 组间均方/组内均方。
其中,组间均方是组间方差除以自由度,组内均方是组内方差除以自由度。
3. 确定显著性水平:在进行方差分析时,需要确定显著性水平,通常为0.05或0.01。
显著性水平是指在原假设成立的情况下,观察到统计量的概率。
如果观察到的概率小于显著性水平,就可以拒绝原假设。
4. 做出决策:根据计算得到的F值和显著性水平,可以做出决策。
如果F值大于临界值,就可以拒绝原假设,认为各个总体均值存在显著差异;如果F值小于临界值,就接受原假设,认为各个总体均值没有显著差异。
三、方差分析的应用方差分析可以应用于各个领域,下面以医学研究为例进行说明。
在医学研究中,方差分析常用于比较不同治疗方法的疗效。
方差分析方法的不足
方差分析法是一种假设检验的方法,它是分析目标在于检验各组的均值间差异是否在统计意义上显著,与其类似的统计方法还有t检验、卡方检验等,不同检验方法各有其不同的使用场景,下文就来讲讲方差分析法的优缺点、spss方差分析法检验显著性差异的具体步骤。
方差分析法的优点在于:
(1)它不受统计组数的限制,可接受大样本统计数量进行多重比较,能够充分地利用试验所提供数据来估计试验误差,可以将各因素对试验指标的影响从试验误差中分离开,是一种定量分析方法,可比性强,分析精度高;
(2)方差分析可以考察多个因素的交互作用。
方差分析法的缺点在于:
(1)涉及到全部数据,计算复杂;
(2)前提条件较为苛刻,需要数据样本之间相互独立,且满足正态分布和方差齐性,所以需要对数据进行方差齐性检验。
统计学中的方差分析方法统计学是现代社会中最重要的学科之一,它基于大量的数据和数学模型,研究人类社会和自然环境中各种现象和规律。
其中,方差分析是统计学中最基本的分析方法之一,它常常被用来分析各种因素对某个变量的影响。
在本文中,我们将详细介绍方差分析方法的基本原理和应用。
一、方差分析的基本原理方差分析是利用方差的性质分析多组数据之间的差异或相似性的方法。
它是以方差分解为基础的,通过对总方差、组间平方和和组内平方和的分解,来度量实验因素对实验变量的影响。
在具体的研究过程中,我们通常将所研究的因素分为不同的组别,并在每个组别中测量实验变量的值,随后运用方差分析方法来分析不同组别之间的差异。
在方差分析中,我们通常采用F检验法来判断差异的显著性。
通过计算F值并与临界值进行比较,得出数据是否符合研究假设的结果。
如果F值大于临界值,则说明差异是显著的,反之则说明差异不显著。
F检验法在实际应用中非常广泛,适用于大多数实验设计和数据类型。
二、方差分析的应用方差分析方法可以用于各种不同类型的数据分析,如一元方差分析、双因素方差分析、三因素方差分析等等。
下面我们将分别介绍它们的应用。
1. 一元方差分析一元方差分析是指只有一个自变量和一个因变量的分析方法,也就是说只有一个因素影响一个变量。
一元方差分析通常用于分析实验组与对照组之间的差异或者不同处理方式对实验结果的影响等。
例如,我们要研究不同肥料对作物产量的影响,我们可以将实验分成几组,每组采用不同的肥料,最后对产量进行测量。
接着通过方差分析法来比较每组之间产量的差异,最后确定哪种肥料更适合提高作物产量。
2. 双因素方差分析双因素方差分析是指有两个自变量和一个因变量的分析方法,也就是说有两个因素对一个变量产生影响。
双因素方差分析通常用于研究两种或多种因素的交互效应。
例如,我们要研究不同机器和不同操作员对产品质量的影响,我们可以先在不同机器上制造同种产品,然后再让不同的操作员进行操作。
什么是方差分析关键信息项:1、方差分析的定义2、方差分析的目的3、方差分析的应用场景4、方差分析的类型5、方差分析的步骤6、方差分析的结果解读7、方差分析的局限性8、方差分析与其他统计方法的比较11 方差分析的定义方差分析(Analysis of Variance,简称 ANOVA)是一种用于比较两个或多个总体均值是否存在显著差异的统计方法。
它通过分析数据的变异来源,来判断不同因素对观测变量的影响程度。
111 基本原理方差分析基于总体方差可以分解为各个因素所引起的方差之和的原理。
通过比较不同因素水平下的组间方差和组内方差,来确定因素对观测变量的影响是否显著。
112 数学模型一般来说,方差分析的数学模型可以表示为:观测值=总体均值+因素效应+随机误差。
12 方差分析的目的其主要目的是检验不同水平的因素对因变量的均值是否有显著影响。
121 探究因素的作用确定哪些因素对观测结果有重要影响,哪些因素的影响可以忽略不计。
122 比较不同处理的效果例如在实验研究中,比较不同实验处理条件下的结果是否存在显著差异。
13 方差分析的应用场景131 农业科学用于比较不同种植方法、施肥量、品种等对农作物产量的影响。
132 医学研究分析不同药物剂量、治疗方案对患者康复效果的差异。
133 工业生产研究不同生产工艺、原材料对产品质量的作用。
134 社会科学例如在心理学、教育学中,比较不同教学方法、教育环境对学生成绩或心理状态的影响。
14 方差分析的类型141 单因素方差分析只考虑一个因素对观测变量的影响。
142 双因素方差分析同时考虑两个因素的交互作用对观测变量的影响。
143 多因素方差分析涉及多个因素及其交互作用对观测变量的综合影响。
15 方差分析的步骤151 提出假设包括零假设(各总体均值相等)和备择假设(至少有两个总体均值不相等)。
152 计算统计量根据数据计算组间平方和、组内平方和等,进而得到 F 统计量。
153 确定显著性水平通常设定为 005 或 001 等。
方差分析中均值比较的方法方差分析是统计学中常用的一种假设检验方法,用于比较多个样本均值是否有显著差异。
它通过分析不同组之间的方差来判断均值是否有显著差异,即通过计算组间的均方和组内的均方来进行比较。
方差分析有两种基本类型:单因素方差分析和多因素方差分析。
1.单因素方差分析:单因素方差分析主要是比较一个因素对于结果的影响,只有一个自变量。
在进行单因素方差分析时,首先需要确定因变量的类型是连续型还是离散型。
对于连续型的因变量,通常使用单因子方差分析方法;对于离散型的因变量,可以使用卡方检验等方法。
(1)单因素方差分析有三个基本要素:因变量、自变量和一个或多个水平。
因变量是研究对象,自变量是影响因子,水平是不同的取值类型。
(2)计算组间方差和组内方差。
组间方差是因变量的总方差被解释的部分,组内方差是因变量的多余差异(误差)。
方差的比例是判断均值是否有显著差异的依据。
(3)计算F值。
F值是组间均方除以组内均方。
F值越大,表示组间差异越大,样本均值差异的可靠性越高,有显著差异的可能性越大。
(4)根据F分布表和显著性水平(通常为0.05),确定拒绝域。
如果计算得到的F值大于F分布表中的临界值,就拒绝原假设,即认为组间均值存在显著差异。
2.多因素方差分析:多因素方差分析是在单因素方差分析的基础上,增加了一个或多个自变量,用来研究多个因素对于结果的影响以及交互作用。
多因素方差分析可以更全面地研究各因素的影响,并考虑因素之间的关系。
(1)主效应。
主效应用来检验各个自变量对于因变量的影响是否显著。
计算各个因素的F值和显著性水平。
(2)交互效应。
交互效应是指两个或多个因素之间的相互作用导致的影响,即一些因素对于因变量的影响在其他因素不同水平下是否有显著差异。
计算交互效应的F值和显著性水平。
(3)解释方差。
计算组间方差、组内方差、主效应方差和交互效应方差的比例来判断各个因素的影响程度。
注意事项:1.在进行方差分析之前,需要进行方差齐性和正态性检验,确保数据符合方差分析的前提条件。
方差分析与显著性检验方差分析(ANOVA)是一种用于比较两个或多个组之间均值差异是否显著的统计方法,而显著性检验则是用来评估差异是否真实存在的一种统计检验方法。
本文将重点探讨方差分析与显著性检验的原理和应用。
一、方差分析的原理方差分析的原理基于多组数据之间的方差差异,通过计算组间方差与组内方差之比(F比)来判断组间均值是否存在显著差异。
其原理可以概括为以下几个步骤:1. 建立假设:首先,我们需要建立一个原假设和一个备择假设。
原假设通常假定两个或多个组的均值没有显著差异,备择假设则相反。
2. 计算方差:通过计算每个组的方差以及整体数据的方差,可以得出组间方差和组内方差。
3. 计算F比:将组间方差与组内方差做比较,即计算F比值。
F比值越大,说明组间差异越显著。
4. 判断显著性:利用F分布表和显著性水平,我们可以确定F比的临界值,如果计算得到的F比大于临界值,则拒绝原假设,认为组间均值存在显著差异。
二、显著性检验的步骤显著性检验是用于验证方差分析结果的一种统计方法,它能够评估差异是否真实存在,具体步骤如下:1. 建立假设:同样需要建立原假设和备择假设。
原假设通常是两个或多个样本的总体均值没有显著差异,备择假设则相反。
2. 选择显著性水平:根据研究需求,我们需要选择一个显著性水平,通常为0.05或0.01。
显著性水平越小,要求证明显著差异的难度越大。
3. 计算统计量:根据所选的统计方法,计算得到相应的统计量。
比如,对于两个样本均值比较的情况,可以使用t检验,计算得到t值。
4. 判断显著性:根据显著性水平和计算得到的统计量,查找对应的临界值。
如果计算得到的统计量大于临界值,就可以拒绝原假设,认为样本均值存在显著差异。
三、方差分析与显著性检验的应用方差分析和显著性检验广泛应用于各个领域的研究中,特别是在比较多个组之间差异的时候。
以下是一些常见的应用场景:1. 医学研究:用于比较不同治疗方法或药物对患者的疗效差异,例如,比较药物A、B、C对某病患者的治疗效果。
交叉设计方差分析操作方法
交叉设计方差分析是一种用于比较多个因素对实验结果的影响的统计方法。
下面是交叉设计方差分析的操作方法:
1. 收集实验数据:根据实验设计,收集各因素的实验数据。
确保数据的准确性和完整性。
2. 设计分组:根据实验目的和因素的水平,将实验对象分成不同的组别。
每个组别代表一个因素的不同水平的组合。
3. 进行实验:对每个组别进行实验,记录相应的实验结果。
尽量控制其他因素的干扰,使每个组别之间的差异主要由因素水平的差异引起。
4. 计算总体均值:根据实验数据,计算每个组别的总体均值。
5. 计算组间变异和组内变异:计算组别之间的变异和组别内的变异。
组间变异反映了因素水平对实验结果的影响,而组内变异则是由于实验误差引起的。
6. 计算组间均方和组内均方:计算组间变异和组内变异的均方。
均方是方差的无偏估计。
7. 计算F统计量:将组间均方除以组内均方,得到F统计量。
F统计量反映了
因素水平对实验结果的显著性影响。
8. 进行假设检验:根据F统计量和自由度,进行假设检验,判断因素水平对实验结果是否有显著的影响。
9. 进行事后分析:如果发现因素水平对实验结果有显著影响,可以进行事后分析,确定哪些因素水平之间存在差异。
常用的事后分析方法包括Tukey's HSD 和Bonferroni校正等。
10. 结果解释和报告:最后,根据实验结果进行结果解释和报告。
解释因素水平对实验结果的影响,并提出相应的结论和建议。
方差分析与卡方检验方差分析(Analysis of Variance),简称ANOVA,是一种用于比较两个或多个组之间差异的统计方法。
它通过比较组内变异与组间变异的大小来判断不同组之间是否存在显著差异。
卡方检验(Chi-Square Test),又称χ²检验,是一种用于检验实际观测值与理论预期值之间是否存在显著差异的统计方法。
方差分析和卡方检验是常用的两种统计分析方法,本文将分别对它们进行介绍和比较。
一、方差分析方差分析是一种基于方差的统计方法,用于比较两个或多个样本均值之间的差异。
它适用于多个独立样本或多个相关样本之间的比较。
具体的步骤如下:1. 假设检验方差分析的假设检验通常基于以下假设:- 零假设(H0):各组样本的均值相等。
- 备择假设(H1):至少有一个组样本的均值与其他组不同。
2. 计算统计量方差分析中常用的统计量是F值。
F值是组间均方与组内均方之比,其具体计算公式为:F = 组间均方 / 组内均方3. 比较临界值根据给定的显著性水平(通常为0.05),查表或计算得到临界值。
4. 做出判断如果计算得到的F值大于临界值,则拒绝零假设,认为各组样本的均值存在显著差异;否则,接受零假设,认为各组样本的均值相等。
二、卡方检验卡方检验是一种用于检验实际观测值与理论预期值之间差异的统计方法。
它适用于分类变量之间的比较。
具体的步骤如下:1. 假设检验卡方检验的假设检验通常基于以下假设:- 零假设(H0):实际观测值与理论预期值之间无显著差异。
- 备择假设(H1):实际观测值与理论预期值之间存在显著差异。
2. 构建列联表根据实际观测值,构建列联表。
列联表是由多个分类变量组成的二维表格,用于统计不同组别之间的频数或频率。
3. 计算卡方值根据列联表中的实际观测频数和理论预期频数,计算卡方值。
卡方值的计算公式为:χ² = ∑ [(观测频数 - 预期频数)^2 / 预期频数]4. 比较临界值根据给定的自由度和显著性水平,查表或计算得到临界值。
方差分析方法
方差分析是统计分析方法中,最重要、最常用的方法之一。本文应用多个实例来阐明方差
分析的应用。在实际操作中,可采用相应的统计分析软件来进行计算。
1. 方差分析的意义、用途及适用条件
1.1 方差分析的意义
方差分析又称为变异数分析或F检验,其基本思想是把全部观察值之间的变异(总变异),
按设计和需要分为二个或多个组成部分,再作分析。即把全部资料的总的离均差平方和(SS)分为二
个或多个组成部分,其自由度也分为相应的部分,每部分表示一定的意义,其中至少有一个部分表示
各组均数之间的变异情况,称为组间变异(MS组间);另一部分表示同一组内个体之间的变异,称为
组内变异(MS组内),也叫误差。SS除以相应的自由度(υ),得均方(MS)。如MS组间>MS组内若
干倍(此倍数即F值)以上,则表示各组的均数之间有显著性差异。
方差分析在环境科学研究中,常用于分析试验数据和监测数据。在环境科学研究中,各种因
素的改变都可能对试验和监测结果产生不同程度的影响,因此,可以通过方差分析来弄清与研究对象
有关的各个因素对该对象是否存在影响及影响的程度和性质。
1.2 方差分析的用途
1.2.1 两个或多个样本均数的比较。
1.2.2 分离各有关因素,分别估计其对变异的影响。
1.2.3 分析两因素或多因素的交叉作用。
1.2.4 方差齐性检验。
1.3 方差分析的适用条件
1.3.1 各组数据均应服从正态分布,即均为来自正态总体的随机样本(小样本)。
1.3.2 各抽样总体的方差齐。
1.3.3 影响数据的各个因素的效应是可以相加的。
1.3.4 对不符合上述条件的资料,可用秩和检验法、近似F值检验法,也可以经过变量变
换,使之基本符合后再按其变换值进行方差分析。一般属Poisson分布的计数资料常用平方根变换法;
属于二项分布的百分数可用反正弦函数变换法;当标准差与均数之间呈正比关系,用平方根变换法又
不易校正时,也可用对数变换法。
2. 单因素方差分析(单因素多个样本均数的比较)
根据某一试验因素,将试验对象按完全随机设计分为若干个处理组(各组的样本含量可相等
或不等),分别求出各组试验结果的均数,即为单因素多个样本均数。
用方差分析比较多个样本均数的目的是推断各种处理的效果有无显著性差异,如各组
方差齐,则用F检验;如方差不齐,用近似F值检验,或经变量变换后达到方差齐,再用变换值作F
检验。如经F检验或近似F值检验,结论为各总体均数不等,则只能认为各总体均数之间总的来说有
差异,但不能认为任何两总体均数之间都有差异,或某两总体均数之间有差异。必要时应作均数之间
的两两比较,以判断究竟是哪几对总体均数之间存在差异。
在环境科学研究中,常常要分析比较不同季节对江、河、湖水中某种污染物的含量
有无显著性影响;各种气象条件如风向、风速、温度对大气中某种污染物含量的影响等问题。我们把
季节、风向、风速、温度等称为因素。仅按不同季节,或不同的风向,或不同的温度来分组,称为单
因素。
例1 某年度某湖不同季节湖水中氯化物含量(mg/L)测定结果如表—6.1所示。试比
较不同季节湖水中氯化物含量有无显著性差异。
从表—1的测定结果可见有三种变异:
1. 组内变异:每个季节内部的各次测定结果不尽相同,但显然不是季节的影响,而只是由
于误差(如个体差异、随机测量误差等)所致。
2. 组间变异:各个季节的均数也不相同,说明季节对湖水中氯化物的含量可能有一定的影
响,也包括误差的作用。
3.总变异:32次测定结果都不尽相同,既可能受季节的影响,也包括误差的作用。
不同季节湖水中氯化物含量的均数之间的变异究竟是由于误差所致,还是由于不同季节的影
响,可以用方差分析来解决此问题。方差分析可表示:
⑴从总变异中分出组间变异和组内变异,并用数量表示变异的程度。
⑵将组间变异和组内变异进行比较,如二者相差甚微,说明季节影响不大;如二者相差较大,
组间变异比组内变异大得多,说明季节影响不容忽视。以下是三种变异的计算方法:
3.1 多个方差的齐性检验
已知多个样本(理论上均来自正态总体)方差,可以据此推断它们所分别代表的总体方差是否相
等,即多个方差的齐性检验。其常用于:
⑴说明多组变量值的变异度有无差异。
⑵方差齐性检验。
以例1为例(各组样本含量相等),如表—4所示。
3.确定P值:根据υ=4—1=3,查附表—12得P<0.005。
4.判断结果:由于P<0.005,因此,四组方差不齐。
3.2 近似F值检验(F'检验)
以例2为例,如表—6所示。
公式26最常用,公式27适用于原数据中有小值和零时。K为常数,可以根据需要选用合适
的数值。
⑵对数变换的用途:
①当几个样本均数作比较时,如样本方差不齐,尤其是当标准差与均数之比的比值接近时,
必须经对数变换以缩小各方差之间的差别,达到方差齐后才能进行t检验或方差分析。
②适用于呈对数正态分布的资料。
③在曲线拟合中,对数变换常常是直线化的重要手段,如指数曲线、双曲线、logistic曲
线的直线化等。
例3 欲用t检验比较某河丰水期和枯水期的河水BOD5(mg/L)含量均数,资料如表—7
所示。此数据能否直接用t检验方法?如不能,试作变量变换。
二者比较接近,可以试用对数变换。
⑶将X作“lgX +1”变换后,再作方差齐性检验,得F=1.72,P>0.05,两组方差齐,可以
用变换值作两样本均数比较的t检验。
2.平方根变换
以原数据的平方根作为统计分析的变量值,称为平方根变换。
⑴平方根变换的形式:
⑶百分数的概率单位变换:主要用于S形或反S形曲线的直线化、正态性检验,尤其适用于
剂量反应曲线的直线化。
⑷百分数的logit变换:主要用于S形或反S形曲线的直线化。
⑸反双曲正切变换:用于两直线相关系数的比较与合并。
4. 两因素方差分析(双因素多个样本均数的比较)
将试验对象按性质相同或相近者组成配伍组,每个配伍组有三个或三个以上试验对象,然后
随机分配到各个处理组。这样,分析数据时将同时考虑两个因素的影响,试验效率较高。
例5 某市为了研究一日中不同时点以及不同区域大气中氮氧化物含量的变化情况,该市
环保所于某年1月15~19日,在市区选择了7个采样点,对大气中氮氧化物的含量进行测定。表—9
为各个采样点每个时点五天的平均含量,试分析不同时点、不同区域氮氧化物含量之间有无显著性差
异。
5. 多因素方差分析(多因素多个样本均数的比较)
在环境科学研究中,所研究的事物或现象往往是比较复杂的多因素问题,而各种因素
本身尚有程度的差别,其间往往又存在交互作用。当研究的因素在三个或三个以上时,可以用正交试
验法。
正交试验是一种高效、快速的多因素试验方法。正交试验的设计与分析见另外章节。
“多因素多个样本均数的比较”不仅可以用于正交试验,也可以用于拉丁方试验分析与析因
试验分析等。
6. 多个样本均数间的两两比较(多重比较)
经方差分析后,如果各总体均数有显著性差异时,常需进一步确定哪两个总体均数间有显著
性差异,哪两个之间无显著性差异。因此,可以利用方差分析提供的信息作样本均数间的两两比较。
以例5为例:(每组样本含量相等)经方差分析后,认为不同时点以及不同区域的氮氧化物
含量之间均有高度显著性差异。现在需要进一步检验不同时点的氮氧化物含量均数两两之间有无显著
性差异。检验步骤如下:
1.检验假设:各时点的氮氧化物含量均数之间两两相等。
⑷q值的计算方法与上例相同。
3.确定P值与判断结果如表—13所示。