C语言冒泡排序
- 格式:ppt
- 大小:340.00 KB
- 文档页数:13
快速排序算法c语言实验报告冒泡法和选择法排序C程序实验报告实验六:冒泡法排序物理学416班赵增月F12 2011412194日期:2013年10月31日一·实验目的 1.熟练掌握程序编写步骤;2.学习使用冒泡法和选择法排序;3.熟练掌握数组的定义和输入输出方法。
二·实验器材1.电子计算机;2.VC6.0三·实验内容与流程1.流程图(1)冒泡法(2)选择法 2.输入程序如下:(1)冒泡法#includestdio.h void main() { int a[10]; int i,j,t; printf(请输入10个数字:\n); for(i=0;i10;i++)scanf(%d,&a[i]); printf(\n); for(j=0;j9;j++)for(i=0;i9-j;i++) if(a[i]a[i+1]) { t=a[i]; a[i]=a[i+1]; a[i+1]=t; } printf(排序后如下:\n); for(i=0;i10;i++) printf(%d,a[i]); printf(\n); }(2)选择法#includestdio.h void main() { int a[10]; int i,j,t,k; printf(请输入10个数字:\n); for(i=0;i10;i++)scanf(%d,&a[i]);printf(\n); for(i=0;i9;i++) {k=i;for(j=i+1;j10;j++) if (a[k]a[j])k=j;t=a[i];a[i]=a[k];a[k]=t; }printf(排序后如下:\n); for(i=0;i10;i++)printf(%d,a[i]); printf(\n); }四.输出结果(1冒泡法)请输入10个数字:135****2468排序后如下:12345678910 (2)选择法输出结果请输入10个数字:135****6810排序后如下:12345678910五.实验反思与总结1.冒泡法和选择法是一种数组排序的方法,包含两层循环,写循环时,要注意循环变量的变化范围。
C语言常用算法程序汇总C语言是一门广泛应用于计算机编程的语言,具有较高的效率和灵活性。
在C语言中,常见的算法程序包括排序算法、查找算法、递归算法等等。
以下是一些常用的C语言算法程序的汇总:1.排序算法:-冒泡排序:通过多次迭代比较相邻元素并交换位置,将最大的元素逐渐移动到正确的位置。
-插入排序:将待排序的元素与已排序的部分依次比较并插入到正确的位置。
-选择排序:每次从待排序的元素中选择最小的元素并与已排序的部分交换位置。
-快速排序:通过选择一个基准元素,将数组划分为两个子数组进行递归排序。
2.查找算法:-顺序查找:逐个比较数组中的元素,直到找到目标元素或到数组末尾。
-二分查找:通过比较目标元素与数组中间元素的大小,逐步缩小范围,直到找到目标元素。
-哈希查找:通过散列函数将目标元素映射到哈希表的索引位置进行查找。
3.递归算法:-阶乘:通过递归调用自身计算一个正整数的阶乘。
-斐波那契数列:通过递归调用自身计算斐波那契数列的第n个数。
-二叉树遍历:通过递归调用自身遍历二叉树的各个节点。
4.图算法:- 最短路径算法:如Dijkstra算法和Floyd算法,用于计算图中两个节点之间的最短路径。
-拓扑排序:通过对有向无环图进行排序,使得所有的边从排在前面的节点指向排在后面的节点。
- 最小生成树:如Prim算法和Kruskal算法,用于找到图中连接所有节点的最小子树。
5.动态规划:-最长公共子序列:通过寻找两个字符串中的最长公共子序列,解决字符串匹配问题。
-背包问题:通过动态规划解决在给定容量下选取物品使得总价值最大的问题。
-最大子序列和:通过动态规划解决一个数组中选取连续子序列使得和最大的问题。
以上只是一些C语言中常用的算法程序的汇总,实际上,还有很多其他的算法,如逆波兰表达式、霍夫曼编码、最小割等等。
通过学习这些算法,可以更好地理解C语言的应用和开发。
C语⾔⼋⼤排序算法C语⾔⼋⼤排序算法,附动图和详细代码解释!来源:C语⾔与程序设计、⽵⾬听闲等⼀前⾔如果说各种编程语⾔是程序员的招式,那么数据结构和算法就相当于程序员的内功。
想写出精炼、优秀的代码,不通过不断的锤炼,是很难做到的。
⼆⼋⼤排序算法排序算法作为数据结构的重要部分,系统地学习⼀下是很有必要的。
1、排序的概念排序是计算机内经常进⾏的⼀种操作,其⽬的是将⼀组“⽆序”的记录序列调整为“有序”的记录序列。
排序分为内部排序和外部排序。
若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。
反之,若参加排序的记录数量很⼤,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。
2、排序分类⼋⼤排序算法均属于内部排序。
如果按照策略来分类,⼤致可分为:交换排序、插⼊排序、选择排序、归并排序和基数排序。
如下图所⽰:3、算法分析1.插⼊排序*直接插⼊排序*希尔排序2.选择排序*简单选择排序*堆排序3.交换排序*冒泡排序*快速排序4.归并排序5.基数排序不稳定排序:简单选择排序,快速排序,希尔排序,堆排序稳定排序:冒泡排序,直接插⼊排序,归并排序,奇数排序1、插⼊排序将第⼀个和第⼆个元素排好序,然后将第3个元素插⼊到已经排好序的元素中,依次类推(插⼊排序最好的情况就是数组已经有序了)因为插⼊排序每次只能操作⼀个元素,效率低。
元素个数N,取奇数k=N/2,将下标差值为k的数分为⼀组(⼀组元素个数看总元素个数决定),在组内构成有序序列,再取k=k/2,将下标差值为k的数分为⼀组,构成有序序列,直到k=1,然后再进⾏直接插⼊排序。
3、简单选择排序选出最⼩的数和第⼀个数交换,再在剩余的数中⼜选择最⼩的和第⼆个数交换,依次类推4、堆排序以升序排序为例,利⽤⼩根堆的性质(堆顶元素最⼩)不断输出最⼩元素,直到堆中没有元素1.构建⼩根堆2.输出堆顶元素3.将堆低元素放⼀个到堆顶,再重新构造成⼩根堆,再输出堆顶元素,以此类推5、冒泡排序改进1:如果某次冒泡不存在数据交换,则说明已经排序好了,可以直接退出排序改进2:头尾进⾏冒泡,每次把最⼤的沉底,最⼩的浮上去,两边往中间靠16、快速排序选择⼀个基准元素,⽐基准元素⼩的放基准元素的前⾯,⽐基准元素⼤的放基准元素的后⾯,这种动作叫分区,每次分区都把⼀个数列分成了两部分,每次分区都使得⼀个数字有序,然后将基准元素前⾯部分和后⾯部分继续分区,⼀直分区直到分区的区间中只有⼀个元素的时候,⼀个元素的序列肯定是有序的嘛,所以最后⼀个升序的序列就完成啦。
c语言数组数据比较算法概述在C语言中,数组是一种常见的数据结构,用于存储一系列相同数据类型的元素。
在实际编程中,经常需要对数组进行比较操作,以找到数组中的最大值、最小值、排序等。
本文将详细介绍C语言中常用的数组数据比较算法。
一、数组元素比较1.1 逐个元素比较法逐个元素比较法是最简单的数组比较方法,其基本思想是将两个数组中的对应元素逐个进行比较,找出差异或相同之处。
具体步骤如下:1.声明两个数组a和b;2.逐个比较数组a和数组b的对应元素;3.如果找到不同的元素,输出差异;4.如果所有对应元素都相同,则输出相同。
1.2 利用循环遍历比较法逐个元素比较法虽然简单,但需要逐个比较所有元素,效率较低。
利用循环遍历比较法可以通过循环结构实现更高效的数组比较。
具体步骤如下: 1. 声明两个数组a和b; 2. 使用循环结构遍历数组a和数组b的对应元素; 3. 逐个比较数组a 和数组b的对应元素; 4. 如果找到不同的元素,输出差异; 5. 如果所有对应元素都相同,则输出相同。
二、数组排序算法2.1 冒泡排序法冒泡排序是一种简单的排序算法,其基本思想是多次遍历数组,每次遍历都将相邻的两个元素进行比较并交换位置,从而实现将最大(或最小)元素逐渐移到数组的末尾(或开头)。
具体步骤如下: 1. 声明一个数组a; 2. 外层循环遍历数组元素,从第一个元素到倒数第二个元素; 3. 内层循环遍历数组元素,从第一个元素到当前外层循环变量所指示的位置; 4. 逐个比较相邻的两个元素,如果前一个元素大于后一个元素,则交换它们的位置; 5. 继续下一轮的遍历,直到所有元素排序完成。
2.2 插入排序法插入排序是一种简单直观的排序算法,其基本思想是将数组分为已排序和未排序两部分,每次从未排序部分取出一个元素,插入到已排序部分的适当位置。
具体步骤如下: 1. 声明一个数组a; 2. 外层循环遍历数组元素,从第二个元素到最后一个元素; 3. 内层循环从外层循环变量所指示的位置开始,向前逐个比较并移动已排序部分的元素; 4. 当找到合适位置时,插入当前未排序元素; 5. 继续下一轮的遍历,直到所有元素排序完成。
C语言基本算法C语言是一种广泛使用的编程语言,用于开发各种应用程序和系统。
算法是编程的核心部分,是解决问题的方法和步骤的描述。
在C语言中,有许多基本算法可以用来解决简单级别的问题。
下面我将介绍几种常见的C语言基本算法。
1.线性查找算法线性查找算法是一种简单的查找算法,它从数组的第一个元素开始顺序地比较,直到找到目标元素或遍历完整个数组。
这个算法的时间复杂度是O(n)。
```cint linearSearch(int arr[], int n, int target)for (int i = 0; i < n; i++)if (arr[i] == target)return i;}}return -1;```这个算法接受一个整数数组arr、数组的大小n和目标元素target 作为输入,并返回目标元素在数组中的索引,如果未找到则返回-12.冒泡排序算法冒泡排序是一种简单的排序算法,它通过多次循环比较和交换相邻元素来排序。
每次循环都将最大的元素冒泡到数组的末尾。
这个算法的时间复杂度是O(n^2)。
```cvoid bubbleSort(int arr[], int n)for (int i = 0; i < n-1; i++)for (int j = 0; j < n-i-1; j++)if (arr[j] > arr[j+1])int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}```这个算法接受一个整数数组arr和数组的大小n作为输入,并将数组按升序排序。
3.二分查找算法二分查找算法是一种高效的查找算法,它使用分治策略将有序数组分为两部分,并选择中间元素进行比较。
如果中间元素等于目标元素,则返回中间元素的索引;否则,如果中间元素大于目标元素,则在左侧部分继续查找;如果中间元素小于目标元素,则在右侧部分继续查找。
这个算法的时间复杂度是O(logn)。
C语言常用简单算法C语言是一门功能强大的编程语言,其算法也是很多的。
下面是一些常用的简单算法:1.二分查找算法:二分查找是一种在有序数组中查找特定元素的算法。
它的基本思想是首先在数组的中间位置找到待查找的元素,如果该元素等于目标值,则查找成功;如果该元素大于目标值,说明目标值在数组的前半部分,则在前半部分继续进行查找;如果该元素小于目标值,则说明目标值在数组的后半部分,则在后半部分继续进行查找。
重复以上步骤,直到找到目标值或者确定目标值不存在。
2.冒泡排序算法:冒泡排序是一种简单直观的排序算法。
它的基本思想是通过反复交换相邻的两个元素,将较大的元素逐渐往后移动,从而实现排序的目的。
具体实现时,每一轮比较都会使最大的元素移动到最后。
3.插入排序算法:插入排序是一种简单直观的排序算法。
它的基本思想是将数组分成已排序部分和未排序部分,每次从未排序部分取出一个元素,然后将该元素插入到已排序部分的合适位置,从而实现排序的目的。
4.选择排序算法:选择排序是一种简单直观的排序算法。
它的基本思想是每次选择一个最小(或最大)的元素放到已排序部分的末尾,从而实现排序的目的。
具体实现时,每一轮选择都通过比较找出未排序部分的最小(或最大)元素。
5.快速排序算法:快速排序是一种高效的排序算法。
它的基本思想是通过选取一个基准元素,将数组分成两个子数组,一个子数组中的元素都小于基准元素,另一个子数组中的元素都大于基准元素,然后对这两个子数组分别进行快速排序,最终实现排序的目的。
6.斐波那契数列算法:斐波那契数列是一列数字,其中每个数字都是前两个数字之和。
常见的斐波那契数列算法有递归算法和迭代算法。
递归算法通过反复调用自身来计算斐波那契数列的值,而迭代算法则通过循环来计算。
7.求最大公约数算法:求两个数的最大公约数是一种常见的问题。
常见的求最大公约数的算法有欧几里得算法和辗转相除法。
欧几里得算法通过不断用较小数除以较大数的余数,直到余数为0,得到最大公约数。
C语言程序设计的常用算法1.排序算法-冒泡排序:通过多次比较和交换来将最大(小)的数移到最后(前),时间复杂度为O(n^2)。
适用于数据较少、数据基本有序的情况。
- 快速排序:通过一趟排序将待排序序列分隔成独立的两部分,其中一部分的所有元素都比另一部分的所有元素小。
然后递归地对两部分进行排序,时间复杂度为O(nlogn)。
适用于大规模数据的排序。
-插入排序:将待排序序列分为已排序和未排序两部分,每次从未排序部分取一个元素插入到已排序部分的适当位置,时间复杂度为O(n^2)。
适用于数据量较小的排序场景。
- 归并排序:将待排序序列分为若干个子序列,分别进行排序,然后再将排好序的子序列合并成整体有序的序列,时间复杂度为O(nlogn)。
适用于需要稳定排序且对内存空间要求不高的情况。
2.查找算法-顺序查找:从头到尾依次对每个元素进行比较,直到找到目标元素或者遍历完整个序列。
时间复杂度为O(n)。
- 二分查找:对于有序序列,将序列的中间元素与目标元素进行比较,根据比较结果缩小查找范围,直到找到目标元素或者查找范围为空。
时间复杂度为O(logn)。
3.图算法-广度优先(BFS):从给定的起始顶点开始,按照“先访问当前顶点的所有邻接顶点,再依次访问这些邻接顶点的所有未访问过的邻接顶点”的顺序逐层访问图中的所有顶点。
适用于寻找最短路径、连通性等问题。
-深度优先(DFS):从给定的起始顶点开始,按照“先递归访问当前顶点的一个邻接顶点,再递归访问这个邻接顶点的一个邻接顶点,直到无法再继续递归”的方式遍历图中的所有顶点。
适用于寻找路径、判断连通性等问题。
4.动态规划算法-背包问题:给定一个背包容量和一组物品的重量和价值,选择一些物品装入背包,使得装入的物品总重量不超过背包容量,且总价值最大。
利用动态规划的思想可以通过构建二维数组来解决该问题。
-最长公共子序列(LCS):给定两个序列,找出一个最长的子序列,且该子序列在两个原序列中的顺序保持一致。
simple foc控制原理
冒泡排序算法是一种简单的排序方法,其原理是通过多次比较相邻两个元素的大小,将较大的元素逐步“冒泡”到数组的末尾。
具体实现如下:
1. 首先,定义一个整型数组和数组长度n;
2. 然后,进行n-1轮比较,每轮比较都从数组的第一个元素开始,依次比较相邻两个元素的大小;
3. 每一轮比较结束后,将最大的元素“冒泡”到数组的末尾;
4. 最后,数组中的元素依次排列,即为排好序的结果。
下面是C语言实现冒泡排序算法的代码:
```
void bubble_sort(int arr[], int n)
{
int i, j;
for (i = 0; i < n-1; i++)
{
for (j = 0; j < n-1-i; j++)
{
if (arr[j] > arr[j+1])
{
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
}
```
使用方法如下:
```
int main()
{
int arr[] = {6, 5, 3, 7, 2, 8, 9, 1, 4};
int n = sizeof(arr)/sizeof(arr[0]);
bubble_sort(arr, n);
for (int i = 0; i < n; i++)
{
printf("%d ", arr[i]);
}
return 0;
}
```
以上就是C语言中实现冒泡排序算法的步骤和代码。
C语言的六种常用算法C语言是一种广泛使用的编程语言,它不仅支持基本的算术运算,还提供了一些常用的高级算法来解决各种问题。
下面将介绍C语言中的六种常用算法。
1.排序算法:排序算法用于按特定的顺序重新排列一组数据。
常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序和归并排序。
这些算法的时间复杂度和空间复杂度各不相同,可以根据不同的需求选择合适的排序算法。
2.算法:算法用于在一组数据中查找特定的元素。
常见的算法包括线性、二分和哈希。
线性从列表的一端开始逐个比对,直到找到目标元素或完整个列表。
二分是一种高效的算法,它将目标元素与列表的中间元素进行比较,然后根据比较结果将范围缩小一半,重复此过程,直到找到目标元素。
3.图算法:图算法用于解决与图相关的问题,如最短路径问题、最小生成树问题和网络流问题。
常见的图算法包括广度优先(BFS)和深度优先(DFS),它们用于遍历图的节点。
Dijkstra算法用于求解最短路径问题,Prim算法用于求解最小生成树问题。
4.动态规划算法:动态规划算法用于解决最优化问题,将原始问题分解为子问题,并记录子问题的解,以避免重复计算。
常见的动态规划算法包括0/1背包问题、最长公共子序列问题和矩阵链乘法问题。
这些问题都可以通过建立递推关系和使用动态规划表格求解。
5.贪心算法:贪心算法每次取最优解,然后将剩余的子问题交给下一次迭代。
它通常适用于解决一些具有最优子结构的问题。
常见的贪心算法包括霍夫曼编码、最小生成树问题和拟阵问题。
6.分治算法:分治算法将问题分解为若干个规模较小且相互独立的子问题,然后分别解决子问题,最后合并子问题的结果得到原始问题的解。
常见的分治算法包括快速排序、归并排序和大整数乘法。
这些算法利用递归的思想,将问题逐层分解,直到问题规模足够小,可以直接解决。
以上是C语言中的六种常用算法。
每种算法都有其适用的场景和特点,根据实际需求选择合适的算法可以提高程序的效率和性能。
c语言经典算法题
C语言经典算法题目涵盖了多个领域,包括排序、查找、递归、动态规划等。
以下是一些经典的C语言算法题目,它们对于提高编程能力和理解算法思想都是很有帮助的:
1. 冒泡排序:
实现冒泡排序算法,对一个数组进行升序或降序排序。
2. 快速排序:
实现快速排序算法,对一个数组进行升序或降序排序。
3. 选择排序:
实现选择排序算法,对一个数组进行升序或降序排序。
4. 二分查找:
实现二分查找算法,在有序数组中查找一个特定的元素。
5. 递归:
编写一个递归函数,计算斐波那契数列的第n 个数字。
6. 动态规划:
解决经典的动态规划问题,比如背包问题、最长公共子序列等。
7. 链表反转:
反转一个单链表或双链表。
8. 树的遍历:
实现二叉树的前序、中序和后序遍历。
9. 图的深度优先搜索(DFS)和广度优先搜索(BFS):
实现图的深度优先搜索和广度优先搜索算法。
10. 最短路径算法:
实现Dijkstra算法或Floyd-Warshall算法来求解图中的最短路径。
11. 素数判断:
编写一个函数判断一个给定的数是否是素数。
12. 最大公约数和最小公倍数:
实现求两个数的最大公约数和最小公倍数的算法。
这些题目旨在帮助你熟悉常见的算法思想和数据结构,提高编程和问题求解的能力。
解决这些题目时,不仅要注重正确性,还要考虑算法的效率和优化。