NASTRAN温度场分析例子
- 格式:pdf
- 大小:68.68 KB
- 文档页数:14
例17 铝板焊接温度场分析实例—多层多道焊17.1 问题描述模拟一块铝合金板材多层多道焊接过程。
17.2 建立有限元模型MAINMESH GENERA TIONNODES:ADD (创建4个节点)00 00.050 00.050.05 000.05 0ELEMENTS:ADD (用上述4个节点创建单元)1 2 3 4END LIST#SUBDIVIDE (进行网格划分,采用疏密网格过渡)DIVISIONS2020 1BIAS FACTORS0.350 0ELEMENTSALL:EXISTINGRETURNEXPANDTRANSLATIONS00 -0.001RPETITIONS 10ELEMENTSALL:EXISTINGRETURN (创建的网格模型如下图)SWEEPALLRENUMBERALLSELECTELEMENTS:STOREfillerOK(选中图中所示的绿色区域)ALL:SELECTSELECT SET: fillerMAKE INVISIBLEELEMENTS:STOREsolidOKALL:VISIBLE17.3 施加材料性能MATERIAL PROPERTIESNEW (定义母材和填充材料的材料性质) ISOTROPICYOUNG’S MODULOUS 69e9POSISON’S RA TIO 0.33MASS DENSITY 2700PLASTICITYELASTIC-PLASTICINITIAL YIELD STRESS 8e8THERMAL.EXPCOEFFICIENT 23.1e-6OKHEAT TRANSFERCONDUCTIVITY 240SPECIFIC HEA T 880MASS DENSITY 2700OKELEMENTS:ADDALL:EXISTINGRETURN17.4 建立焊接路径和焊道MODELING TOOLSWEID FILLER (选定填充材料)NEWNAME:weldfiller1 (定义填充材料1,为恒温热源)PARAMETERS:MELT POINT TEMP: 660ELEMENTS:ADD (选定图中所示的粉色单元)END LIST#NEW (定义填充材料2,为恒温热源)NAME:weldfiller2PARAMETERS:MELT POINT TEMP: 660ELEMENTS:ADD (选定图中所示的橙色单元)END LIST#NEW (定义填充材料3,为恒热流密度源)NAME:weldfiller3ELEMENTS:ADD (选定图中所示的黄色单元)END LIST#RETURNWELD PATHS (创建焊接路径)NEW (定义焊接路径1)SELECT SET: weldfiller1MAKE INVISIBLEPA TH INPUT:NODESNODES:ADD选中图示中最上面的2个节点END LIST#ORIENTATION INPUT METHODNODES: ADD选中图示中的最下面的那个点END LIST#同样的方法定义焊接路径2,3RETURN17.5 设置焊道和母材的接触关系CONTACTCONTACT BODIESNEWNAME:filler1DEFORMABLEOKELEMENTS:ADDSET filler1OKALL:SELECTNEWNAME:filler2DEFORMABLEOKELEMENTS:ADDSET filler2OKALL:SELECTEND LIST#NEWNAME:filler3DEFORMABLEOKELEMENTS:ADDSET filler3OKALL:SELECTEND LIST#NEWNAME:solidDEFORMABLEOKELEMENTS:ADDSET solidOKALL:SELECTEND LIST# (接触体如图所示)CONTACT TABLESNEWPROPERTIESFIRST 1:2CONTACT TYPE:GLUETHERMAL PROPERTIES:CONTACT HEAT TRANSFER COEFFICIENT: 1e6OKRETURNRETUEN同样的操作定于接触体1与3,1与4,2与3,3与4之间的接触关系17.6 设置边界条件BOUNDARY CONDITIONSNEWNAME:flux1 (指定焊接热源为体热源)BOUNDARY CONDITIONS TYPETHERMAL:MOREVOLUME WELD FLUXFLUX (on)DIMENSIONS: (定义焊缝的尺寸)WIDTH:0.006DEPTH:0.006FORW ARD LENGTH:0.004REAR LENGTH:0.01MOTION PARAMETER: (指定热源的运动参数)VELOCITY:0.0025WELD PATH:weldpath1WELD FILLER:weldfiller1OKELEMENTS:ADDALL:EXISTINGEND LIST#RETURN同样的条件定义焊接热源2NEWNAME:flux3 (指定焊接热源为体热源)VOLUME WELD FLUXFLUX(on)MAGNITUDEPOWER 3000EFFICIENCY 0.7DIMENSIONS: (定义焊缝的尺寸)WIDTH:0.008DEPTH:0.008FORW ARD LENGTH:0.005REAR LENGTH:0.012MOTION PARAMETER: (指定热源的运动参数)VELOCITY:0.0025WELD PATH:weldpath3WELD FILLER:weldfiller3OKELEMENTS:ADDALL:EXISTINGEND LIST#RETURNNEWNAME:film (指定与外界的对流交换)BOUNDARY CONDITIONS TYPETHERMAL:FACE FILMFILMCOEFFICIENT:20SINK TEMPERATYRE:60OKFACES:ADD选定除填充材料以外的表面END LIST#RETURN (与外界热交换的边界条件如下图)NEWNAME:fix_xyMACHANICALFIXED DISPLACEMENTON X DISPLACEMENTON Y DISPLACEMENTOKNODES:ADD (选择左端的所有节点)END LIST(#)NEWNAME:fix_zMACHANICALFIXED DISPLACEMENTON Z DISPLACEMENTOKNODES:ADD (选择底边上的所有端点)END LIST(#)17.7 定义工况LOADCASESNEWCOUPLEDQUASI-STATIC (定义载荷工况1,焊接过程)LOADS:flux1(on)film(on)fix_xy(on)fix_z(on)OKCONTACTCONTACT TABLE:ctable1OKCONVERGENCE TESTINGMAX ERROR IN TEMPERATURE ESTIMATE:50OKTOTAL LOADCASES TIME: 20FIXED:CONSTANT TIME STEP:PARAMETER:#STEP: 50OKOK同样的方法定义载荷工况2,3NEWCOUPLEDQUASI-STATIC (定义载荷工况4,焊后的冷却过程) LOADS:film(on)fix_xy(on)fix_z(on)OKCONTACTCONTACT TABLE:ctable1OKCONVERGENCE TESTINGMAX ERROR IN TEMPERATURE ESTIMATE:50 OKTOTAL LOADCASES TIME: 500ADAPTIVE:TEMPERATUREPARAMETERS:MAX # INCRENMENTS: 500INITIAL TIME STEP: 1OKOK17.8 定义作业JOBS NEWCOUPLEDSELECTED:lcases 3lcases 1lcases 2lcases 4INITIAL LOADS: flux3(on)film(on)fix_xy(on)fix_z(on)CONTACT CONTROLINITIAL CONTACTCONTACT TABLE:ctable1OKJOB RESULTSStress(on)Equivalent V on Mises Stress(on)Total Equivalent Plastic Strain(on)OKOKELEMENT TYPECOUPLED3-D SOLID:117OKALL:EXISTINGCHECKRUN17.9 温度场结果分析第一层焊缝的温度场焊接第二层第一道的温度场第二层第二道的温度场。
nastran 瞬态响应分析1 概述(1)计算时变激励的响应(2)激励在时间域中显式定义,所有作用的力在每时间点给定(3)计算的响应通常包括节点位移、速度、加速度、单元力和应力(4)计算瞬态响应有直接法(Direct)和模态法(modal)2 直接瞬态响应分析(1)过程动力学方程对固定时间段求出离散点的响应,用中心差分法使用Newmark-Beta方法转化为(可以选择Willson-Theta法、Hughes-Alpha Bathe)整理得到其中,(2)瞬态响应分析中的阻尼其中,B1 = 阻尼单元(VISC,DAMP) + B2GGB2 = B2PP 直接输入矩阵+传递函数G = 整体结构阻尼系数(PARAM,G)W3 = 感兴趣的整体结构阻尼转化为频率-弧度/秒(PARAM,W3)K1 = 整体刚度矩阵G E = 单元结构阻尼系数(GE 在MATi卡中定义)W4 =感兴趣的单元结构阻尼转化为频率-弧度/秒(PARAM,W4)K E = 单元刚度矩阵瞬态响应分析中的不允许复系数,因此结构阻尼转化为等效粘性阻尼进行计算W3,W4的缺省为0,这时不计阻尼3 模态瞬态响应分析(1)过程物理坐标与模态坐标变化无阻尼的动力学方程变换得到其中,解耦得到单自由度系统方程其中,当存在阻尼时其中,(2)模态瞬态响应分析中的阻尼使用模态阻尼,每阶模态都存在阻尼,方程变为解耦的方程或其中,利用Duhamel积分得到(3) Nastran中模态瞬态响应分析阻尼的输入a)TABDMP1卡用SDAMPING=ID 情况控制卡选择b)f i(Hz)和g i为频率和阻尼值,用线性内插值给定点间的频率 , 用线性外插值给定端点外的频率;如:c)定义非模态阻尼(4)模态瞬态响应分析数据的提取a)物理响应为模态响应的叠加b)计算量一般不如直接法大c)不必输出每个时间步的值(5)模态截断原因:a)不需要所有模态,仅须很少的低阶模态就可以得到满意的响应b)用PARAM,LFREQ 给出保留模态的频率下界c)PARAM,HFREQ给出保留模态的频率上界d)PARAM,LMODES给出保留模态的最小数目e)截断高频模态即截断了高频响应4 瞬态激励力定义为时间的函数Nastran中定义方法1)时变载荷a) TLOAD1定义的载荷其中,b) TLOAD2定义的载荷2)TLOAD1卡片其中,a)DELAY定义自由度及时间延迟量b)TABLEDi定义时间和力对c)由DLOAD情况控制卡选择d)TYPE定义为3) TLOAD2卡片其中,该卡片由情况控制卡DLOAD选取4)载荷的组合其中,注:a)TLOAD1和TLOAD2标号唯一b)用DLOAD组合TLOADsc)由情况控制卡DLOAD选取5)DAREA卡定义动态载荷作用的自由度,与其他卡片关系DAREA例子6)SLEQ卡片将静态载荷用为动态载荷由情况控制卡LOADSET选取包括含一个DAREA卡片,与其他卡片关系LSEQ例子7)初始条件a)瞬态响应分析中,初始位移与初始速度由TIC数据卡定义,在模态响应分析中无效b)由IC情况控制卡片选择c)未被约束的自由度为0d)由一个A-set DOFs.给定e)初始条件仅须在直接瞬态响应中给定,模态瞬态响应中为0f)初始条件用于计算{u 1 }时需要的{u 0 }, {u -1 },{P 0 }, {P -1 },所有点的初始加速度设置为0(t<0)建议对任何类型的动态激励至少取一个时间步为0g) TIC卡定义初始条件其中,8)TSTEP卡a)定义直接瞬态响应和模态瞬态响应分析中的积分时间步长b)积分误差随频率的增加而增加c)建议在响应的一个周期内至少取8个时间步d)TSTEP控制求解和输出,由情况控制卡TSTEP选取e)积分的代价与步长成正比f)对低频(长周期)响应用自适应方法更有效g)计算中可以改变积分步长,这时h) TSTEP卡片5直接瞬态响应与模态瞬态响应比较6瞬态响应求解控制例子1)DIRECT TRANSIENT RESPONSEINPUT FILEID SEMINAR, PROB4SOL 109TIME 30CENDTITLE= TRANSIENT RESOPONSE WITH TIME DEPENDENT PRESSURE AND POINT LOADS SUBTITLE= USE THE DIRECT METHODECHO= PUNCHSPC= 1SET 1= 11, 33, 55DISPLACEMENT= 1SUBCASE 1DLOAD= 700 $ SELECT TEMPORAL COMPONENT OF TRANSIENT LOADING LOADSET= 100 $ SELECT SPACIAL DISTRIBUTION OF TRANSIENT LOADING TSTEP= 100 $ SELECT INTERGRATION TIME STEPS$OUTPUT (XYPLOT)XGRID=YESYGRID=YESXTITLE = TIME (SEC)YTITLE- DISPLACEMENT RESPONSE AT CENTER TIPXYPLOT DISP RESONSE / 11(T3)YTITLE= DISPLACEMENT RESPONSE AT CENTER TIPXYPLOT DISP RESPONSE / 33 (T3)YTITLE= DISPLACEMENT RESPONSE AT OPPSITE CORNERXYPLOT DISP RESPONSE . 55 (T3)$BEGIN BULKPARAM, COUPMASS, 1PARAM, WTMASS, 0.00259$INCLUED ’plate.bdf’$$ SPECIFY STRUCTURAL DIAMPING$ 3 PERCENT AT 250 HZ. = 1571 RAD/SEC$PARAM, G, 0.06PARAM, W3, 1571.$$ APPLY UNTI PRESSURE LOAD TO PLATE$LSEQ, 100, 300, 400$PLOAD2, 400, 4., 4, THRU, 40$$ VARY PRESSURE LOAD (250HZ)$TLOAD2, 200, 300, , 0, 0., 8.E-3, 250., -90.$$ APPLY POINT LOAD OUT OF PAHSE WITH PRESSURE LOAD $TLOAD2, 500, 600, , 0, 0., 8.E-3, 250., -90.$DAREA, 600, 11, 3, 1.$$ COMBINE LOADS$DLOAD, 700, 1., 1., 200, 50., 500$$ SPECIFY INTERGRATION TIME STEPS$TSTEP, 100, 100, 4.0E-4, 1$ENDDATA结果2))MODAL TRANSIENT RESPONSEINPUT FILEID SEMINAR, PROB4SOL 112TIME 30CENDTITLE = TRANSIENT RESPONSE WITH TIME DEPENDENT PRESSURE AND POINT LOADS SUBTITLE = USE THE MODAL METHODECHO = UNSORTEDSPC = 1SET 111 = 11, 33, 55DISPLACEMENT(SORT2) = 111SDAMPING = 100SUBCASE 1METHOD = 100DLOAD = 700LOADSET = 100TSTEP = 100$OUTPUT (XYPLOT)XGRID=YESYGRID=YESXTITLE= TIME (SEC)YTITLE= DISPLACEMENT RESPONSE AT LOADED CORNERXYPLOT DISP RESPONSE / 11 (T3)YTITLE= DISPLACEMENT RESPONSE AT TIP CENTERXYPLOT DISP RESPONSE / 33 (T3)YTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNERXYPLOT DISP RESPONSE / 55 (T3)$BEGIN BULKPARAM, COUPMASS, 1PARAM, WTMASS, 0.00259$$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE PROBLEM$INCLUDE ’plate.bdf’$$ EIGENVALUE EXTRACTION PARAMETERS$EIGRL, 100, , ,5$$ SPECIFY MODAL DAMPING$TABDMP1, 100, CRIT,+, 0., .03, 10., .03, ENDT$$ APPLY UNIT PRESSURE LOAD TO PLATE$LSEQ, 100, 300, 400$PLOAD2, 400, 1., 1, THRU, 40$$ VARY PRESSURE LOAD (250 HZ)$TLOAD2, 200, 300, , 0, 0., 8.E-3, 250., -90. $$ APPLY POINT LOAD (250 HZ)$TLOAD2, 500, 600,610, 0, 0.0, 8.E-3, 250., -90. $DAREA, 600, 11, 3, 1.DELAY, 610, 11, 3, 0.004$$ COMBINE LOADS$DLOAD, 700, 1., 1., 200, 25., 500$$ SPECIFY INTERGRATION TIME STEPS$TSTEP, 100, 100, 4.0E-4, 1$ENDDATA。
ANSYS温度场例题分析短圆柱体的热传导过程问题:一短圆柱体,直径和高度均为1m,现在其上端面施加大小为100℃的均匀温度载荷,圆柱体下端面及侧面的温度均为0℃,试求圆柱体内部的温度场分布(假设圆柱体不与外界发生热交换)。
圆柱体材料的热传导系数为30W/(m·℃)。
求解:第一步:建立工作文件名和工作标题在ANSYS软件中建立相应的文件夹,并选择Thermal复选框。
第二部:定义单元类型在单元类型(elementtype)中选择thermalolid和quad4node55,在单元类型选择数字(elementtypereferencenumber)输入框中输入1,在单元类型选择框里选择A某iymmetric,其余默认即可。
第三步:定义材料性能参数在材料性能参数对话框中输入圆柱体的导热系数30.第四步:创建几何模型、划分网格之后在plotnumberingcontrol对话框,分别打开KPKeypointnumber、LINElinenumber、AREAAreanumber,建立直线L1、L2、L3、L4线段。
生成几何模型,如下图所示:将结果进行保存。
第五步:加载求解选择分析类型Steady-State,在SelectEntitie对话框,第一个下拉列表框中选择Line,在第二个下拉列表中选择ByNum,第三个单选框中选择FromFull。
选择线段L1、L2。
重复上述操作,在SelectEntitie对话框,第一个下拉列表框中选择Node,在第二个下拉列表中选择Attachedto,第三个单选框中选择Line,all。
并在Lab2DOFtobecontrained列表中选择TEMP,在VALUELoadTEMPvalue输入框中输入0。
在SelectEntitie对话框,第一个下拉列表框中选择Line,在第二个下拉列表中选择ByNum,第三个单选框中选择FromFull选择L3线段,重复上述操作,在SelectEntitie对话框,第一个下拉列表框中选择Node,在第二个下拉列表中选择Attachedto,第三个单选框中选择Line,all。
MSC.Nastran 104 Exercise WorkbookA-1 Transient Thermal Analysis of a Cooling fin
APPENDIX A
Objectives:sCreate a new database.sCreate the surface.sAssign the thermal loadssSubmit the model for analysisA-2 MSC.Nastran 104 Exercise WorkbookTransient Thermal Analysis of a Cooling FinMSC.Nastran 104 Exercise WorkbookA-3 APPENDIX A
Suggested Exercise Steps:sCreate a new database and name it fin.db.sCreate a surface model of the cooling finsGenerate the finite elements using mesh seedssDefine material and element properties.sApply the convection conditions to the model.sSubmit the model to MSC.Nastran for analysis.sReview results.A-4 MSC.Nastran 104 Exercise WorkbookTransient Thermal Analysis of a Cooling Fin
MSC.Nastran 104 Exercise WorkbookA-5 APPENDIX A
Exercise Procedure:1.Open a new database called fin.db.
In the New Model Preferences form set the following:
Whenever possible click u Auto Execute (turn off).2.Create the surfaces of the cooling fin
Repeat the previous step to create the remaining surface.
File/New...New Database NamefinOK
New Model PreferenceToleranceDefault
Analysis Code:MSC/NASTRANAnalysis Type:ThermalOK
GeometryAction:CreateObject:SurfaceMethod:XYZReference Coordinate FrameCoord 0Vector Coordinates List[0.5, 2, 0]Origin Coordinates List[0, 0, 0]Apply
Vector Coordinates List[0.5, 0.666667, 0]Origin Coordinates List[0.5, 0.666667, 0]ApplyA-6 MSC.Nastran 104 Exercise Workbook
3.Generate the mesh seed for the surfaces created:Using the mesh seed generated in the previous step, mesh thegeometry and create finite elements.
Use equivalence function to make sure all the overlapping nodes areconnected.
Finite ElementAction:CreateObject:Mesh SeedMethod:UniformElement Edge Length DataNumber of ElementsNumber =9Curve ListSurface 1.1 1.3ApplyNumber =4Curve ListSurface 1.2 1.4 2.2 2.4ApplyNumber =3Curve ListSurface 2.3Apply
Finite ElementAction:CreateObject:MeshMethod:SurfaceSurface ListSurface 1 2Apply
Finite ElementAction:EquivalenceObject:AllTransient Thermal Analysis of a Cooling FinMSC.Nastran 104 Exercise WorkbookA-7 APPENDIX A
4.Next, define a material using the specified thermal conductivity,specific heat, and density.
Method:Tolerance CubeApply
MaterialsAction:CreateObject:IsotropicMethod:Manual InputMaterial Name:mat_1Input PropertiesThermal Conductivity6e-4Specific Heat0.146Density0.283OKApplyA-8 MSC.Nastran 104 Exercise Workbook
5.Next, reference the material that was created in the previous step.Define the properties of the cooling fin.
6.Since this is a transient analysis problem, a transient load case needsto be defined before loads and boundary conditions are applied.
7.Assign the convection properties to the cooling fin.7a.The convection on the left edge is defined as follows:
PropertiesAction:CreateObject:2DType:ShellProperty Set NamefinInput PropertiesMaterial Namem:mat_1Thickness1OKSelect MembersSurface 1 2AddApply
Load CasesAction:CreateLoad Case NametransientLoad Case Type:Time DependentApply
Loads/BCsAction:CreateObject:ConvectionType:Element UniformNew Set NameconvTransient Thermal Analysis of a Cooling FinMSC.Nastran 104 Exercise WorkbookA-9 APPENDIX A
7b.The right hand side of the fin undergoes a different type ofconvection.
Target Element Type:2DInput DataSurface Option:EdgeEdge Convection Coef0.001543Ambient Temperature2500OKSelect Application RegionGeometry FilterGeometrySelect Surfaces or EdgesSurface 1.1AddOKApply
Loads/BCsAction:CreateObject:ConvectionType:Element UniformNew Set Nameconv_rightTarget Element Type:2DInput DataSurface Option:EdgeEdge Convection Coef0.001157Ambient Temperature1000OKSelect Application RegionGeometry FilterFEMA-10 MSC.Nastran 104 Exercise Workbook
8.Click on the Analysis radio button on the Top Menu Bar andcomplete the entries as shown here:
Select 2D Elements or EdgeElement 37:40.1.1 4:12:4.1.2 28:48:4.1.2 45:48.1.3
AddOKApply
AnalysisAction:AnalyzeObject:Entire ModelType:Analysis DeckTranslation ParametersData Output:XDB and PrintOKSolution TypeSolution TypeTRANSIENT ANALYSIS
Solution ParametersDefault Init Temperature70OKSubcase CreateAvailable SubcasestransientSubcase ParameterInitial Time Step =0.1Number of Time Steps =20OKApplyCancelApply