七年级上册数学人教版第七、八单元小结
- 格式:docx
- 大小:15.40 KB
- 文档页数:9
完整版)人教版七年级数学上册知识点归纳第一章有理数1.1 正数和负数正数是大于零的数,负数是小于零的数。
有些数既不是正数也不是负数,它们被称为零。
在同一个问题中,用正数和负数表示的量具有相反的意义。
需要注意的是,-a不一定是负数,+a也不一定是正数。
自然数指的是正整数和零的集合,也就是我们常说的自然数。
我们可以用a>0表示a是正数,a≥0表示a是正数或零,a<0表示a是负数,a≤0表示a是负数或零。
1.2 有理数有理数包括正整数、负整数、正分数和负分数,它们都可以写成分数的形式。
正整数和负整数统称为整数。
有理数可以分为六类:正整数、正分数、零、负分数、负整数和整数。
我们可以用数轴来表示有理数,数轴是一条直线,有原点、正方向和单位长度三个要素。
一般来说,当a是正数时,数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度。
两个点关于原点对称,当a是正数时,在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称。
相反数指的是只有符号不同的两个数,它们互为相反数。
a的相反数是-a,的相反数是0.在数轴上,表示相反数的两个点关于原点对称。
绝对值是数a到原点的距离,用|a|表示。
一个正数的绝对值是其本身,一个负数的绝对值是其相反数。
的绝对值是0.绝对值可以表示为a=|a|或a=-|a|。
如果a>0,则|a|=a,如果a<0,则|a|=-a。
有理数的比较可以在数轴上表示,从左到右的顺序就是从小到大的顺序。
需要注意的是,正数大于零,大于负数,正数大于负数;两个负数,其绝对值大的反而小。
1.3 有理数的加减法有理数的加减法可以用数轴来表示。
当加上一个正数时,表示数的点向右移动,当加上一个负数时,表示数的点向左移动。
同样地,当减去一个正数时,表示数的点向左移动,当减去一个负数时,表示数的点向右移动。
人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;)0p q ,p (pq ≠为整数且正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数; 不是有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 a+b=0 a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧<-≥=)0a (a )0a (a a 论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么的倒数是a ;若ab=1 a 、b 互为倒数;若ab=-1 a 、b 互为负倒数.a17. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.无意义即0a 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
人教版七年级数学上册各章知识点总结第一章:有理数1. 有理数和整数的关系- 自然数是有理数,因为每个自然数都可以表示为分子为自然数、分母为1的有理数。
- 整数是有理数,因为每个整数都可以表示为分母为1的有理数。
- 分数是有理数,因为每个真分数都可以表示为分母不为0的有理数。
2. 有理数的加减法- 同号两数相加,取相同的符号,并将绝对值相加。
- 异号两数相加,取绝对值较大的符号,并将绝对值较大的数减去较小的数的绝对值。
3. 有理数的乘除法- 同号两数相乘,积为正数。
- 异号两数相乘,积为负数。
- 有理数相除,分子乘以倒数。
第二章:代数初步1. 代数式的基本概念- 代数式由变量、常数和运算符号组成。
- 代数式可以通过代入变量的具体数值来求得结果。
2. 代数式的计算- 同类项相加或相减,保持字母不变,系数相加或相减。
- 不同类项之间无法进行运算。
3. 代数式的应用- 通过列式子,可以将一个具体问题转化为代数式,从而解决问题。
第三章:小数1. 小数的定义和读法- 小数是有理数的一种表示形式,可以用分数的形式表示。
- 小数读法遵循读整数部分,读小数点,读小数部分的规则。
2. 小数的加减法- 小数相加减时,要保持小数点的位置对齐,然后按照整数加减法的规则进行运算。
3. 小数与分数的相互转化- 将小数转为分数,小数点后的位数作为分母,去掉小数点后的位数作为分子。
- 将分数转为小数,分子除以分母。
第四章:倍数和约数1. 倍数的概念- 如果一个数能被另一个数整除,则这个数是另一个数的倍数。
2. 倍数和公倍数- 两个数的公倍数是能同时整除这两个数的数。
- 两个数的最小公倍数是能整除这两个数的最小正整数。
3. 约数的概念- 如果一个数能整除另一个数,则这个数是另一个数的约数。
4. 因数和公因数- 两个数的公因数是能够同时整除这两个数的数。
- 两个数的最大公因数是能够整除这两个数的最大正整数。
第五章:比例1. 比例的基本概念- 比例是两个数之间的比较关系,可以用两个等比例的分数表示。
七年级数学上册第七单元的必背知识点一、基础定义与概念1. 点、直线、线段、射线点:数学上的点是没有大小、形状、方向的,只有位置。
直线:直线是由无数个点组成,具有无限延伸性,任意两点可以确定一条直线。
线段:线段是由两个点组成,具有长度,有起点和终点。
射线:射线是由一个起点开始,无限延伸的线段。
2. 角度角度:由两条射线共同确定的图形,其端点为角的顶点,两条射线分别为角的两边。
直角:角度为90度的角叫做直角。
3. 平行与垂直平行:如果两条直线在同一个平面内,且不相交,则这两条直线被称为平行。
垂直:如果两条直线相交,且相交的角度为90度,则这两条直线被称为垂直。
二、平面图形1. 三角形定义:三角形是由三条线段组成,三个顶点不共线。
分类:按角度分:直角三角形、锐角三角形、钝角三角形。
按边长分:等腰三角形 (两边相等,两角相等)、等边三角形 (三边相等,三角都是60度)、普通三角形 (三边都不相等)。
面积计算:三角形的面积= 1/2 * 底* 高。
2. 四边形定义:四边形是由四条线段组成,四个顶点依次相连。
分类:按对边是否平行分:梯形、平行四边形、矩形、正方形。
按对角线是否相等分:菱形 (四边等长的平行四边形)。
特殊性质:如平行四边形的对边相等、两对角线互相平分等。
3. 多边形定义:多边形是由多条线段组成,三个以上顶点不共线。
分类:按边的长度和角的大小可以分为不规则多边形和规则多边形。
4. 圆形定义:圆形是由一个固定点 (圆心)和到圆心等长的线段(半径)组成。
性质:所有到圆心的距离都等于半径的点组成的图形。
公式:周长= 2πr(r为半径),面积= πr²。
三、特殊定理与性质1. 勾股定理内容:在直角三角形中,直角边的平方和等于斜边的平方(a² + b² = c²,其中c为斜边)。
应用:用于计算直角三角形的边长或验证直角三角形。
2. 相交线段定理内容:如果两条线段在空间中相交,则相交部分的长度小于两条线段长度之和。
人教版七年级上册数学知识点归纳总结免费人教版七年级上册数学学问点归纳总结免费学习数学的过程中,我们可以获得数学学问,并用所学学问解题及解决一些生活实际问题。
那么七年级数学学问点有哪些呢?以下是我预备的一些人教版七年级上册数学学问点归纳总结,仅供参考。
七年级上册数学学问点归纳七年级上册数学学问点归纳1射线:1、射线的定义:直线上一点和它们的一旁的部分叫做射线。
2、射线的特征:“向一方无限延长,它有一个端点。
”线段:1、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。
2、线段的性质(公理):全部连接两点的线中,线段最短。
七年级上册数学学问点归纳2学问点1:正、负数的概念:我们把像3、2、+0。
5、0.03%这样的数叫做正数,它们都是比0大的数;像―3、―2、―0.5、―0.03%这样数叫做负数。
它们都是比0小的数。
0既不是正数也不是负数。
我们可以用正数与负数表示具有相反意义的量。
学问点2:有理数的概念和分类:整数和分数统称有理数。
有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数。
学问点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
学问点4:肯定值的概念:(1)几何意义:数轴上表示a的点与原点的距离叫做数a的肯定值,记作|a|;(2)代数意义:一个正数的肯定值是它的本身;一个负数的肯定值是它的相反数;零的肯定值是零。
注:任何一个数的肯定值均大于或等于0(即非负数).学问点5:相反数的概念:(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;(2)代数意义:符号不同但肯定值相等的两个数叫做互为相反数。
0的相反数是0。
学问点6:有理数大小的比较:有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用肯定值进行有理数大小的比较:两个正数,肯定值大的正数大;两个负数,肯定值大的负数反而小。
人教版数学七年级上册知识点总结(最新最全)人教版数学七年级上册知识点总结第一章有理数知识点总结正数:大于零的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
意义:在同一个问题上,用正数和负数表示具有相反意义的量。
有理数:整数和分数统称有理数。
整数:正整数、零、负整数统称为整数。
分数:正分数、负分数统称分数。
分类:⑴按正、负性质分类:正有理数:正整数、正分数零有理数:零负有理数:负整数、负分数⑵按整数、分数分类:整数:正整数、零、负整数分数:正分数、负分数数轴:概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
应用:求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)相反数:代数:只有符号不同的两个数叫做相反数。
几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
多重符号的化简:多个符号:三个或三个以上的符号的化简,看负号的个数,当“—”号的个数是偶数个时,结果取正号;当“—”号的个数是奇数个时,结果取负号。
倒数:概念:乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;没有倒数)性质:若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b互为倒数。
若a与b互为负倒数,则a·b=-1;反之,若a·b=-1则a与b互为负倒数。
绝对值:几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数。
性质:|a|≥0,若|a|=0,则a=0;若|a|=|b|,则a=b或a=﹣b。
1.数学中,绝对值是一个非常重要的概念。
绝对值是一个数与0的距离,因此非负数的绝对值是它本身,非正数的绝对值是它的相反数。
七年级上册数学七章知识点在七年级的数学课程中,数学被分为了七个章节。
本文将会深入探讨其中第七章的知识点。
1. 初步了解平面图形平面图形是初中数学中的一个重要知识点。
这一章会帮助学生初步了解三角形、正方形、长方形、梯形、等边三角形等基础的平面图形。
在这一章,老师会教授如何区分不同形状的图形,以及它们各自的特点。
2. 基本图形的计算在掌握了基本图形的知识后,学生将会学习如何计算它们的面积和周长。
在这一章中,学生会通过实际例子来学习如何使用公式计算,得出正确和准确的结果。
3. 勾股定理勾股定理是三角形中最基本的定理之一。
这个定理表明了如果一个三角形的两条边的平方和等于斜边的平方,则这个三角形必须是一个直角三角形。
在这一章中,学生将会通过理论和实践来学习如何应用勾股定理。
4. 解一元一次方程在这一章中,学生将学习如何解一元一次方程。
这个知识点在日常生活中也十分实用,因为解方程可以帮助我们解决很多实际问题,例如:了解商品的折扣情况、计算邮费、定位位置等。
5. 相交线与平行线在这一章中,学生将会学习平面上两条直线之间的关系。
他们将学习定义什么是平行线、垂直线等等。
教师会通过模拟实验让学生体验并理解这些线的关系。
6. 角的认知这一章涉及了角和角度,在这里,老师将会教授孩子们如何识别不同大小的角度,并学习如何量度与计算角度。
这是有助于孩子们在日常计算和数学练习中提高速度和准确性。
7. 等比例线段与相似在这一章中,学生将会学习到什么是相似和等比例线段。
相似指的是两个物体具有相同的形状和结构,但大小不同。
在这一章中,学生将学习如何比较两个相似物体的大小以及如何在实际生活中应用它们。
总之,在初中学习数学需要认真学习每一章块的知识,因为所有的章节都是有一定联系的。
这种联系既可以是理论上的,也可以是数学上的。
掌握了七年级上册数学的七个章节所学内容,将会为学生进一步深入学习数学打下坚实的基础。
初中数学七年级上册各单元总结七年级上册数学共涵盖了八个单元,包括集合与命题、整数、有理数、小数、比例与数合、三角形、平行线、运算与问题解决。
以下是对每个单元的总结。
第一单元:集合与命题本单元主要学习了集合与命题的概念和运算。
在集合的学习中,我们了解到集合是由一些元素组成的整体,可以通过列举元素或者描述元素的性质来表示。
另外,我们学会了集合的运算,包括交集、并集、差集和对称差。
在命题的学习中,我们了解到命题是陈述句,可以是真命题或假命题。
通过学习命题的否定、合取、析取和条件,我们能够进行逻辑推理和解题。
第二单元:整数整数是我们日常生活中常见的数,本单元我们学习了整数的概念和运算。
通过理解整数的正负、比较大小、整数的加法、减法、乘法和除法等运算规则,我们能够进行整数的计算和解题。
同时,我们还学会了利用数轴表示和比较整数,通过实际应用问题来加深对整数的理解与运用。
第三单元:有理数在这个单元中,我们进一步学习了有理数的概念和运算。
有理数包括正整数、负整数、零、正分数和负分数。
通过理解有理数的大小关系、绝对值以及有理数的加法、减法、乘法和除法等运算规则,我们能够灵活运用有理数进行计算和解题。
同时,我们还学会了将有理数与实际问题联系起来,通过实例来解决实际中涉及有理数的问题。
第四单元:小数本单元主要学习了小数的概念和运算。
小数是我们日常生活中常见的数,通过理解小数的意义、读写小数、小数的加减法和乘除法等运算规则,我们能够进行小数的计算和解题。
同时,我们还学会了将小数与实际问题联系起来,通过实例来解决实际中涉及小数的问题。
第五单元:比例与数合在这个单元中,我们学习了比例的概念和性质,进一步掌握了比例的运算和解题方法。
通过理解比例的意义、比例的等式、比例的三种基本关系、比例的性质等,我们能够灵活运用比例进行计算和解题。
另外,我们还学习了数合的概念和应用,通过实际情境的探究来理解数合与比例的联系。
第六单元:三角形本单元主要学习了三角形的概念和性质。
最新人教版七年级上册数学知识点归纳总
结
本文将总结最新人教版七年级上册数学的知识点,帮助同学们更好地掌握这些内容。
包括以下知识点:
1. 数的认识与整数
- 数的分类:自然数、整数、有理数
- 整数的绝对值和相反数
- 整数的比较和排序
- 整数的加减法运算
- 有理数的表示与计算
2. 分数与小数
- 分数的定义和性质
- 分数的简化和扩展
- 分数的加减法运算
- 小数的认识与读写
- 小数与分数的互换
3. 代数基础
- 代数式的定义和性质
- 代数式的加减运算
- 代数式的乘法运算
- 代数式的乘法公式
4. 方程与不等式
- 一元一次方程的基本概念
- 一元一次方程的解法与应用- 一元一次不等式的基本概念- 一元一次不等式的解法与应用- 解方程的方法总结
5. 数据的收集与整理
- 数据的收集方式
- 数据的整理和展示
- 图表的阅读和分析
- 数据的比较和推理
6. 几何初步
- 平面图形的认识和特征
- 平面图形的分类和性质
- 常见几何图形的面积计算
- 直线、射线与线段的认识
- 平行线与垂直线的关系
以上是最新人教版七年级上册数学的知识点总结,希望能帮助同学们更好地复习和掌握这些内容。
对于每个知识点,同学们可以通过练习题和实际例子来加深理解和应用。
祝大家学业进步!。
七年级上册数学人教版第七、八单元小结
7.1 一元一次方程
1、方程是含有未知数的等式。
2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
注意:判断一个方程是否是一元一次方程要抓住三点:
(1)未知数所在的式子是整式(方程是整式方程);
(2)化简后方程中只含有一个未知数;
(3)经整理后方程中未知数的次数是1.
3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
4、等式的性质
(1)等式两边同时加(或减)同一个数(或式子),结果仍相等;
(2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
注意:运用性质时,一定要注意等号两边都要同时
变;运用性质2时,一定要注意0这个数.
7.2 、7.3解一元一次方程
在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用. 因此在解方程时还要注意以
下几点:
①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;
②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;
③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)移项要变号;
④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写成连等的形式;
⑤系数化为1:字母及其指数不变,系数化成1,
在方程两边都除以未知数的系数a,得到方程的解。
不
要把分子、分母搞颠倒。
7.4 实际问题与一元一次方程
一.概念梳理
列一元一次方程解决实际问题的一般步骤是:
①审题,特别注意关键的字和词的意义,弄清相关数量关系;
②设出未知数(注意单位);
③根据相等关系列出方程;
④解这个方程;
⑤检验并写出答案(包括单位名称)。
二、思想方法(本单元常用到的数学思想方法小结)
⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.
⑵方程思想:用方程解决实际问题的思想就是方程思想.
⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式.
体现了化“未知”为“已知”的化归思想.
⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.
⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.
三、数学思想方法的学习
1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.
2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.
3. 列方程解应用题的检验包括两个方面:
⑴检验求得的结果是不是方程的解;
⑵是要判断方程的解是否符合题目中的实际意义.
四、应用(常见等量关系)
行程问题:s=v×t
工程问题:工作总量=工作效率×时间
盈亏问题:利润=售价-成本
利率率=利润÷成本×100%
售价=标价×折扣数×10%
储蓄利润问题:利息=本金×利率×时间
本息和=本金+利息
8.1 几何图形
1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
2、立体图形:这些几何图形的各部分不都在同一个平面内。
3、平面图形:这些几何图形的各部分都在同一个平面内。
4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
立体图形中某些部分是平面图形。
5、三视图:从左面看,从正面看,从上面看。
6、展开图:有些立体图形是由一些平面图形围成
的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;
⑵点无大小,线、面有曲直;
⑶几何图形都是由点、线、面、体组成的;
⑷点动成线,线动成面,面动成体;
⑸点是组成几何图形的基本元素。
8.2 直线、射线、线段
1、直线公理:经过两点有一条直线,并且只有一条直线。
即:两点确定一条直线。
2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。
4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
5、连接两点间的线段的长度,叫做这两点的距离。
6、直线的表示方法:直线可记作直线AB或记作直线m.
(1)用几何语言描述右面的图形,我们可以说:点P在直线AB外,点A、B都在直线AB上.
(2)点O既在直线m上,又在直线n上,我们称直线m、n 相交,交点为O.
7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,记作射线OM或记作射线a.
注意:射线有一个端点,向一方无限延伸.
8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.记作线段AB或记作线段a.
注意:线段有两个端点.
8.3 角
1. 角的定义:有公共端点的两条射线组成的图形叫角。
这个公共端点是角的顶点,两条射线为角的两边。
2、角有以下的表示方法:
①用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.
②用一个大写字母表示.这个字母就是顶点.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示.
③用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠α、∠1。
3、以度、分、秒为单位的角的度量制,叫做角度制。
角的度、分、秒是60进制的。
1度=60分,1分=60秒,1周角=360度,1平角=180度。
4、角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。
5、如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;
如果两个角的和等于180度(平角),就说这两个
叫互为补角,即其中每一个角是另一个角的补角。
6、同角(等角)的补角相等;同角(等角)的余角相等。
7、方位角:一般以正南正北为基准,描述物体运动的方向。