方差分析-教案
- 格式:doc
- 大小:233.00 KB
- 文档页数:13
人教版初中方差教案教学目标:1. 让学生理解方差的定义,掌握方差的计算方法。
2. 培养学生运用方差分析数据的能力,提高学生解决实际问题的能力。
3. 培养学生的团队合作精神,提高学生的数学思维能力。
教学重点:1. 方差的定义和计算方法。
2. 运用方差分析数据的能力。
教学难点:1. 方差的计算方法。
2. 对方差的理解和应用。
教学准备:1. 课件和教学素材。
2. 计算器。
教学过程:一、导入(5分钟)1. 引导学生回顾平均数的定义和计算方法。
2. 提问:平均数能反映出数据的波动情况吗?3. 引导学生思考:如何衡量数据的波动情况?二、新课导入(15分钟)1. 介绍方差的定义:方差是衡量一组数据波动情况的量。
2. 讲解方差的计算方法:a. 计算每个数据与平均数的差的平方。
b. 将所有差的平方相加。
c. 将相加的结果除以数据的个数。
3. 举例讲解方差的计算过程。
三、课堂练习(15分钟)1. 让学生独立完成教材中的练习题。
2. 引导学生思考:如何利用方差分析数据?四、应用拓展(15分钟)1. 让学生分组讨论:如何利用方差解决实际问题?2. 每组选取一个实际问题,进行讨论和解答。
3. 邀请几组代表分享他们的解题过程和答案。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结方差的定义和计算方法。
2. 提问:你们认为方差在实际生活中有哪些应用?教学评价:1. 课后作业:布置一些有关方差的练习题,让学生巩固所学知识。
2. 课堂表现:观察学生在课堂上的参与程度、思维活跃度和合作能力。
3. 实际应用:评估学生在解决实际问题时的方差运用能力。
备注:本教案根据人教版初中数学八年级下册《方差》一节的内容进行设计,教学时间为1课时。
在教学过程中,要注意引导学生理解方差的定义和计算方法,培养学生的实际应用能力。
同时,要关注学生的学习情况,及时进行反馈和指导。
方差分析法讲课教案简介本讲课教案旨在介绍方差分析法(ANOVA),让学生了解其基本概念、原理和应用。
方差分析法是一种常用的统计分析方法,在比较多个组别(或处理)之间是否存在显著差异时具有很高的可靠性和灵活性。
教学目标1. 了解方差分析法的基本概念和原理;2. 掌握方差分析法的适用场景和假设条件;3. 学会运用方差分析法进行实际数据分析;4. 能够正确解读和表达方差分析的结果。
教学内容1. 方差分析法的定义和背景知识;2. 方差分析法的假设条件和前提;3. 单因素方差分析法的步骤和计算方法;4. 多因素方差分析法的基本原理和分析流程;5. 方差分析结果的解读和报告。
教学方法1. 授课法:通过简明扼要的讲解,让学生快速了解方差分析法的概念和应用;2. 案例分析:通过实际案例演示,让学生学会如何运用方差分析法分析数据并作出合理判断;3. 小组讨论:组织学生分成小组,让他们结合自己的实际经验和知识,讨论方差分析法在不同领域的应用和局限性。
教学评估1. 课堂互动:通过提问和讨论,检查学生对方差分析法的理解程度;2. 上机实践:组织学生进行方差分析的数据分析实验,评估他们的实际操作能力;3. 作业和考试:布置相关作业和考试题目,检验学生对方差分析法的掌握情况。
教学资源1. PowerPoint演示文稿:简明扼要地介绍方差分析法的基本概念和计算方法;2. 案例分析材料:提供实际案例和相关数据,供学生分析和讨论;3. 统计软件:使用统计软件(如SPSS、Excel等)进行方差分析法的实际操作。
参考书目1. 邢丕铮,方差分析与实验设计,中国统计出版社,2008年。
2. 王明珍,现代统计分析方法,高等教育出版社,2009年。
3. Montgomery, Douglas C. (2017). Design and Analysis of Experiments. John Wiley & Sons.。
初中方差优秀教案教学目标:1. 理解方差的定义和意义,掌握方差的计算方法。
2. 能够运用方差分析数据,判断数据的波动大小。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 方差的定义和意义2. 方差的计算方法3. 方差的运用教学过程:一、导入(5分钟)1. 引导学生回顾平均数的定义和意义,让学生思考平均数在数据分析中的作用。
2. 提出问题:如果我们想要了解数据的波动情况,除了平均数之外,还有其他的方法吗?二、新课导入(15分钟)1. 介绍方差的定义:方差是衡量一组数据波动大小的量。
2. 解释方差的计算方法:方差 = [(每个数据值 - 平均数)的平方和] / 数据个数。
3. 举例说明方差的计算过程,让学生跟随老师一起计算一个示例数据的方差。
三、课堂练习(15分钟)1. 给学生发放练习题,让学生独立计算给定数据的方差。
2. 引导学生理解方差的意义:方差越小,说明数据越稳定;方差越大,说明数据波动越大。
四、方差的运用(15分钟)1. 提出问题:如何利用方差分析数据?2. 讲解方差的运用:通过比较不同数据集的方差,可以判断数据的波动情况,从而进行数据的分析和决策。
3. 举例说明方差在实际问题中的应用,如:判断一批产品的质量是否合格。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结方差的定义、计算方法和运用。
2. 引导学生思考:方差在实际生活中的应用和意义。
教学评价:1. 课堂练习的完成情况,判断学生对方差的计算方法的掌握程度。
2. 学生对方差的理解和运用能力的评估,通过提问和举例分析学生的回答。
教学资源:1. 方差的定义和意义PPT。
2. 方差的计算方法和运用PPT。
3. 练习题和答案。
教学难点:1. 方差的计算方法的掌握。
2. 方差的意义的理解。
第1课时方差课时目标1.了解方差的概念和计算公式;理解方差概念的产生的过程;会用方差计算公式来比较两组数据波动的大小,并对探究的问题作出决策.2.经历探索平均差、方差的应用过程,体会数据波动中的平均差、方差的求法以及区别,积累统计经验.3.培养学生的统计意识,形成尊重事实、用数据说话的态度,认识数据处理的实际意义.学习重点方差产生的必要性和应用方差公式解决实际问题,掌握其求法.学习难点理解方差公式,应用方差对数据的波动情况进行比较、判断.课时活动设计情境导入甲、乙两名足球运动员进行4次射门测试,每进1个球得2分,下表记录的是这两名运动员4次射门的成绩(单位:分).(1)请求出以上两组数据的平均数、中位数、众数;(2)若要选一名运动员参加比赛,选谁更好?谁成绩更稳定?设计意图:用生活中的例子作为引入,让学生能够积极参与探索活动.问题农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如表所示.根据这些数据估计,农科院应该选择哪种甜玉米种子呢?上面两组数据的平均数分别是x甲=7.537,x乙=7.515,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的情况,我们把这两组数据画成如图1和图2所示.教师:观察两图,由此你知道哪种甜玉米种子的产量更稳定吗?比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均产量附近.从图中看出的结果能否用一个量来刻画呢?设计意图:选取实例作为背景,通过教师指导,学生自主阅读分析,复习平均数的知识,为后面学习引入方差作铺垫.方差的概念:设有n个数据x1,x2,…,x n,各数据与它们的平均数x的差的平方分别是(x1-x)2,(x2-x)2,…,(x n-x)2,我们用这些值的平均数,即用1n[(x1-x)2+(x2-x)2+…+(x n-x)2]来衡量这组数据波动的大小,并把它叫做这组数据的方差,记作s2.方差的意义:方差用来衡量一组数据波动的大小(即这组数据偏离平均数的大小).方差越大,数据的波动越大;方差越小,数据的波动越小.设计意图:指导学生理解和归纳出方差的概念,体会方差的意义.提升训练若数据x1,x2,x3,…,x n的平均数为x,方差为s2,则①数据x1-3,x2-3,x3-3,…,x n-3的平均数为x-3,方差为s2;③数据x1+3,x2+3,x3+3,…,x n+3的平均数为x+3,方差为s2;④数据3x1,3x2,3x3,…,3x n的平均数为3x,方差为9s2;⑤数据2x1-3,2x2-3,2x3-3,…,2x n-3的平均数为2x-3,方差为4s2.设计意图:引导学生回顾方差的概念,体会它产生的必要性,回顾方差的计算公式、步骤及方差的意义.课堂小结设计意图:通过小结使学生归纳、梳理本节的知识,加深对方差的认识.课堂8分钟.1.教材第126页练习第1,2题,第128页习题20.2复习巩固第1题.2.七彩作业.第1课时方差1.方差s2=1[(x1-x)2+(x2-x)2+…+(x n-x)2].n2.方差用来衡量一组数据波动的大小(即这组数据偏离平均数的大小).3.方差越大,数据的波动越大;方差越小,数据的波动越小.教学反思。
一、教学目标1. 知识与技能:(1)理解方差分析的概念和意义;(2)掌握方差分析的计算方法和步骤;(3)能够运用方差分析解决实际问题。
2. 过程与方法:(1)通过实例引入方差分析的概念;(2)通过小组合作,探究方差分析的计算方法;(3)通过数据分析,运用方差分析解决实际问题。
3. 情感态度与价值观:(1)培养学生的数据分析能力和解决问题的能力;(2)培养学生团队合作和交流分享的意识;(3)培养学生对统计学科的兴趣和好奇心。
二、教学内容1. 方差分析的概念和意义(1)引入方差分析的概念;(2)解释方差分析在实际问题中的应用。
2. 方差分析的计算方法(1)介绍单因素方差分析的计算方法;(2)介绍多因素方差分析的计算方法。
3. 方差分析的步骤(1)确定研究问题,选择适当的方差分析方法;(2)收集数据,进行预处理;(3)计算方差分析的统计量;(4)判断假设,得出结论。
4. 实际问题中的应用(1)通过实例讲解方差分析在实际问题中的应用;(2)学生分组讨论,选取实际问题进行方差分析。
三、教学方法1. 实例引入:通过具体实例引入方差分析的概念,使学生能够直观地理解方差分析的意义;2. 小组合作:组织学生进行小组合作,共同探究方差分析的计算方法,培养学生的团队合作和交流分享的能力;3. 数据分析:引导学生运用方差分析解决实际问题,培养学生的数据分析能力和解决问题的能力。
四、教学准备1. 教学材料:方差分析的相关教材或教辅;2. 计算机和投影仪:用于展示实例和学生的分析结果;3. 实际问题素材:用于学生分组讨论和分析。
五、教学评价1. 课堂参与度:观察学生在课堂中的参与程度,包括提问、回答问题、小组合作等;2. 数据分析能力:评估学生在实际问题中运用方差分析的能力,包括问题分析、计算方法、结论得出等;3. 知识掌握程度:通过课后作业、小测验等方式,检验学生对方差分析的概念、计算方法和步骤的掌握程度。
六、教学难点与策略1. 教学难点:(1)方差分析的计算方法较为复杂,学生难以理解;(2)学生对于实际问题如何应用方差分析缺乏经验。
中学生数学方差优秀教案优秀8篇中学生数学《方差》优秀教案篇一教学内容:P108—110 平方差公式例1 例2 例3教学目的:1、使学生会推导平方差公式,并掌握公式特征。
2、使学生能正确而熟练地运用平方差公式进行计算。
教学重点:使学生会推导平方差公式,掌握公式特征,并能正确而熟练地运用平方差公式进行计算。
教学难点:掌握平方差公式的特征,并能正确而熟练地运用它进行计算。
教学过程:一、复习引入1、复述多项式与多项式的乘法法则2、计算(演板)(1)(a+b)(a-b) (2)(m+n)(m-n)(3)(x+y)(x-y) (4)(2a+3b)(2a-3b)3、引入新课,由2题的计算引导学生观察题目特征,结果特征(引入新课,板书课题)二、新课1、平方差公式由上面的运算,再让学生探究现在你能很快算出多项式(2m+3n)与多项式(2m-3n)的乘积吗?引导学生把2m看成a,3n看成b写出结果。
(2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2(a + b)(a - b)= a2 - b2向学生说明:我们把(a+b)(a-b)=a2- b2 (重点强调公式特征)叫做平方差公式,也就是:两个数的和与这两个数的差等于这两个数的平方差。
2、练习:判断下列式子哪些能用平方差公计算。
(小黑板)(1)(-x-2y)(-x+2y) (2)(-2a+3b)(2a-3b)(3)(a+3b)(3a-b) (4)(-m-3n)(m-3n)3、教学例1(1)(2x+1)(2x-1); (2) (x+2y)(x-2y)(2)分析:让学生先说一说这两个式子是否符合平方差公式特征,再说一说哪个相当于公式中的a,哪个相当于公式中的b,然后套公式。
(3)具体解题过程:板书,同教材,略4、教学例2 例3先引导学生分析后指名学生演板,略三、巩固练习:(小黑板)1、填空:(1)(x+3)(x-3)=xxxxxxxxxx (2)(-1-2x)(2x-1)=xxxxxx(3)(-1-2x)(-2x+1)=xxxxxxxxxxxxx (4)(m+n)( )=n2-m2(5)( )(-x-1)=1-x2 (6)( )(a-1)=1-a22、选择题(1) 下列可以用平方差公式计算的是()A、(2a-3b)(-2a+3b)B、(- 4b-3a)(-3a+4b)C、(a-b)(b-a)D、(2x-y) (2y+x)(2)下列式子中,计算结果是4x2-9y2的是()A、(2x-3y)2B、(2x+3y)(2x-3y)C、(-2x+3y)2D、(3y+2x)(3y-2x)(3)计算(b+2a)(2a-b)的结果是()A、4a2- b2B、b2- 4a2中学生数学《方差》优秀教案篇二学习目标:1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。
1. 知识与技能:使学生掌握方差分析的基本概念、原理和方法,能够运用方差分析解决实际问题。
2. 过程与方法:通过案例分析、小组讨论等方式,培养学生运用方差分析解决问题的能力。
3. 情感态度与价值观:激发学生对统计学的兴趣,培养学生严谨的科学态度和团队协作精神。
二、教学内容1. 方差分析的定义与作用2. 方差分析的基本原理3. 方差分析的操作步骤4. 方差分析的应用案例5. 方差分析的局限性与改进方法三、教学重点与难点1. 教学重点:方差分析的基本概念、原理、方法及应用。
2. 教学难点:方差分析的数学推导和实际操作。
四、教学方法1. 讲授法:讲解方差分析的基本概念、原理和方法。
2. 案例分析法:分析方差分析的应用案例,让学生体会方差分析在实际问题中的应用。
3. 小组讨论法:分组讨论方差分析的问题和解决方案,培养学生团队合作精神。
4. 实践操作法:让学生利用统计软件进行方差分析的实际操作,提高动手能力。
1. 第1课时:方差分析的定义与作用2. 第2课时:方差分析的基本原理3. 第3课时:方差分析的操作步骤4. 第4课时:方差分析的应用案例5. 第5课时:方差分析的局限性与改进方法六、教学过程1. 导入新课:通过一个简单的实际问题引出方差分析的概念,激发学生的兴趣。
2. 讲解与演示:详细讲解方差分析的基本概念、原理和方法,并通过演示文稿或板书进行展示。
3. 案例分析:选取具有代表性的案例,让学生了解方差分析在实际问题中的应用,并引导学生思考如何运用方差分析解决问题。
4. 分组讨论:将学生分成小组,让他们针对案例展开讨论,提出自己的观点和解决方案。
5. 成果分享:各小组汇报讨论成果,其他小组成员进行评价和补充。
6. 实践操作:让学生利用统计软件进行方差分析的实际操作,巩固所学知识。
7. 总结与反思:对本节课的内容进行总结,指出方差分析的优势和局限性,鼓励学生反思自己的学习过程。
七、作业布置1. 完成课后练习题,加深对方差分析的理解。
第五章 方差分析一、教学大纲要求(一)掌握内容 1.方差分析基本思想(1) 多组计量资料总变异的分解,组间变异和组内变异的概念。
(2) 多组均数比较的检验假设与F 值的意义。
(3) 方差分析的应用条件。
2.常见实验设计资料的方差分析(1)完全随机设计的单因素方差分析:适用的资料类型、总变异分解(包括自由度的分解)、方差分析的计算、方差分析表。
(2)随机区组设计资料的两因素方差分析:适用的资料类型、总变异分解(包括自由度的分解)、方差分析的计算、方差分析表。
(3)多个样本均数间的多重比较方法: LSD-t 检验法;Dunnett-t 检验法;SNK-q 检验法。
(二)熟悉内容多组资料的方差齐性检验、变量变换方法。
(三)了解内容两因素析因设计方差分析、重复测量设计资料的方差分析。
二、教学内容精要(一) 方差分析的基本思想 1. 基本思想方差分析(analysis of variance ,ANOV A )的基本思想就是根据资料的设计类型,即变异的不同来源将全部观察值总的离均差平方和(sum of squares of deviations from mean ,SS )和自由度分解为两个或多个部分,除随机误差外,其余每个部分的变异可由某个因素的作用(或某几个因素的交互作用)加以解释,如各组均数的变异SS 组间可由处理因素的作用加以解释。
通过各变异来源的均方与误差均方比值的大小,借助F 分布作出统计推断,判断各因素对各组均数有无影响。
2.分析三种变异(1)组间变异:各处理组均数之间不尽相同,这种变异叫做组间变异(variation among groups ),组间变异反映了处理因素的作用(处理确有作用时 ),也包括了随机误差( 包括个体差异及测定误差 ), 其大小可用组间均方(MS 组间)表示,即 MS 组间= 组间组间ν/SS , 其中,SS 组间=21)(x xn ki ii -∑= ,组间ν=k -1为组间自由度。
k 表示处理组数。
(2)组内变异:各处理组内部观察值之间不尽相同,这种变异叫做组内变异(variation within groups),组内变异反映了随机误差的作用,其大小可用组内均方 (组内MS ) 表示,组内组内组内ν/SS MS = ,其中∑∑==⎥⎦⎤⎢⎣⎡-=ki n j i ij i x x SS 112)(组内, k N -=组内ν,为组内均方自由度。
(3)总变异:所有观察值之间的变异(不分组),这种变异叫做总变异(total variation)。
其大小可用全体数据的方差表示, 也称总均方(MS 总 )。
按方差的计算方法,MS 总=总总ν/SS ,其中SS 总=211)(∑∑==-k i n j ij ix x , k 为处理组数,i n 为第i 组例数,总ν=N -1为总的自由度, N 表示总例数。
(二)方差分析的应用条件(1) 各样本是相互独立的随机样本,且来自正态分布总体。
(2) 各样本的总体方差相等,即方差齐性(homoscedasticity)。
(三)不同设计资料的方差分析 1.完全随机设计的单因素方差分析(1)资料类型:完全随机设计(completely random design)是将受试对象完全随机地分配到各个处理组。
设计因素中只考虑一个处理因素,目的是比较各组平均值之间的差别是否由处理因素造成。
(2) 方差分析表:见表5-1。
F ≥F α时,拒绝H 0: 12k μμμ=== 。
表5-1 完全随机设计方差分析计算表 来源SS νMSF 值组间SS 组间1-=k 组间νMS 组间=组间组间νSSF=组内组间MS MS组内 (误差)SS 组内=SS 总 - SS 组间组内ν=总ν-组内ν=N - kMS 组内=组内组内νSS总计SS 总总ν= N - 12.随机区组设计的两因素方差分析(1)资料类型:随机区组设计(randomized block design )是将受试对象按自然属性(如实验动物的窝别、体重,病人的性别、年龄及病情等)相同或相近者组成单位组(区组),然后把每个组中的受试对象随机地分配给不同处理。
设计中有两个因素,一个是处理因素,另一个是按自然属性形成的单位组。
单位组的选择原则是“单位组间差别越大越好,单位组内差别越小越好”。
(2)方差分析表:见表5-2。
F 处理≥F α时,拒绝H 0:12k μμμ=== 。
表5-2 随机区组设计方差分析计算表变异来源SSνMS F 值处理组间SS 处理处理ν= k-1MS 处理=处理处理νSS F 处理 =误差处理MS MS单位组间SS 单位单位ν= b -1MS 单位=单位单位νSSF 单位 =误差单位MS MS误差SS 误差= SS 总- SS 处理- SS 单位 误差ν=总ν-处理ν-单位ν=N-k-n+1MS 误差=误差误差νSS总计SS 总总ν = N -13.多个样本均数的多重比较如果方差分析结果表明各组间有显著差别,则需要进一步进行两两比较,也称均数间的多重比较(multiple comparison )。
进行两两比较的方法主要有:(1) LSD-t 检验:称为最小显著差异t 检验。
适用于k 组中某一对或某几对在专业上有特殊意义的均数间差异的比较。
检验统计量为t 值,自由度为方差分析表中的误差自由度,查t 界值表。
A Bd BA S X X t -=其中 )(11BAA Bn n MS S +=误差 (5-1)(2)Dunnett-t 检验:它适用于k-1个试验组与一个对照组均数差别的多重比较,检验统计量为t 值,自由度为方差分析表中的误差自由度,查Dunnet-t 界值表。
xx i iS x x t --=,其中0x x i S -=)11(n n MS i +误差(5-2)(3)SNK-q 检验:在方差分析结果拒绝H 0时采用。
适用于所有组均数的两两比较。
检验统计量为q ,自由度为比较组数a 和方差分析表中的误差自由度,查q 界值表。
()A B X X S q -=其中,dS =4.多组资料方差起行检验当各组标准差相差较大(如1.5倍)时,需检验资料是否满足方差齐性的条件。
5. 变量变换当资料不能满足方差分析的条件时,如果进行方差分析,可能造成错误的判断。
因此对于明显偏离上述应用条件的资料,可以通过变量变换的方法来加以改善。
常用的变量变换方法有:(1)对数变换 对数变换不仅可以将对数正态分布的数据正态化,还能使数据方差达到齐性,特别是各样本的标准差与均数成比例或变异系数接近于一个常数时。
变换公式为:X X lg =' (5-4)当原始数据中有小值或零时,可用)1lg(+='X X(2)平方根变换 常用于使服从Possion 分布的计数资料或轻度偏态的资料正态化;当各样本的方差与均数呈正相关时,可使资料达到方差齐性。
变换公式为:X X =' (5-5)当原始数据中有小值或零时,可用5.0+='X X(3)倒数变换 常用于数据两端波动较大的资料,可使极端值的影响减小。
变换公式为:X X /1=' (5-6)(4)平方根反正弦变换 常用于服从二项分布的率或百分比资料。
一般地,当总体率较小(<30%)或较大(>70%)时,通过平方根反正弦变换,可使资料接近正态,且达到方差齐性的要求。
变换公式为:='(5-7)sin-XX1(5)秩转换后,采用秩和检验比较组间差别(祥见第九章)。
6.两因素析因设计方差分析处理含有两因素两水平的全面组合。
例如治疗肿瘤术后病人,可采用4种方法:既不放疗也不化疗(a0b0);放疗不化疗(a1b0);不放疗化疗(a0b1);既放疗又化疗(a1b1)。
设放疗为A因素(两水平),化疗为B因素(两水平),则构成2⨯2析因设计,目的是分析A的主效应,B的主效应及AB的交互作用。
7.重复测量资料的方差分析受试对象随机分组后,多次测量某一观察指标,以比较处理效应在不同时间点有无变化。
如试验组和对照组的轻度高血压病人入院前、治疗后1天、2天、3天、4天的血压变化。
设处理分组为A因素,重复测量的时间点为B因素,目的是分析A的主效应和AB的交互作用。
三、典型试题分析1.完全随机设计资料的方差分析中,必然有()A.SS组内<SS组间B.MS组间<MS组内C.MS总=MS组间+MS组内D.SS总=SS组间+SS组内答案:D[评析]本题考点:方差分析过程中离均差平方和的分解、离均差平方和与均方的关系。
方差分析时总变异的来源有:组间变异和组内变异,总离均差平方和等于组间离均差平方和与组内离均差平方差之和,因此,等式SS总=SS组间+SS组内是成立的。
离均差平方和除以自由度之后的均方就不再有等式关系,因此C选项不成立。
A、B选项不一定成立。
D选项为正确答案。
2.单因素方差分析中,当P<0.05时,可认为()。
A.各样本均数都不相等 B.各总体均数不等或不全相等C.各总体均数都不相等 D.各总体均数相等答案:B[评析]本题考点:方差分析的检验假设及统计推断。
方差分析用于多个样本均数的比较,它的备择假设(H1)是各总体均数不等或不全相等,当P<0.05时,接受H1,即认为总体均数不等或不全相等。
因此答案选B。
3. 以下说法中不正确的是()A.方差除以其自由度就是均方B.方差分析时要求各样本来自相互独立的正态总体C.方差分析时要求各样本所在总体的方差相等D.完全随机设计的方差分析时,组内均方就是误差均方答案:A[评析] 本题考点:方差分析的应用条件及均方的概念。
方差就是标准差的平方,也就是均方,因此选项A 是错误的。
选项B 、C 是方差分析对资料的要求,因此选项B 和C 都是正确的。
在完全随机设计的方差分析中,组内均方就是误差均方,D 选项也是正确的。
4. 当组数等于2时,对于同一资料,方差分析结果与t 检验结果( ) 。
A.完全等价且F = tB.方差分析结果更准确C.t 检验结果更准确D.完全等价且F t =答案:D[评析]本题考点:方差分析与t 检验的区别与联系。
对于同一资料,当处理组数为2时,t 检验和方差分析的结果一致且F t =,因此,正确答案为D 。
5. 完全随机设计与随机单位组设计相比较( )。
A.两种设计试验效率一样B.随机单位组设计的误差一定小于完全随机设计C.随机单位组设计的变异来源比完全随机设计分得更细D.以上说法都不对 答案:C 。
[评析]:本题考点:两种设计及其方差分析的区别。
两种设计不同,随机区组设计除处理因素外,还考虑了单位组因素。
进行方差分析时,变异来源多分解出一项:单位组间变异。
因此C 选项为正确答案。