析因设计资料的方差分析
- 格式:pptx
- 大小:2.31 MB
- 文档页数:32
2×2析因设计资料的方差分析用A药和B药治疗高胆固醇患者,并考虑是否患糖尿病对结果的影响,故把高胆固醇患者分成糖尿病且高胆固醇组和单纯高胆固醇组,每一种病情组又随机分为两组:一组用A药,一组用B药,经过一个疗程后,观察患者的总胆固醇下降的幅度,具体数据列表如下,对该资料做统计分析。
不同病情不同疗法治疗高胆固醇患者的总胆固醇下降值(mmol/L)本例中,以总胆固醇下降幅度为疗效指标,以高血脂患者为研究对象,主要的研究问题是评价A药和B药降低总胆固醇的幅度,由于该研究考虑了研究对象是否患有糖尿病的因素,所以要回答两个药的疗效差别如何。
根据最终结果,研究者有时可以直接称A药疗效优于B药,或者B药疗效优于A药,或者两个药疗效相同;但研究者往往不能这样简单地评价两个药的疗效,因为最终结果往往有多种可能的答案,可以归纳为下列三大类的情况。
1)A药和B药的疗效相同或不同,但两个药的疗效差异与是否患糖尿病无关。
2)无糖尿病的患者而言,两个药的疗效相同,对于糖尿病患者而言,两种药物的疗效不同。
3)对于糖尿病患者而言,两种药物的疗效相同,无糖尿病的患者而言,两个药的疗效不同。
如果资料符合方差分析的条件,可以用两因素方差分析进行统计分析,方差分析中的交互作用概念正是反映了上述第2种和第3种答案,即:交互作用是指某个因素对效应指标的作用与另一个因素处于何种水平状态有关(本例中治疗方案因素对疗效的作用与患者是否患糖尿病有关)。
因此如果本例中治疗方案因素对疗效的作用与患者是否患糖尿病无关,则称治疗方案与是否患糖尿病对效应指标(降低总胆固醇)没有交互作用。
先考虑无交互作用的方差分析模型如下:糖尿病的高血脂患者用B药治疗一个疗程后,总胆固醇平均下降µ(mmol/L),糖尿病的高血脂患者用A药治疗一个疗程后,总胆固醇平均下降µ+β1(mmol/L),即糖尿病的高血脂患者用A药和用B药治疗一个疗程,两种药的疗效:总胆固醇下降幅度的平均差异为β1(mmol/L);无糖尿病的高血脂患者用B药治疗一个疗程后,总胆固醇平均下降µ+β2(mmol/L),即同样用B药,有糖尿病的高血脂患者和无糖尿病的高血脂患者的总胆固醇下降幅度平均相差β2(mmol/L);无糖尿病的高血脂患者用A药治疗一个疗程后,总胆固醇平均下降µ+β1+β2(mmol/L),即同样用A药,有糖尿病的高血脂患者和无糖尿病的高血脂患者的总胆固醇下降幅度平均相差β2(mmol/L)。
第四节析因设计与方差分析1. 基本概念完全随机设计(单因素)随机区组设计(两因素, 无重复)拉丁方设计(三因素, 无重复)析因设计(两因素以上, 至少重复2次以上)析因设计的意义在评价药物疗效时,除需知道A药和B药各剂量的疗效外(主效应),还需知道两种药同时使用的协同疗效。
析因设计及相应的方差分析能分析药物的单独效应、主效应和交互效应。
例:A因素食物中蛋白含量; B因素食物中脂肪含量B A 平均a2-a1a1 a2b1 30 32 31 2b2 36 44 40 8平均33 38 35.5 5b2-b1 6 12 9(1)单独效应: 在每个B水平, A的效应。
或在每个A水平,B的效应。
(2)主效应:某因素各水平的平均差别。
(3)交互效应:某因素各水平的单独效应随另一因素水平变化而变化,则称两因素间存在交互效应。
如果)()()(000μμμμμμ-+-≠-b a ab ,存在交互效应。
如果)()()(000μμμμμμ-+->-b a ab ,协同作用。
如果)()()(000μμμμμμ-+-<-b a ab ,拮抗作用。
2527293133353739414345a1a22527293133353739414345a1a2如果不存在交互效应,则只需考虑各因素的主效应。
在方差分析中,如果存在交互效应,解释结果时,要逐一分析各因素的单独效应,找出最优搭配。
在两因素析因设计时,只需考虑一阶交互效应。
三因素以上时,除一阶交互效应外,还需考虑二阶、三阶等高阶交互效应,解释将更复杂。
析因设计的优点:用相对较小样本,获取更多的信息,特别是交互效应分析。
析因设计的缺点:当因素增加时,实验组数呈几何倍数增加。
实际工作中部分交互效应,特别是高阶交互效应可以根据临床知识排除,这时可选用正交设计。
2. 析因设计与结果的方差分析(1)实验设计设有k个因素,每个因素有L1, L2, …, L k个水平,那么共有G= L1×L2×…×L k个处理组。