第一章 1.1 二次函数
- 格式:pptx
- 大小:758.12 KB
- 文档页数:10
九年级数学上册教案(北师大版)第一章:二次函数1.1 二次函数的定义与性质了解二次函数的一般形式:f(x) = ax^2 + bx + c掌握二次函数的图像特征:开口方向、顶点、对称轴、单调区间学会利用配方法将一般形式的二次函数化为顶点式1.2 二次函数的图像了解二次函数图像的开口方向与a的关系学会利用二次函数的顶点式确定顶点坐标和对称轴掌握利用二次函数的图像判断函数的单调性1.3 二次函数的应用学会利用二次函数解析式求解实际问题掌握二次函数图像与实际问题相结合的方法第二章:几何证明2.1 几何证明的基本方法了解几何证明的意义和作用掌握几何证明的基本方法:综合法、分析法、反证法、归纳法等2.2 三角形全等的判定学会运用SSS、SAS、ASA、AAS判定三角形全等理解三角形全等的性质和意义2.3 三角形的性质掌握三角形的内角和定理、外角定理、三角形的五边形定理等学会运用三角形性质解决实际问题第三章:概率与统计3.1 随机事件与概率理解随机事件的定义及其分类学会利用频率估计概率掌握概率的计算方法:古典概型、几何概型、条件概率、独立事件等3.2 统计方法了解统计学的基本概念:总体、样本、样本容量等学会运用众数、平均数、方差等描述数据的集中趋势和离散程度掌握利用图表展示数据的方法:条形图、折线图、饼图等3.3 概率与统计在实际生活中的应用学会运用概率与统计解决实际问题掌握概率与统计在现实生活中的意义和作用第四章:圆4.1 圆的定义与性质了解圆的定义及其基本性质掌握圆的方程:圆的标准方程、圆的一般方程学会运用圆的性质解决实际问题4.2 圆的度量掌握圆的周长、直径、半径等概念及其计算方法了解圆的面积计算公式学会运用圆的度量解决实际问题4.3 圆的位置关系掌握圆与圆的位置关系:相交、相切、相离学会运用圆的位置关系解决实际问题第五章:方程与不等式5.1 方程的解法掌握一元一次方程、一元二次方程、二元一次方程组的解法学会运用方程解决实际问题5.2 不等式的解法掌握一元一次不等式、一元二次不等式的解法学会运用不等式解决实际问题5.3 方程与不等式在实际生活中的应用学会运用方程与不等式解决实际问题掌握方程与不等式在现实生活中的意义和作用第六章:相似三角形6.1 相似三角形的定义与性质了解相似三角形的定义及其性质掌握相似三角形的判定方法:AA、SAS、SSS学会运用相似三角形的性质解决实际问题6.2 相似三角形的应用学会利用相似三角形解决图形放大与缩小问题掌握相似三角形在实际问题中的应用方法第七章:数据的收集与处理7.1 数据的收集了解数据的收集方法:问卷调查、实验、查阅资料等学会运用合适的方法收集数据掌握数据收集过程中应注意的问题7.2 数据的处理学会运用图表展示数据:条形图、折线图、饼图等掌握数据的整理与分析方法:众数、平均数、方差等7.3 数据处理在实际生活中的应用学会运用数据处理解决实际问题掌握数据处理在现实生活中的意义和作用第八章:函数的概念与性质8.1 函数的定义与性质了解函数的定义及其性质掌握函数的表示方法:解析式、表格、图象等学会运用函数的性质解决实际问题8.2 函数的图像了解函数图像的类型:线性函数、二次函数、指数函数等学会利用函数图像分析实际问题第九章:一次函数与二次函数的应用9.1 一次函数的应用学会利用一次函数解决实际问题:线性方程、线性规划等掌握一次函数在实际问题中的应用方法9.2 二次函数的应用学会利用二次函数解决实际问题:最值问题、曲线拟合等掌握二次函数在实际问题中的应用方法第十章:综合复习10.1 复习要点梳理梳理本册书的主要知识点,巩固基本概念、基本性质、基本方法强化重点、难点知识的理解与应用10.2 复习题与模拟测试完成课后习题、同步练习题,巩固所学知识参加模拟测试,提高解题速度与准确率10.3 复习方法与策略学会合理安排复习时间,制定复习计划掌握有效的复习方法:归纳总结、对比分析、巩固练习等十一章:视图与投影11.1 三视图理解主视图、左视图、俯视图的概念及三视图之间的关系。
高一数学必修一知识点归纳第一章二次函数1.1 一元二次方程及其解法一元二次方程的标准形式为ax^2 + bx + c = 0,可以通过公式法、配方法和因式分解等方式求解。
1.2 二次函数的图像及性质二次函数y=ax^2+bx+c的图像为抛物线,开口向上或向下,顶点坐标为(-b/2a,c-b^2/4a)。
1.3 二次函数与一元二次方程的关系一元二次方程可以通过二次函数的图像特征求解,二次函数的各项系数与一元二次方程的特征之间有一一对应的关系。
第二章直线与圆2.1 直线的方程及性质直线的一般方程为Ax+By+C=0,斜率为-k/A,其中k为直线的垂直距离。
2.2 圆的方程及性质圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)为圆心坐标,r为半径。
第三章度量衡3.1 长度、面积和体积的计算长度、面积和体积的计算包括常见图形的计算公式和应用场景,如长方形、正方形、圆形等。
3.2 单位换算长度、面积和体积的不同单位之间的换算,包括长度单位、面积单位、体积单位等。
第四章三角函数4.1 弧度制下的角度角度的度量单位有度、分、秒和弧度制,弧度制下一周的角度为2π。
4.2 三角函数的概念三角函数包括正弦函数、余弦函数、正切函数等,它们与直角三角形的边和角之间有一一对应的关系。
4.3 三角函数的图像及性质三角函数的图像具有周期性、对称性,通过振幅和周期来描述函数的性质。
第五章概率5.1 随机事件及基本概率随机事件的基本概率计算方法包括等可能概率、加法原理和乘法原理等。
5.2 条件概率及事件的独立性条件概率描述了随机事件在已知其他事件发生的情况下自身发生的概率,事件的独立性指两个事件发生与否互不影响。
第六章初等数论6.1 整除、最大公因数、最小公倍数整除、最大公因数和最小公倍数概念及计算方法,涉及质数、合数、素数分解等内容。
6.2 同余式同余式描述了整数之间的某种特殊的相等关系,同余式的性质包括传递性、对称性和相容性等。
专题1.1 二次函数的图像与性质(一)(六大题型)【题型1 判断二次函数的个数】【题型2 利用二次函数的概念求字母的值】【题型3 二次函数的一般式】【题型4根据实际问题列二次函数销售问题】【题型5 根据实际问题列二次函数面积类】【题型6 根据实际问题列二次函数几何类】【题型1 判断二次函数的个数】【典例1】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2(x+3)2﹣2x2;⑤y=ax2+bx+c,⑥y=x2++5其中二次函数的个数为()A.1B.2C.3D.4【变式11】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2(x+3)2﹣2x2;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式12】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式13】已知函数:①y=ax2;②y=3(x﹣1)2+2;③y=(x+3)2﹣2x2;④y=+x.其中,二次函数的个数为()A.1个B.2个C.3个D.4个【变式14】下列函数中,是二次函数的有()①y=9x2﹣(3x﹣1)2;②;③y=x(1﹣x);④y=(1﹣2x)2A.1个B.2个C.3个D.4个【变式15】下列函数中,是二次函数的有()①y=1﹣3x2;②y=;③y=x(1+x);④y=(1﹣2x)(1+2x)A.1个B.2个C.3个D.4个【题型2 利用二次函数的概念求字母的值】【典例2】已知y关于x的二次函数解析式为y=(m﹣2)x|m|,则m=()A.±2B.1C.﹣2D.±1【变式21】有二次函数y=x m﹣2﹣2x+1,则m的值是()A.4B.2C.0D.4或2【变式22】已知y=mx|m﹣2|+2mx+1是y关于x的二次函数,则m的值为()A.0B.1C.4D.0或4【变式23】若函数y=(a+1)x2+x+1是关于x的二次函数,则a的取值范围是()A.a≠0B.a≥1C.a≤﹣1D.a≠﹣1【变式24】如果函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,那么m的值为﹣.【变式25】若关于x的函数y=(2﹣a)x2﹣3x+4是二次函数,则a的取值范围是.【题型3 二次函数的一般式】【典例3】二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.3【变式31】将二次函数y=x(x﹣1)+3x化为一般形式后,正确的是()A.y=x2﹣x+3B.y=x2﹣2x+3C.y=x2﹣2x D.y=x2+2x【变式32】把二次函数y=﹣(x+3)2+11变成一般式是()A.y=﹣x2+20B.y=﹣x2+2C.y=﹣x2+6x+20D.y=﹣x2﹣6x+2【变式33】把二次函数y=﹣(x+3)(x+4)+11变成一般形式后,其二次项系数和一次项系数分别为()A.﹣1,﹣1B.﹣1,1C.﹣1,7D.﹣1,﹣7【变式34】二次函数的一般形式为()A.y=ax2+bx+c B.y=ax2+bx+c(a≠0)C.y=ax2+bx+c(b2﹣4ac≥0)D.y=ax2+bx+c(b2﹣4ac=0)【变式35】把抛物线y=(x﹣1)2+1化成一般式是.【变式36】把y=(3x﹣2)(x+3)化成一般形式后,一次项系数与常数项的和为.【题型4根据实际问题列二次函数销售问题】【典例4】某特许零售店“冰墩墩”的销售日益火爆,每个纪念品进价40元,销售期间发现,当销售单价定为44元时,每天可售出300个;销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y个,销售单价为x元(x>44),商家每天销售纪念品获得的利润w元,则下列等式正确的是()A.y=10x+740B.y=10x﹣140C.w=(﹣10x+700)(x﹣40)D.w=(﹣10x+740)(x﹣40)【变式41】某商品现在的售价为每件60元,每星期可销售300件.商场为了清库存,决定让利销售,已知每降价1元,每星期可多销售20件,那么每星期的销售额W(元)与降价x(元)的函数关系为()A.W=(60+x)(300+20x)B.W=(60﹣x)(300+20x)C.W=(60+x)(300﹣20x)D.W=(60﹣x)(300﹣20x)【变式42】“抖音直播带货”已经成为一种热门的销售方式,某抖音主播代销某一品牌的电子产品(这里代销指厂家先免费提供货源,待货物销售后再进行结算,未售出的由厂家负责处理).销售中发现每件售价99元时,日销售量为200件,当每件电子产品每下降5元时,日销售量会增加10件.已知每售出1件电子产品,该主播需支付厂家和其他费用共50元,设每件电子产品售价为x(元),主播每天的利润为w(元),则w与x之间的函数解析式为()A.w=(99﹣x)[200+10(x﹣50)]B.w=(x﹣50)[200+10(99﹣x)]C.w=(x﹣50)(200+×10)D.w=(x﹣50)(200+×10)【变式43】2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价每提高2元,则每天少卖4套.设冰墩墩和雪容融套件每套售价定为x元时,则该商品每天销售套件所获利润w与x之间的函数关系式为()A.w=(200+×4)(x﹣48)B.w=(200﹣×4)(x﹣48)C.w=(200﹣×4)(x﹣34)D.w=(200+×4)(x﹣48)【变式44】某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y 元,那么y与x的函数关系式是.【变式45】某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.x(元∕件)15182022…y(件)250220200180…按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是.【变式46】某商店销售一种进价为50元/件的商品,当售价为60元/件时,一天可卖出200件;经调查发现,如果商品的单价每上涨1元,一天就会少卖出10件.设商品的售价上涨了x元/件(x是正整数),销售该商品一天的利润为y元,那么y与x的函数关系的表达式为.(不写出x的取值范围)【变式47】新华商场销售某种品牌的童装,每件进价为60元,市场调研表明:在一个阶段内销售这种童装时,当售价为80元,平均每月售出200件;售价每降低1元,平均每月多售出20件.设售价为x元,则这种童装在这段时间内,平均每月的销售量y(件)与x满足的函数关系式是;平均每月的销售利润W(元)与x满足的函数关系式是.【题型5 根据实际问题列二次函数面积类】【典例5】将一根长为50cm的铁丝弯成一个长方形(铁丝全部用完且无损耗)如图所示,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y 与x之间的函数关系式为()A.y=﹣x2+50x B.y=x2﹣50xC.y=﹣x2+25x D.y=﹣2x2+25【变式51】长方形的周长为24cm,其中一边长为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2 B.y=12﹣x2 C.y=(12﹣x)•x D.y=2(12﹣x)【变式52】长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)【变式53】如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该农场计划用木材围成总长24m的栅栏,设面积为s(m2),垂直于墙的一边长为x(m).则s关于x的函数关系式:(并写出自变量的取值范围)【变式54】如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB为x米,面积为S平方米,则S与x的之间的函数表达式为;自变量x的取值范围为.【变式55】如图,某农场要盖一排三间同样大小的长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,栅栏的总长为24m,设羊圈的总面积为S(不(m2),垂直于墙的一边长为x(m),则S关于x的函数关系式为.必写出自变量的取值范围)【变式56】有一长方形纸片,长、宽分别为8 cm和6 cm,现在长宽上分别剪去宽为x cm(x<6)的纸条(如图),则剩余部分(图中阴影部分)的面积y =,其中是自变量,是因变量.【题型6 根据实际问题列二次函数几何类】【典例6】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A 开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.【变式61】如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为20cm,AC与MN在同一条直线上,开始时点A与点N重合,让△ABC 以2cm/s的速度向左运动,最终点A与点M重合,求重叠部分的面积ycm2与时间ts之间的函数关系式.【变式62】如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ的面积S的函数关系式,求出t的取值范围.【变式63】如图,在Rt△ABC中,∠C=90°,AC=12mm,BC=24mm,动点P从点A开始沿边AC向C以2mm/s的速度移动,动点Q从点C开始沿边CB向B以4mm/s的速度移动.如果P、Q两点同时出发,那么△PCQ的面积S随出发时间t如何变化?写出函数关系式及t的取值范围.【变式64】如图,正方形ABCD的边长为4cm,E,F分别是BC、DC边上的动点,点E,F同时从点C均以每秒1cm的速度分别向点B,点D运动,当点E与点B重合时,运动停止.设运动时间为x(s),运动过程中△AEF的面积为y(cm2),请写出用x表示y的函数表达式,并写出自变量x的取值范围.【变式65】如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E 出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,求y与x之间的函数关系式.。
1.1二次函数1.通过对实际问题情境的分析,让学生经历二次函数概念的形成过程,学会用类比思想学习二次函数知识.2.掌握二次函数的概念.3.认识到二次函数来源于实际生活,感受到二次函数在实际生活中有着广泛的应用.重点:二次函数的概念.难点:理解变量之间的对应关系.一、新课导入1.对于“函数”这个词,我们并不陌生,大家还记得我们学过哪些函数吗?(学过正比例函数、一次函数、反比例函数)2.那么函数的定义是什么,大家还记得吗?能把学过的函数回忆一下吗?(在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y 值,那么我们称y是x的函数,其中x是自变量,y是因变量)从上面的几种函数来看,每一种函数都有一般的形式,那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱.二、新知学习活动1观察思考:请用适当的函数解析式表示下列问题情境中的两个变量y与x之间的关系.(1)圆的面积y(cm2)与圆的半径x(cm).(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y元.答案:(1)y=πx2;(2)y=20000(1+x)2=20000x2+40000x+20000.老师引导学生合作学习:1.先独立探究,尝试写出y与x之间的函数关系式;2.上述三个问题先易后难,在独立探究的基础上,小组进行合作交流,共同探讨.3.上述关系式具有哪些共同特征?教师引导学生观察、分析、比较三个函数关系式.引导学生观察时应注意:(1)学生能否找出自变量及因变量的函数.(2)学生能否归纳出三个函数的共同特点:经化简后都具有y=ax2+bx+c的形式(a,b,c是常数,a≠0).学生观察、思考问题,尝试回答问题.活动2归纳总结:(1)上述三个函数解析式化简后都具有y=ax2+bx+c(a,b,c是常数,且a≠0)的形式.(2)一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做x的二次函数.其中a为二次项系数,b为一次项系数,c为常数项.三、新知应用活动3典例探究:【例】如图,矩形ABCD中,AB=6,BC=12,E是AB上一点,E不与A,B重合,F是BC上一点,F不与B,C重合,且BF=2BE,若设BE=x,△DEF的面积为S,求S关于x 的函数关系,并求自变量x 的取值范围.【分析】先用x 的代数式表示AE ,BF ,CF 的长,再利用△DEF 的面积等于矩形面积依次减去△ADE ,△BEF ,△CDF 的面积这一等量关系列出函数关系式.【解】∵BE =x ,∴AE =6-x ,BF =2x ,CF =12-2x.∵S △DEF =S 矩形ABCD -S △ADE -S △BEF-S △CDF ,∴S =12×6-12×12(6-x)-12·x·2x -12×6(12-2x)=-x 2+12x.由题意,得⎩⎪⎨⎪⎧x >0,6-x >0,12-2x >0,解得0<x <6,即自变量x 的取值范围是0<x <6.综上,S 关于x 的函数关系式为S =-x 2+12x(0<x <6).四、巩固新知尝试完成下面各题.1.若y =(a -3)x 2-2x +5是二次函数,则a 的取值范围是__a≠3__.2.菱形的两条对角线的和为26 cm ,则菱形的面积S(cm 2)与一条对角线的长x(cm )之间的函数关系式为__S =12x(26-x)(0<x <26)__. 3.一台机器原价40万元,每次降价的百分率为x ,那么连续两次降价后的价格y(万元)为( C )A .y =40(1-x )B .y =40(1-x 2)C .y =40(1-x )2D .y =40(1+x )24.若()m m x m y ++=22是关于x 的二次函数,则常数m 的值为( A )A .1B .2C .-2D .1或-2五、课堂小结1.到目前为止,我们学习了哪些函数?这些函数之间有什么联系?2.二次函数的一般表达式是怎样的?对a ,b ,c 有什么条件限制?3.谈一谈你的收获和困惑.六、课后作业形如y=ax 2+bx+c(a ,b ,c 为常数,a ≠0)的函数称为二次函数,y=ax 2+bx+c (a ≠0)为二次函数的一般式.1.下列四个函数:①y=-x ;②y=x ;③y=x1;④y=x 2.其中二次函数的个数为(A). A.1 B.2 C.3 D.42.下列函数中,当x=0时,y=0的是(C).A.y=x2 B. y=x 2-1 C.y=5x 2-3x D.y=-3x+73.二次函数y=2x(x-3)的二次项系数与一次项系数之和为(D).A.2B.-2C.-1D.-44.某工厂第一年的利润为20万元,第三年的利润为y 万元.设该公司利润的平均年增长率为x,则y 关于x 的二次函数的表达式为(B).A.y=20(1-x)2B.y=20(1+x)2C.y=(1-x)2+2D.y=(1-x)2-205.已知函数k k x y +=2是关于x 的二次函数,那么k= 1或-2 .6.对于二次函数 y =2x 2-bx +3,当x =1时,y=1,则b 的值为 4 .7.已知函数y=x 2-6x+9,当x= 3 时,函数值为0.8.小汽车刹车距离s(m)关于速度v(km/h)的二次函数表达式为s=1001v 2.一辆小汽车正以100km/h 的速度行驶,突然发现前方80m 处停着一辆故障车,此时小汽车刹车 会 (填“会”或“不会”)有危险.9.已知()324232-+-=--x x m y m m 是二次函数,求m 的值.【答案】由题意得⎩⎨⎧≠-=--042232m m m ,解得m=-1.10.已知二次函数y=ax 2+bx+c ,当x=0时,y=7;当x=1时,y=0;当x=-2时,y=9.求它的函数表达式.【答案】根据题意得,⎪⎩⎪⎨⎧=+-=++=92407c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=752c b a .∴它的函数表达式为y=-2x 2-5x+7.11.下列各式中,y 是x 的二次函数的是(B).A.xy+x 2=2B.x 2-2y+2=0C.y=21x D.y 2-x=012.从地面竖直向上抛出一个小球,小球的高度h(m)关于小球运动时间t(s)的二次函数表达式为h=30t-5t 2.则小球从抛出到回落到地面所需要的时间是(A).A.6sB.4sC.3sD.2s13.若y=ax 2+bx+c ,则由表格中信息可知y 关于x 的二次函数的表达式为(A).14.已知函数()2222++=-m x m y 是二次函数,则m 的值为 2 .15.某批发市场批发甲种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y(万元)与进货量x(t)近似满足二次函数表达式y=ax 2+bx(其中a≠0,a ,b 为常数,x≥0),且进货量x 为1t 时,销售利润y 为1.4万元;进货量x 为2t 时,销售利润y 为2.6万元.求y 关于x 的二次函数的表达式.【答案】由题意得⎩⎨⎧=+=+6.2244.1b a b a ,解得⎩⎨⎧=-=5.11.0b a . ∴y 关于x 的二次函数表达式为y=-0.1x 2+1.5x .16.下列函数中,属于二次函数的是(B).A.y=-4x+5B.y=x(2x-3)C.y=(x+4)2-x 2D.y=21x 17.【常德】如图所示,正方形EFGH 的顶点在边长为2的正方形ABCD 的边上.若设AE=x ,正方形EFGH 的面积为y ,则y 关于x 的函数表达式为 y=2x 2-4x+4 .18.如图所示,△ABC 与△DEF 是两个全等的等腰直角三角形,BC=EF=8,∠C=∠F=90°,且点C ,E ,B ,F 在同一条直线上,将△ABC 沿CB 方向平移,AB 与DE 相交于点P.设CE=x ,△PBE 的面积为S ,求:(1)S 关于x 的函数表达式,并指出自变量的取值范围.(2)当x=3时,求△PBE 的面积.【答案】(1)∵CE=x ,BC=8,∴EB=8-x.∵△ABC 与△DEF 是两个全等的等腰直角三角形,∴∠ABC=∠DEF=45°∴△PBE 是等腰直角三角形.∴PB=PE=22EB=22 (8-x). ∴S=21PB·PE=21×22 (8-x)×22 (8-x)= 41 (8-x)2=41x 2-4x+16. ∵8-x >0,∴x <8.又∵x≥0,∴0≤x <8.S 关于x 的函数表达式为S=41x 2-4x+16,自变量的取值范围是0≤x <8. (2)当x=3时,S △PBE =41 (8-3)2=425.。
湘教版数学九年级下册1.1《二次函数》教学设计一. 教材分析湘教版数学九年级下册1.1《二次函数》是本册教材中的重要内容,主要介绍了二次函数的定义、图像和性质。
通过本节课的学习,学生能够理解二次函数的概念,掌握二次函数的图像特点,了解二次函数的性质,并为后续学习二次方程和二次不等式打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念和一次函数的知识,具备了一定的函数思维。
但二次函数相对于一次函数来说,概念较为抽象,图像和性质的理解也需要一定的空间想象能力。
因此,在教学过程中,需要关注学生的学习困难,引导学生通过观察、操作、思考、交流等方式,逐步理解二次函数的概念和性质。
三. 教学目标1.理解二次函数的定义,掌握二次函数的图像特点;2.了解二次函数的性质,能够运用二次函数解决实际问题;3.培养学生的空间想象能力,提高学生的数学思维能力。
四. 教学重难点1.二次函数的定义和图像特点;2.二次函数的性质及其运用。
五. 教学方法1.情境教学法:通过生活实例引入二次函数,激发学生的学习兴趣;2.启发式教学法:引导学生主动思考、探究二次函数的性质;3.小组合作学习:培养学生团队合作精神,提高学生的交流能力;4.动手操作:让学生通过实际操作,加深对二次函数图像和性质的理解。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次函数的图像和性质;2.教学素材:准备一些实际问题,供学生练习和讨论;3.板书设计:设计清晰、简洁的板书,便于学生记录和复习。
七. 教学过程1.导入(5分钟)利用生活实例,如抛物线射击、自行车刹车等问题,引导学生思考二次函数的应用,激发学生的学习兴趣。
2.呈现(10分钟)讲解二次函数的定义,通过课件展示二次函数的图像,让学生观察和理解二次函数的图像特点。
3.操练(10分钟)让学生通过实际操作,尝试绘制一些简单的二次函数图像,加深对二次函数图像特点的理解。
4.巩固(10分钟)讲解二次函数的性质,引导学生通过思考、交流,总结二次函数的性质。
九年级下册《1.1二次函数》(湘教版)数学教案
标题:九年级下册《1.1二次函数》数学教案
一、教学目标:
1. 理解二次函数的基本概念。
2. 掌握二次函数的一般形式及特殊形式。
3. 能够运用二次函数解决实际问题。
二、教学重点与难点:
1. 教学重点:二次函数的概念和一般形式。
2. 教学难点:理解并掌握二次函数的图像和性质。
三、教学过程:
(一) 导入新课
通过回顾一次函数的相关知识,引出二次函数的概念。
(二) 新知探究
1. 二次函数的概念和表示方法
让学生自行阅读课本,然后引导他们总结二次函数的定义,并用公式表示出来。
2. 二次函数的一般形式和特殊形式
讲解二次函数的一般形式y=ax^2+bx+c(a≠0),并通过实例让学生了解二次函数的三种特殊形式:顶点式、零点式和完全平方式。
(三) 巩固练习
设计一些习题,包括基础题和提高题,帮助学生巩固所学知识。
四、课堂小结
引导学生对本节课的内容进行总结,强化记忆。
五、课后作业
布置适量的课后作业,以检查学生的学习效果。
二次函数及其图像教案第一章:引言1.1 学习目标了解二次函数的概念和重要性理解二次函数的一般形式能够列出二次函数的几个特殊形式1.2 教学内容二次函数的定义二次函数的一般形式:f(x) = ax^2 + bx + c二次函数的特殊形式:f(x) = a(x h)^2 + k1.3 教学活动引入二次函数的概念,通过实际例子让学生感受二次函数的存在引导学生通过观察和分析实际例子,总结出二次函数的一般形式讲解二次函数的特殊形式,并让学生通过图形直观地理解特殊形式的含义1.4 作业与练习完成练习题,包括识别和转换二次函数的一般形式和特殊形式第二章:二次函数的图像2.1 学习目标了解二次函数图像的特点和性质能够绘制二次函数的图像能够从图像中获取二次函数的信息2.2 教学内容二次函数图像的形状:开口向上/向下二次函数图像的顶点:最小值/最大值二次函数图像的对称轴2.3 教学活动讲解二次函数图像的形状,通过实际例子让学生观察和理解开口向上/向下的情况引导学生通过观察和分析实际例子,找出二次函数图像的顶点和对称轴让学生通过绘制二次函数图像,进一步理解和掌握二次函数图像的性质2.4 作业与练习完成练习题,包括绘制给定二次函数的图像和分析图像的性质第三章:二次函数的性质3.1 学习目标了解二次函数的增减性和奇偶性能够分析二次函数的增减区间和奇偶性3.2 教学内容二次函数的增减性:开口向上/向下的影响二次函数的奇偶性:f(x) = f(-x)3.3 教学活动讲解二次函数的增减性,通过实际例子让学生观察和理解开口向上/向下的影响引导学生通过观察和分析实际例子,判断二次函数的奇偶性让学生通过绘制二次函数图像,进一步理解和掌握二次函数的增减性和奇偶性3.4 作业与练习完成练习题,包括分析给定二次函数的增减性和奇偶性第四章:二次函数的应用4.1 学习目标了解二次函数在实际问题中的应用能够将实际问题转化为二次函数问题能够求解二次函数问题4.2 教学内容二次函数在实际问题中的应用:面积、体积、最值等求解二次函数问题:解方程、求极值等4.3 教学活动讲解二次函数在实际问题中的应用,通过实际例子让学生理解和掌握引导学生将实际问题转化为二次函数问题,并求解让学生通过实际问题,进一步理解和掌握二次函数的应用4.4 作业与练习完成练习题,包括解决给定的实际问题,转化为二次函数问题并求解第五章:总结与复习5.1 学习目标总结二次函数及其图像的主要内容和性质巩固所学的知识和技能5.2 教学内容回顾二次函数及其图像的定义、性质和应用巩固二次函数的图像绘制和分析方法5.3 教学活动引导学生回顾和总结二次函数及其图像的主要内容和性质让学生通过绘制和分析二次函数图像,巩固所学的知识和技能5.4 作业与练习完成练习题,包括绘制和分析给定的二次函数图像第六章:二次函数的图像分析6.1 学习目标学会使用二次函数图像分析问题能够通过图像确定函数的零点能够判断函数的增减区间6.2 教学内容利用图像确定二次函数的零点判断二次函数的增减区间分析二次函数的顶点坐标的实际意义6.3 教学活动讲解如何通过图像确定二次函数的零点引导学生观察图像判断函数的增减区间分析顶点坐标与实际问题的关系6.4 作业与练习完成练习题,包括通过图像确定二次函数的零点和判断增减区间第七章:二次函数与一元二次方程7.1 学习目标理解二次函数与一元二次方程的关系学会通过函数图像求解一元二次方程能够利用一元二次方程求解函数的零点7.2 教学内容二次函数与一元二次方程的转化关系利用函数图像求解一元二次方程一元二次方程的求解方法7.3 教学活动讲解二次函数与一元二次方程的转化关系引导学生利用函数图像求解一元二次方程讲解一元二次方程的求解方法7.4 作业与练习完成练习题,包括将一元二次方程转化为二次函数图像求解第八章:二次函数的实际应用8.1 学习目标学会将实际问题转化为二次函数问题能够利用二次函数求解实际问题能够分析实际问题的最优解8.2 教学内容实际问题与二次函数的转化方法利用二次函数求解实际问题分析实际问题的最优解8.3 教学活动讲解如何将实际问题转化为二次函数问题引导学生利用二次函数求解实际问题分析实际问题的最优解8.4 作业与练习完成练习题,包括将实际问题转化为二次函数问题并求解第九章:二次函数的综合应用9.1 学习目标学会将二次函数与其他数学知识综合应用能够解决复杂的二次函数问题能够分析二次函数在实际问题中的应用9.2 教学内容二次函数与其他数学知识的综合应用解决复杂的二次函数问题分析二次函数在实际问题中的应用9.3 教学活动讲解如何将二次函数与其他数学知识综合应用引导学生解决复杂的二次函数问题分析二次函数在实际问题中的应用9.4 作业与练习完成练习题,包括将二次函数与其他数学知识综合应用解决实际问题第十章:总结与复习10.1 学习目标总结二次函数及其图像的主要内容和性质巩固所学的知识和技能10.2 教学内容回顾二次函数及其图像的定义、性质和应用巩固二次函数的图像绘制和分析方法10.3 教学活动引导学生回顾和总结二次函数及其图像的主要内容和性质让学生通过绘制和分析二次函数图像,巩固所学的知识和技能10.4 作业与练习完成练习题,包括绘制和分析给定的二次函数图像重点解析本文主要介绍了二次函数及其图像的相关知识和应用。
二次函数1 二次函数1.1 二次函数的定义(1)二次函数的定义:一般地,形如c bx y ax ++=2(a 、b 、c 是常数,a≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.c bx y ax ++=2(a 、b 、c 是常数,a≠0)也叫做二次函数的一般形式.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.(2)二次函数的取值范围:一般情况下,二次函数中自变量的取值范围是全体实数,对实际问题,自变量的取值范围还需使实际问题有意义. 1、下列函数,其中图象为抛物线的是( ) A .y =x1B .y=2xC .y=x 2D .y=2x+32、已知方程02=++cy bx ax (a ≠0、b 、c 为常数),请你通过变形把它写成你所熟悉的一个函数表达式的形式.则函数表达式为 ,成立的条件是 ,是 函数.1.2 根据实际问题列二次函数关系式根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题.②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.1、某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为y= .2、如图,半圆O 的直径AB=4,与半圆O 内切的动圆O1与AB 切于点M ,设⊙O1的半径为y ,AM 的长为x ,则y 关于x 的函数关系式是 (要求写出自变量x 的取值范围).3、如图,四边形ABCD 中,∠BAD=∠ACB=90°,AB=AD ,AC=4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( ) A .y=x 2252 B .y=x 2254 C .y=x 252 D .y=x 2542 二次函数的图象与性质2.1 二次函数的图象2.2 二次函数的性质1、已知a ≠0,在同一直角坐标系中,函数y=ax 与y=ax 2的图象有可能是( )A .B .C .D .2、函数y=xk 与y=-kx 2+k (k ≠0)在同一直角坐标系中的图象可能是( ) A .B .C .D .3、抛物线y=-x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是 .4、如图,已知函数y=−x3与y=ax 2+bx (a >0,b >0)的图象交于点P .点P的纵坐标为1.则关于x 的方程ax 2+bx+x3=0的解为 .5、抛物线y=ax 2+bx+c 经过点A (-3,0),对称轴是直线x=-1,则a+b+c= .6、如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,則它的对称轴为 .7、对于二次函数y=)(12x +2的图象,下列说法正确的是( ) A .开口向下B .对称轴是x=-1C .顶点坐标是(1,2)D .与x 轴有两个交点8、二次函数y=ax 2+bx+c (a ≠0)的大致图象如图,关于该二次函数,下列说法错误的是( ) A .函数有最小值B .对称轴是直线x=21C .当x <21,y 随x 的增大而减小D .当-1<x <2时,y >02.3 二次函数图象与系数的关系 二次函数c bx y ax ++=2(a≠0)①二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b 和二次项系数a 共同决定对称轴的位置.当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ). ④抛物线与x 轴交点个数.△=ac b 42->0时,抛物线与x 轴有2个交点;△=ac b 42-=0时,抛物线与x 轴有1个交点;△=ac b 42-<0时,抛物线与x 轴没有交点.1、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是( ) A .c >0B .2a+b=0C .ac b 42->0D .a-b+c >02、二次函数y=x 2+bx+c ,若b+c=0,则它的图象一定过点( ) A .(-1,-1)B .(1,-1)C .(-1,1)D .(1,1)3、二次函数y=-x 2+bx+c 的图象如图所示,则一次函数y=bx+c 的图象不经过第 象限.4、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论: ①b 2>4ac ; ②abc >0; ③2a-b=0; ④8a+c <0; ⑤9a+3b+c <0.其中结论正确的是 .(填正确结论的序号)2.4 二次函数图象上点的坐标特征二次函数c bx y ax ++=2(a≠0)的图象是抛物线,顶点坐标是(a b 2-,ab ac 442-);.①抛物线是关于对称轴ab2-成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点. ②抛物线与y 轴交点的纵坐标是函数解析中的c 值.③抛物线与x 轴的两个交点关于对称轴对称,设两个交点分别是(x 1,0),(x 2,0),则其对称轴为x=221x x +.1、设抛物线c bx y ax ++=2(a ≠0)过A (0,2),B (4,3),C 三点,其中点C 在直线x=2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为 .2、已知点(x 1,y 1),(x 2,y 2)均在抛物线y=x 2-1上,下列说法中正确的是( )A .若y 1=y 2,则x 1=x 2B .若x 1=-x 2,则y 1=-y 2C .若0<x 1<x 2,则y 1>y 2D .若x 1<x 2<0,则y 1>y 22.5 二次函数图象与几何变换1)、将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; 2)、 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位1、若将抛物线y=x 2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( )A .y=)(22+x +3 B .y=)(22-x +3 C .y=)(22+x -3 D .y=)(22-x -3 2、在平面直角坐标系中,把抛物线y=-x221+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是 .2.6 二次函数的最值(1)当a >0时,抛物线在对称轴左侧,y 随x 的增大而减少;在对称轴右侧,y 随x 的增大而增大,因为图象有最低点,所以函数有最小值,当x=ab2-时,y=ab ac 442-.(2)当a <0时,抛物线在对称轴左侧,y 随x 的增大而增大;在对称轴右侧,y 随x 的增大而减少,因为图象有最高点,所以函数有最大值,当x=ab2-时,y=ab ac 442-.(3)确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.1、如图,P 是抛物线y=-x 2+x+2在第一象限上的点,过点P 分别向x 轴和y 轴引垂线,垂足分别为A ,B ,则四边形OAPB 周长的最大值为 .2、当-2≤x ≤1时,二次函数y=-)(2m x -+m 2+1有最大值4,则实数m 的值为( ) A .-47B .3或−3C .2或−3D .2或3或−472.7 待定系数法求二次函数解析式 用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.1、如图,二次函数y=x 2+bx+c 的图象过点B (0,-2).它与反比例函数y=-x8的图象交于点A (m ,4),则这个二次函数的解析式为( ) A .y=x 2-x-2B .y=x 2-x+2C .y=x 2+x-2D .y=x 2+x+22、抛物线y=ax 2+bx+c (a ≠0)经过点(1,2)和(-1,-6)两点,则a+c= .2.8 二次函数的三种形式1)、一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2)、顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3)、两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.1、函数y=a ·sin x ·cosx+b ·sinx+b ·cosx+c 运用换元法可以化简为:将 设为t ,则化简为 .友情提醒:x sin 2=1-x cos 22、把二次函数y=-41x2-x+3用配方法化成y=a )(2h x -+k 的形式( )A .y=-41)2(2-x +2B .y=41)2(2-x +4C .y=-41)2(2-x +4D .y=)2121(2-x +33 实践与探究3.1 抛物线于x 轴的交点求二次函数2y ax bx c =++(a ,b ,c 是常数,a≠0)与x 轴的交点坐标,令y=0,即c bx ax ++2=0,解关于x 的一元二次方程即可求得交点横坐标.(1)二次函数2y ax bx c =++(a ,b ,c 是常数,a≠0)的交点与一元二次方程c bx ax++2=0根之间的关系.ac 4b 2-=∆决定抛物线与x 轴的交点个数. ac 4b 2-=∆>0时,抛物线与x 轴有2个交点; ac 4b 2-=∆=0时,抛物线与x 轴有1个交点; ac 4b 2-=∆<0时,抛物线与x 轴没有交点.(2)二次函数的交点式:12()()y a x x x x =--(a ,b ,c 是常数,a≠0),可直接得到抛物线与x 轴的交点坐标(x 1,0),(x 2,0).1、已知抛物线y=x 2-x-1与x 轴的一个交点为(m ,0),则代数式m 2-m+2014的值为( ) A .2012B .2013C .2014D .20152、如图,抛物线y=a x2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c的值为.3.2 图象法求一元二次方程的近似根利用二次函数图象求一元二次方程的近似根的步骤是:(1)作出函数的图象,并由图象确定方程的解的个数;(2)由图象与y=h的交点位置确定交点横坐标的范围;(3)观察图象求得方程的根(由于作图或观察存在误差,由图象求得的根一般是近似的).1、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2= .2、根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.263.3 二次函数与不等式(组)二次函数2=++(a、b、c是常数,a≠0)与不等式的关系y ax bx c①函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围.②利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.1、二次函数2=++(a≠0)的图象如图所示,则函数值y>0时,x的取y ax bx c值范围是()A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>32、如图是抛物线2=++的一部分,其对称轴为直线x=1,若其与x轴一y ax bx c交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是.3.4 二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.1、如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.2、如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.3.5 二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.1、如图,已知抛物线y 1=-x 2+1,直线y 2=-x+1,当x 任取一值时,x 对应的函数值分别为y 1,y 2.若y 1≠y 2,取y 1,y 2中的较小值记为M ;若y 1=y 2,记M=y 1=y 2.例如:当x=2时,y 1=-3,y 2=-1,y 1<y 2,此时M=-3.下列判断中:①当x <0时,M=y 1;②当x >0时,M 随x 的增大而增大; ③使得M 大于1的x 值不存在;④使得M=21的值是-22或21,其中正确的个数有( ) A .1B .2C .3D .42、已知抛物线y =21x2+bx 经过点A (4,0).设点C (1,-3),请在抛物线的对称轴上确定一点D ,使得|AD-CD|的值最大,则D 点的坐标为 .。
浙教版数学九年级上册全一册优质教案一、教学内容1. 第一章:二次函数1.1 二次函数的图像与性质1.2 二次函数的顶点式1.3 二次函数的应用2. 第二章:圆2.1 圆的基本概念2.2 圆的方程2.3 圆与直线、圆与圆的位置关系3. 第三章:概率与统计3.1 随机事件与概率3.2 统计量的计算3.3 统计图表的应用二、教学目标1. 理解二次函数、圆的基本概念,掌握其图像、性质及方程求解方法。
2. 能够运用二次函数、圆的方程解决实际问题,提高解决问题的能力。
3. 掌握概率与统计的基本概念,能够运用统计方法分析实际问题。
三、教学难点与重点1. 教学难点:二次函数图像与性质的深入理解圆的方程求解与应用概率与统计在实际问题中的应用2. 教学重点:二次函数、圆的基本概念与性质方程求解方法概率与统计在实际问题中的应用四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何画板等。
2. 学具:教材、练习本、圆规、直尺、计算器等。
五、教学过程1. 实践情景引入通过生活中常见的抛物线、圆形物体等,引出二次函数和圆的学习。
2. 例题讲解二次函数:以实际例题讲解二次函数图像、性质,求解顶点式。
圆:以实际例题讲解圆的方程、圆与直线、圆与圆的位置关系。
概率与统计:通过实例讲解随机事件、概率计算、统计量的计算及图表应用。
3. 随堂练习根据例题,设计相应的随堂练习,巩固所学知识。
4. 知识拓展引导学生探索二次函数、圆的其他性质和应用,提高学生的创新能力。
六、板书设计1. 二次函数图像与性质顶点式求解应用实例2. 圆基本概念方程求解位置关系3. 概率与统计随机事件与概率统计量计算统计图表应用七、作业设计1. 作业题目:二次函数:求解实际问题的二次函数方程,分析图像和性质。
圆:求解实际问题的圆方程,分析圆与直线、圆与圆的位置关系。
概率与统计:分析实际问题的概率计算、统计量计算和图表应用。
2. 答案:八、课后反思及拓展延伸1. 反思:2. 拓展延伸:引导学生通过互联网、课外阅读等途径,了解更多二次函数、圆的性质和应用,提高学生的学习兴趣和自主学习能力。